Search results for: virtual Machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3970

Search results for: virtual Machine

1780 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions

Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan

Abstract:

Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.

Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec

Procedia PDF Downloads 176
1779 Music Listening in Dementia: Current Developments and the Potential for Automated Systems in the Home: Scoping Review and Discussion

Authors: Alexander Street, Nina Wollersberger, Paul Fernie, Leonardo Muller, Ming Hung HSU, Helen Odell-Miller, Jorg Fachner, Patrizia Di Campli San Vito, Stephen Brewster, Hari Shaji, Satvik Venkatesh, Paolo Itaborai, Nicolas Farina, Alexis Kirke, Sube Banerjee, Eduardo Reck Miranda

Abstract:

Escalating neuropsychiatric symptoms (NPS) in people with dementia may lead to earlier care home admission. Music listening has been reported to stimulate cognitive function, potentially reducing agitation in this population. We present a scoping review, reporting on current developments and discussing the potential for music listening with related technology in managing agitation in dementia care. Of two searches for music listening studies, one focused on older people or people living with dementia where music listening interventions, including technology, were delivered in participants’ homes or in institutions to address neuropsychiatric symptoms, quality of life and independence. The second included any population focusing on the use of music technology for health and wellbeing. In search one 70/251 full texts were included. The majority reported either statistical significance (6, 8.5%), significance (17, 24.2%) or improvements (26, 37.1%). Agitation was specifically reported in 36 (51.4%). The second search included 51/99 full texts, reporting improvement (28, 54.9%), significance (11, 21.5%), statistical significance (1, 1.9%) and no difference compared to the control (6, 11.7%). The majority in the first focused on mood and agitation, and the second on mood and psychophysiological responses. Five studies used AI or machine learning systems to select music, all involving healthy controls and reporting benefits. Most studies in both reviews were not conducted in a home environment (review 1 = 12; 17.1%; review 2 = 11; 21.5%). Preferred music listening may help manage NPS in the care home settings. Based on these and other data extracted in the review, a reasonable progression would be to co-design and test music listening systems and protocols for NPS in all settings, including people’s homes. Machine learning and automated technology for music selection and arousal adjustment, driven by live biodata, have not been explored in dementia care. Such approaches may help deliver the right music at the appropriate time in the required dosage, reducing the use of medication and improving quality of life.

Keywords: music listening, dementia, agitation, scoping review, technology

Procedia PDF Downloads 112
1778 Development of Intelligent Construction Management System Using Web-Camera Image and 3D Object Image

Authors: Hyeon-Seung Kim, Bit-Na Cho, Tae-Woon Jeong, Soo-Young Yoon, Leen-Seok Kang

Abstract:

Recently, a construction project has been large in the size and complicated in the site work. The web-cameras are used to manage the construction site of such a large construction project. They can be used for monitoring the construction schedule as compared to the actual work image of the planned work schedule. Specially, because the 4D CAD system that the construction appearance is continually simulated in a 3D CAD object by work schedule is widely applied to the construction project, the comparison system between the real image of actual work appearance by web-camera and the simulated image of planned work appearance by 3D CAD object can be an intelligent construction schedule management system (ICON). The delayed activities comparing with the planned schedule can be simulated by red color in the ICON as a virtual reality object. This study developed the ICON and it was verified in a real bridge construction project in Korea. To verify the developed system, a web-camera was installed and operated in a case project for a month. Because the angle and zooming of the web-camera can be operated by Internet, a project manager can easily monitor and assume the corrective action.

Keywords: 4D CAD, web-camera, ICON (intelligent construction schedule management system), 3D object image

Procedia PDF Downloads 507
1777 Deep Learning to Enhance Mathematics Education for Secondary Students in Sri Lanka

Authors: Selvavinayagan Babiharan

Abstract:

This research aims to develop a deep learning platform to enhance mathematics education for secondary students in Sri Lanka. The platform will be designed to incorporate interactive and user-friendly features to engage students in active learning and promote their mathematical skills. The proposed platform will be developed using TensorFlow and Keras, two widely used deep learning frameworks. The system will be trained on a large dataset of math problems, which will be collected from Sri Lankan school curricula. The results of this research will contribute to the improvement of mathematics education in Sri Lanka and provide a valuable tool for teachers to enhance the learning experience of their students.

Keywords: information technology, education, machine learning, mathematics

Procedia PDF Downloads 83
1776 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a ‎Nonlinear Electro-Hydraulic Servo System

Authors: Maria Ahmadnezhad, Mohammad Reza Soltanpour

Abstract:

Electrohydraulic servo systems have been used in industry in a wide number of applications. Its dynamics ‎are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this ‎thesis, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of ‎disturbances and system uncertainties effectively and to improve the tracking performance of EHS ‎systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems ‎are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the ‎virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the ‎Lyapunov control function (LCF). To verify the performance and robustness of the proposed control ‎system, computer simulation of the proposed control system using Matlab/Simulink Software is ‎executed. From the computer simulation, it was found that the RBSC system produces the desired ‎tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.‎

Keywords: electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign

Procedia PDF Downloads 296
1775 The Effect of Advertising on Brand Choices of Z Generation Children and Their Social Media Consumption Habits

Authors: Hüseyin Altubaş, Hasret Aktaş, A. Mücahid Zengin

Abstract:

Children determine the direction of the power of consumption. They affect the decisions of their parents but they also reached to a significant purchasing power themselves. Children, who are turning interactive behavior to normal behavior are becoming the decision makers in a company’s survival. Companies that analyze this effective target audience can communicate successfully with children. Children, who are interactive individuals, are closer to advertising. They are almost talking better with advertising. They are not afraid to express their likings, as well as their dislikes. Children have an interactive lifestyle and they were exposed to the vast changes in technology after year 2000. They do not know a life without internet, they spend mobile life in internet. This Z generation is the new determinants of brands. Z generation finds it appropriate to be brand ambassadors and they completely changed traditional media and traditional consumer behavior. These children live social reality with virtual reality and they feed brands differently. Brands that interact with Z generation are affected by this feeding positively, while brands that keep interaction in traditional levels are affected negatively. In this research we examine the communication, advertising and brand behaviors of Z generation. We especially analyze this generation’s interaction with social media brands and their interactive attitudes.

Keywords: social media, Z generation, children, advertising, brand choice

Procedia PDF Downloads 550
1774 Makhraj Recognition Using Convolutional Neural Network

Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak

Abstract:

This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.

Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow

Procedia PDF Downloads 335
1773 Modeling and Characterization of the SiC Single Crystal Growth Process

Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski

Abstract:

In the present study numerical simulations silicon carbide single crystal growth process in Physical Vapor Transport reactor are addressed. Silicon Carbide is a perspective material for many applications in modern electronics. One of the main challenges for wider applications of SiC is high price of high quality mono crystals. Improvement of silicon carbide manufacturing process has a significant influence on the product price. Better understanding of crystal growth allows for optimization of the process, and it can be achieved by numerical simulations. In this work Virtual Reactor software was used to simulate the process. Predicted geometrical properties of the final product and information about phenomena occurring inside process reactor were obtained. The latter is especially valuable because reactor chamber is inaccessible during the process due to high temperature inside the reactor (over 2000˚C). Obtained data was used for improvement of the process and reactor geometry. Resultant crystal quality was also predicted basing on crystallization front shape evolution and threading dislocation paths. Obtained results were confronted with experimental data and the results are in good agreement.

Keywords: Finite Volume Method, semiconductors, Physical Vapor Transport, silicon carbide

Procedia PDF Downloads 531
1772 Minimizing Total Completion Time in No-Wait Flowshops with Setup Times

Authors: Ali Allahverdi

Abstract:

The m-machine no-wait flowshop scheduling problem is addressed in this paper. The objective is to minimize total completion time subject to the constraint that the makespan value is not greater than a certain value. Setup times are treated as separate from processing times. Several recent algorithms are adapted and proposed for the problem. An extensive computational analysis has been conducted for the evaluation of the proposed algorithms. The computational analysis indicates that the best proposed algorithm performs significantly better than the earlier existing best algorithm.

Keywords: scheduling, no-wait flowshop, algorithm, setup times, total completion time, makespan

Procedia PDF Downloads 340
1771 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management

Authors: Ezgi Şendil

Abstract:

Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.

Keywords: disaster, NLP, postdisaster management, sentiment analysis

Procedia PDF Downloads 75
1770 Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes

Abstract:

In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.

Keywords: adaptive differentiators, second order sliding modes, dynamic adaptation of the gains, microsoft flight simulator, Zlin-142, MQ-1 predator

Procedia PDF Downloads 423
1769 Towards Creative Movie Title Generation Using Deep Neural Models

Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie

Abstract:

Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.

Keywords: creativity, deep machine learning, natural language generation, movies

Procedia PDF Downloads 326
1768 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses

Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau

Abstract:

Planning the order picking lists of warehouses to achieve when the costs associated with logistics on the operational performance is a significant challenge. In e-commerce era, this task is especially important productive processes are high. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, the definition of which features should be processed by such algorithms is not a simple task, being crucial to the proposed technique’s success. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A Zone2 picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.

Keywords: order picking, warehouse, clustering, unsupervised learning

Procedia PDF Downloads 159
1767 Gesture-Controlled Interface Using Computer Vision and Python

Authors: Vedant Vardhan Rathour, Anant Agrawal

Abstract:

The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.

Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks

Procedia PDF Downloads 12
1766 Asynchronous Sequential Machines with Fault Detectors

Authors: Seong Woo Kwak, Jung-Min Yang

Abstract:

A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.

Keywords: asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector

Procedia PDF Downloads 349
1765 Predicting Personality and Psychological Distress Using Natural Language Processing

Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi

Abstract:

Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality

Procedia PDF Downloads 79
1764 Role of Social Capital on Consumer Attitudes, Peer Influence and Behavioral Intentions: A Social Media Perspective

Authors: Qazi Mohammed Ahmed, Osman Sadiq Paracha, Iftikhar Hussain

Abstract:

The study aims to explore the unaddressed relationship between social capital and consumers’ underlying behavioral intentions. The study postulates that this association is mediated by the role of attitudes and peer influence. The research attains evidence from a usable sample of 673 responses. The majority consists of the young and energetic social media users of Pakistan that utilize virtual communities as a way of life. A variance based structural equation modeling has been applied through SmartPLS 3. The results reveal that social capital exerts a statistically supportive association with both attitudes and peer influence. Contrastingly, this predictor variable shows an insignificant linkage with behavioral intentions but this relationship is fully mediated by consumer attitudes and peer influence. The paper enhances marketing literature with respect to an unexplored society of Pakistan. It also provides a lens for the contemporary advertisers, in terms of supporting their social media campaigns with affiliative and cohesive elements. The study also identifies a series of predictor variables that could further be tested with attitudes, subjective norms and behavioral responses.

Keywords: social capital, consumer attitudes, peer influence, behavioral intentions

Procedia PDF Downloads 135
1763 Two-Stage Flowshop Scheduling with Unsystematic Breakdowns

Authors: Fawaz Abdulmalek

Abstract:

The two-stage flowshop assembly scheduling problem is considered in this paper. There are more than one parallel machines at stage one and an assembly machine at stage two. The jobs will be processed into the flowshop based on Johnson rule and two extensions of Johnson rule. A simulation model of the two-stage flowshop is constructed where both machines at stage one are subject to random failures. Three simulation experiments will be conducted to test the effect of the three job ranking rules on the makespan. Johnson Largest heuristic outperformed both Johnson rule and Johnson Smallest heuristic for two performed experiments for all scenarios where each experiments having five scenarios.

Keywords: flowshop scheduling, random failures, johnson rule, simulation

Procedia PDF Downloads 339
1762 Optimal Design of InGaP/GaAs Heterojonction Solar Cell

Authors: Djaafar F., Hadri B., Bachir G.

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300°K led to the following result Icc =14.22 mA/cm2, Voc =2.42V, FF =91.32 %, η = 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η =23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell. This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, silvaco ATLAS

Procedia PDF Downloads 621
1761 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
1760 Technological Loneliness; The Effect on Loneliness of Internet Addiction of University Students; The Case of Turkey

Authors: Adem Pala, Mustafa Biner

Abstract:

Nowadays, despite the fact that technology and internet shorten the virtual distance, too much use and misuse of internet create distance among people. There is a considerable number of people living in the same house even sitting at the same table but busy themselves with mobiles and computers for long hours without talking to each other. Internet usage is very common among young people especially university students. Evolving out of this problem, internet addiction of university students and effect on their loneliness, and relationship between them consist of the purpose of this study. The study is important because it discusses what can be done in order to make the young people more social via determining the university students’ loneliness and their internet addiction. The study was carried out with 440 university students studying at different universities and departments. The group consists of 200 female and 240 male students with average of age 20,9. In the study, 19 questions, “internet addiction scale” consisting of 3 subscales, and UCLA loneliness scale were used as data collection tools. As a result, it is found out that the loneliness of individuals with internet addiction is higher than the other individuals. The males’ loneliness related to internet addiction is higher than the females; on the other hand, it is determined females feel more lonesome in general loneliness. It is thought that the findings of the study will determine the individuals under risk, prevent them, help researchers and people doing clinical studies during rehabilitation progress.

Keywords: internet addiction, loneliness, Turkey, university students

Procedia PDF Downloads 330
1759 Addressing Differentiation Using Mobile-Assisted Language Learning

Authors: Ajda Osifo, Fatma Elshafie

Abstract:

Mobile-assisted language learning favors social-constructivist and connectivist theories to learning and adaptive approaches to teaching. It offers many opportunities to differentiated instruction in meaningful ways as it enables learners to become more collaborative, engaged and independent through additional dimensions such as web-based media, virtual learning environments, online publishing to an imagined audience and digitally mediated communication. MALL applications can be a tool for the teacher to personalize and adjust instruction according to the learners’ needs and give continuous feedback to improve learning and performance in the process, which support differentiated instruction practices. This paper explores the utilization of Mobile Assisted Language Learning applications as a supporting tool for effective differentiation in the language classroom. It reports overall experience in terms of implementing MALL to shape and apply differentiated instruction and expand learning options. This session is structured in three main parts: first, a review of literature and effective practice of academically responsive instruction will be discussed. Second, samples of differentiated tasks, activities, projects and learner work will be demonstrated with relevant learning outcomes and learners’ survey results. Finally, project findings and conclusions will be given.

Keywords: academically responsive instruction, differentiation, mobile learning, mobile-assisted language learning

Procedia PDF Downloads 417
1758 The Role of Social Media in Growing Small and Medium Enterprises: An Empirical Study in Jordan

Authors: Hanady Al-Zagheer

Abstract:

The purpose of this paper research is to introduce the role of the social media (face book) in growing small and medium enterprises in Jordan, Today’s developments of information technologies are dazzling. Using information technologies results in having advantages in competition, decreasing costs, gaining time, and getting and sharing information. Now it is possible to state that there are different types of usage within the information technologies. Small and medium enterprises have been grown rapidly in recent years and continue to grow. Jordanian females have played a large role in the growth of entrepreneurship and have made an impact on household economics. Virtual storefronts have allowed these women to balance roles assigned by tradition and culture while becoming successful providers. If you have a small business with a limited public relations and advertising budget, Facebook can be a cost effective way to promote your services because opening an account is free. However, this can work against you if you do not maintain the page. A Face book page without frequent updates can destroy your brand value and image. According to a 2009 Computerworld article by Lisa Hoover, having a Facebook page that looks abandoned is worse than having no page at all. You might need to hire someone or pay an employee to update your business’s Facebook page.

Keywords: social media, social media small, medium enterprises, Jordan

Procedia PDF Downloads 327
1757 Real Time Traffic Performance Study over MPLS VPNs with DiffServ

Authors: Naveed Ghani

Abstract:

With the arrival of higher speed communication links and mature application running over the internet, the requirement for reliable, efficient and robust network designs rising day by day. Multi-Protocol Label Switching technology (MPLS) Virtual Private Networks (VPNs) have committed to provide optimal network services. They are gaining popularity in industry day by day. Enterprise customers are moving to service providers that offer MPLS VPNs. The main reason for this shifting is the capability of MPLS VPN to provide built in security features and any-to-any connectivity. MPLS VPNs improved the network performance due to fast label switching as compare to traditional IP Forwarding but traffic classification and policing was still required on per hop basis to enhance the performance of real time traffic which is delay sensitive (particularly voice and video). QoS (Quality of service) is the most important factor to prioritize enterprise networks’ real time traffic such as voice and video. This thesis is focused on the study of QoS parameters (e.g. delay, jitter and MOS (Mean Opinion Score)) for the real time traffic over MPLS VPNs. DiffServ (Differentiated Services) QoS model will be used over MPLS VPN network to get end-to-end service quality.

Keywords: network, MPLS, VPN, DiffServ, MPLS VPN, DiffServ QoS, QoS Model, GNS2

Procedia PDF Downloads 426
1756 Role of Geomatics in Architectural and Cultural Conservation

Authors: Shweta Lall

Abstract:

The intent of this paper is to demonstrate the role of computerized auxiliary science in advancing the desired and necessary alliance of historians, surveyors, topographers, and analysts of architectural conservation and management. The digital era practice of recording architectural and cultural heritage in view of its preservation, dissemination, and planning developments are discussed in this paper. Geomatics include practices like remote sensing, photogrammetry, surveying, Geographic Information System (GIS), laser scanning technology, etc. These all resources help in architectural and conservation applications which will be identified through various case studies analysed in this paper. The standardised outcomes and the methodologies using relevant case studies are listed and described. The main component of geomatics methodology adapted in conservation is data acquisition, processing, and presentation. Geomatics is used in a wide range of activities involved in architectural and cultural heritage – damage and risk assessment analysis, documentation, 3-D model construction, virtual reconstruction, spatial and structural decision – making analysis and monitoring. This paper will project the summary answers of the capabilities and limitations of the geomatics field in architectural and cultural conservation. Policy-makers, urban planners, architects, and conservationist not only need answers to these questions but also need to practice them in a predictable, transparent, spatially explicit and inexpensive manner.

Keywords: architectural and cultural conservation, geomatics, GIS, remote sensing

Procedia PDF Downloads 147
1755 Streamline Marketing Strategies for Survival of Librarianship in Developing Countries in the 21st Century: A Study Related to Sri Lanka

Authors: Wilfred Jeyatheese Jeyaraj

Abstract:

Considering the current digital age, Library Marketing, in its entirety, has evolved to elucidate the importance of falling back to the roots of searching for tangible and intangible resources, traversing through pages and references to acquire the required knowledge needs with proper guidance. With the turn of the century, the present generation has deeply entrenched their virtual presence, browsing via search engines for all their information needs. Not fully realizing the adverse effects of the materials available digitally, the authenticity of such resources cannot be verified. So a user might be led to believe false misdirected data. This paper tends to elucidate the prominent strategies to market Sri Lankan libraries in a proper manner so as to captivate a large user base making them aware that all resources and materials that they access without guidance outside the libraries are also available within the libraries with added guidance towards accessing the right data. The main contemplation here is to focus on getting more users to visit libraries in person to copiously apprehend the importance of browsing for materials with the proper direction. The current library marketing strategies in Sri Lankan libraries need to be streamlined to align with the best interest of acquiring the present generations to visit libraries in person to reap its benefits.

Keywords: accessibility, librarianship, marketing, Sri Lanka

Procedia PDF Downloads 284
1754 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study

Authors: Ankur Chaudhuri, Sibani Sen Chakraborty

Abstract:

In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.

Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation

Procedia PDF Downloads 131
1753 Grid Computing for Multi-Objective Optimization Problems

Authors: Aouaouche Elmaouhab, Hassina Beggar

Abstract:

Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.

Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing

Procedia PDF Downloads 486
1752 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 245
1751 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 51