Search results for: prediction of publications
446 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 316445 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction
Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky
Abstract:
The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel
Procedia PDF Downloads 394444 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing
Authors: Jonathan Martino, Kristof Harri
Abstract:
In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration
Procedia PDF Downloads 269443 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model
Authors: A. Clementking, C. Jothi Venkateswaran
Abstract:
Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining
Procedia PDF Downloads 477442 Molecular Modeling of Structurally Diverse Compounds as Potential Therapeutics for Transmissible Spongiform Encephalopathy
Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić
Abstract:
Prion is a protein substance whose certain form is considered as infectious agent. It is presumed to be the cause of the transmissible spongiform encephalopathies (TSEs). The protein it is composed of, called PrP, can fold in structurally distinct ways. At least one of those 3D structures is transmissible to other prion proteins. Prions can be found in brain tissue of healthy people and have certain biological role. The structure of prions naturally occurring in healthy organisms is marked as PrPc, and the structure of infectious prion is labeled as PrPSc. PrPc may play a role in synaptic plasticity and neuronal development. Also, it may be required for neuronal myelin sheath maintenance, including a role in iron uptake and iron homeostasis. PrPSc can be considered as an environmental pollutant. The main aim of this study was to carry out the molecular modeling and calculation of molecular descriptors (lipophilicity, physico-chemical and topological descriptors) of structurally diverse compounds which can be considered as anti-prion agents. Molecular modeling was conducted applying ChemBio3D Ultra version 12.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The Austin Model 1 (AM-1) was used for full geometry optimization of all structures. The obtained set of molecular descriptors is applied in analysis of similarities and dissimilarities among the tested compounds. This study is an important step in further development of quantitative structure-activity relationship (QSAR) models, which can be used for prediction of anti-prion activity of newly synthesized compounds.Keywords: chemometrics, molecular modeling, molecular descriptors, prions, QSAR
Procedia PDF Downloads 322441 Systematic Review of Associations between Interoception, Vagal Tone, and Emotional Regulation
Authors: Darren Edwards, Thomas Pinna
Abstract:
Background: Interoception and heart rate variability have been found to predict outcomes of mental health and well-being. However, these have usually been investigated independently of one another. Objectives: This review aimed to explore the associations between interoception and heart rate variability (HRV) with emotion regulation (ER) and ER strategies within the existing literature and utilizing systematic review methodology. Methods: The process of article retrieval and selection followed the preferred reporting items for systematic review and meta-analyses (PRISMA) guidelines. Databases PsychINFO, Web of Science, PubMed, CINAHL, and MEDLINE were scanned for papers published. Preliminary inclusion and exclusion criteria were specified following the patient, intervention, comparison, and outcome (PICO) framework, whilst the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS) framework was used to help formulate the research question, and to critically assess for bias in the identified full-length articles. Results: 237 studies were identified after initial database searches. Of these, eight studies were included in the final selection. Six studies explored the associations between HRV and ER, whilst three investigated the associations between interoception and ER (one of which was included in the HRV selection too). Overall, the results seem to show that greater HRV and interoception are associated with better ER. Specifically, high parasympathetic activity largely predicted the use of adaptive ER strategies such as reappraisal, and better acceptance of emotions. High interoception, instead, was predictive of effective down-regulation of negative emotions and handling of social uncertainty, there was no association with any specific ER strategy. Conclusions: Awareness of one’s own bodily feelings and vagal activation seem to be of central importance for the effective regulation of emotional responses.Keywords: emotional regulation, vagal tone, interoception, chronic conditions, health and well-being, psychological flexibility
Procedia PDF Downloads 112440 Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin
Authors: Racha El Kadiri, Mohamed Sultan, Henrique Momm, Zachary Blair, Rachel Schultz, Tamer Al-Bayoumi
Abstract:
The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region.Keywords: rainfall, neural networks, climatic indices, Mediterranean
Procedia PDF Downloads 312439 Geographic Information System Application for Predicting Tourism Development in Gunungkidul Regency, Indonesia
Authors: Nindyo Cahyo Kresnanto, Muhamad Willdan, Wika Harisa Putri
Abstract:
Gunungkidul is one of the emerging tourism industry areas in Yogyakarta Province, Indonesia. This article describes how GIS can predict the development of tourism potential in Gunungkidul. The tourism sector in Gunungkidul Regency contributes 3.34% of the total gross regional domestic product and is the economic sector with the highest growth with a percentage of 18.37% in the post-Covid-19 period. This contribution makes researchers consider that several tourist sites need to be explored more to increase regional economic development gradually. This research starts by collecting spatial data from tourist locations tourists want to visit in Gunungkidul Regency based on survey data from 571 respondents. Then the data is visualized with ArcGIS software. This research shows an overview of tourist destinations interested in travellers depicted from the lowest to the highest from the data visualization. Based on the data visualization results, specific tourist locations potentially developed to influence the surrounding economy positively. The visualization of the data displayed is also in the form of a desire line map that shows tourist travel patterns from the origin of the tourist to the destination of the tourist location of interest. From the desire line, the prediction of the path of tourist sites with a high frequency of transportation activity can figure out. Predictions regarding specific tourist location routes that high transportation activities can burden can consider which routes will be chosen. The route also needs to be improved in terms of capacity and quality. The goal is to provide a sense of security and comfort for tourists who drive and positively impact the tourist sites traversed by the route.Keywords: tourism development, GIS and survey, transportation, potential desire line
Procedia PDF Downloads 66438 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon
Authors: Layan Moussa, Darine Salam, Samir Mustapha
Abstract:
Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination
Procedia PDF Downloads 101437 The Utility of Sonographic Features of Lymph Nodes during EBUS-TBNA for Predicting Malignancy
Authors: Atefeh Abedini, Fatemeh Razavi, Mihan Pourabdollah Toutkaboni, Hossein Mehravaran, Arda Kiani
Abstract:
In countries with the highest prevalence of tuberculosis, such as Iran, the differentiation of malignant tumors from non-malignant is very important. In this study, which was conducted for the first time among the Iranian population, the utility of the ultrasonographic morphological characteristics in patients undergoing EBUS was used to distinguish the non-malignant versus malignant lymph nodes. The morphological characteristics of lymph nodes, which consist of size, shape, vascular pattern, echogenicity, margin, coagulation necrosis sign, calcification, and central hilar structure, were obtained during Endobronchial Ultrasound-Guided Trans-Bronchial Needle Aspiration and were compared with the final pathology results. During this study period, a total of 253 lymph nodes were evaluated in 93 cases. Round shape, non-hilar vascular pattern, heterogeneous echogenicity, hyperechogenicity, distinct margin, and the presence of necrosis sign were significantly higher in malignant nodes. On the other hand, the presence of calcification and also central hilar structure were significantly higher in the benign nodes (p-value ˂ 0.05). Multivariate logistic regression showed that size>1 cm, heterogeneous echogenicity, hyperechogenicity, the presence of necrosis signs and, the absence of central hilar structure are independent predictive factors for malignancy. The accuracy of each of the aforementioned factors is 42.29 %, 71.54 %, 71.90 %, 73.51 %, and 65.61 %, respectively. Of 74 malignant lymph nodes, 100% had at least one of these independent factors. According to our results, the morphological characteristics of lymph nodes based on Endobronchial Ultrasound-Guided Trans-Bronchial Needle Aspiration can play a role in the prediction of malignancy.Keywords: EBUS-TBNA, malignancy, nodal characteristics, pathology
Procedia PDF Downloads 135436 Nutritional Profile and Food Intake Trends amongst Hospital Dieted Diabetic Eye Disease Patients of India
Authors: Parmeet Kaur, Nighat Yaseen Sofi, Shakti Kumar Gupta, Veena Pandey, Rajvaedhan Azad
Abstract:
Nutritional status and prevailing blood glucose level trends amongst hospitalized patients has been linked to clinical outcome. Therefore, the present study was undertaken to assess hospitalized Diabetic Eye Disease (DED) patients' anthropometric and dietary intake trends. DED patients with type 1 or 2 diabetes > 20 years were enrolled. Actual food intake was determined by weighed food record method. Mifflin St Joer predictive equation multiplied by a combined stress and activity factor of 1.3 was applied to estimate caloric needs. A questionnaire was further administered to obtain reasons of inadequate dietary intake. Results indicated validity of joint analyses of body mass index in combination with waist circumference for clinical risk prediction. Dietary data showed a significant difference (p < 0.0005) between average daily caloric and carbohydrate intake and actual daily caloric and carbohydrate needs. Mean fasting and post-prandial plasma glucose levels were 150.71 ± 72.200 mg/dL and 219.76 ± 97.365 mg/dL, respectively. Improvement in food delivery systems and nutrition educations were indicated for reducing plate waste and to enable better understanding of dietary aspects of diabetes management. A team approach of nurses, physicians and other health care providers is required besides the expertise of dietetics professional. To conclude, findings of the present study will be useful in planning nutritional care process (NCP) for optimizing glucose control as a component of quality medical nutrition therapy (MNT) in hospitalized DED patients.Keywords: nutritional status, diabetic eye disease, nutrition care process, medical nutrition therapy
Procedia PDF Downloads 354435 Calculation of Secondary Neutron Dose Equivalent in Proton Therapy of Thyroid Gland Using FLUKA Code
Authors: M. R. Akbari, M. Sadeghi, R. Faghihi, M. A. Mosleh-Shirazi, A. R. Khorrami-Moghadam
Abstract:
Proton radiotherapy (PRT) is becoming an established treatment modality for cancer. The localized tumors, the same as undifferentiated thyroid tumors are insufficiently handled by conventional radiotherapy, while protons would propose the prospect of increasing the tumor dose without exceeding the tolerance of the surrounding healthy tissues. In spite of relatively high advantages in giving localized radiation dose to the tumor region, in proton therapy, secondary neutron production can have significant contribution on integral dose and lessen advantages of this modality contrast to conventional radiotherapy techniques. Furthermore, neutrons have high quality factor, therefore, even a small physical dose can cause considerable biological effects. Measuring of this neutron dose is a very critical step in prediction of secondary cancer incidence. It has been found that FLUKA Monte Carlo code simulations have been used to evaluate dose due to secondaries in proton therapy. In this study, first, by validating simulated proton beam range in water phantom with CSDA range from NIST for the studied proton energy range (34-54 MeV), a proton therapy in thyroid gland cancer was simulated using FLUKA code. Secondary neutron dose equivalent of some organs and tissues after the target volume caused by 34 and 54 MeV proton interactions were calculated in order to evaluate secondary cancer incidence. A multilayer cylindrical neck phantom considering all the layers of neck tissues and a proton beam impinging normally on the phantom were also simulated. Trachea (accompanied by Larynx) had the greatest dose equivalent (1.24×10-1 and 1.45 pSv per primary 34 and 54 MeV protons, respectively) among the simulated tissues after the target volume in the neck region.Keywords: FLUKA code, neutron dose equivalent, proton therapy, thyroid gland
Procedia PDF Downloads 425434 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm
Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei
Abstract:
In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes
Procedia PDF Downloads 75433 Uterine Cervical Cancer; Early Treatment Assessment with T2- And Diffusion-Weighted MRI
Authors: Susanne Fridsten, Kristina Hellman, Anders Sundin, Lennart Blomqvist
Abstract:
Background: Patients diagnosed with locally advanced cervical carcinoma are treated with definitive concomitant chemo-radiotherapy. Treatment failure occurs in 30-50% of patients with very poor prognoses. The treatment is standardized with risk for both over-and undertreatment. Consequently, there is a great need for biomarkers able to predict therapy outcomes to allow for individualized treatment. Aim: To explore the role of T2- and diffusion-weighted magnetic resonance imaging (MRI) for early prediction of therapy outcome and the optimal time point for assessment. Methods: A pilot study including 15 patients with cervical carcinoma stage IIB-IIIB (FIGO 2009) undergoing definitive chemoradiotherapy. All patients underwent MRI four times, at baseline, 3 weeks, 5 weeks, and 12 weeks after treatment started. Tumour size, size change (∆size), visibility on diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) and change of ADC (∆ADC) at the different time points were recorded. Results: 7/15 patients relapsed during the study period, referred to as "poor prognosis", PP, and the remaining eight patients are referred to "good prognosis", GP. The tumor size was larger at all time points for PP than for GP. The ∆size between any of the four-time points was the same for PP and GP patients. The sensitivity and specificity to predict prognostic group depending on a remaining tumor on DWI were highest at 5 weeks and 83% (5/6) and 63% (5/8), respectively. The combination of tumor size at baseline and remaining tumor on DWI at 5 weeks in ROC analysis reached an area under the curve (AUC) of 0.83. After 12 weeks, no remaining tumor was seen on DWI among patients with GP, as opposed to 2/7 PP patients. Adding ADC to the tumor size measurements did not improve the predictive value at any time point. Conclusion: A large tumor at baseline MRI combined with a remaining tumor on DWI at 5 weeks predicted a poor prognosis.Keywords: chemoradiotherapy, diffusion-weighted imaging, magnetic resonance imaging, uterine cervical carcinoma
Procedia PDF Downloads 143432 Investigations on the Influence of Web Openings on the Load Bearing Behavior of Steel Beams
Authors: Felix Eyben, Simon Schaffrath, Markus Feldmann
Abstract:
A building should maximize the potential for use through its design. Therefore, flexible use is always important when designing a steel structure. To create flexibility, steel beams with web openings are increasingly used, because these offer the advantage that cables, pipes and other technical equipment can easily be routed through without detours, allowing for more space-saving and aesthetically pleasing construction. This can also significantly reduce the height of ceiling systems. Until now, beams with web openings were not explicitly considered in the European standard. However, this is to be done with the new EN 1993-1-13, in which design rules for different opening forms are defined. In order to further develop the design concepts, beams with web openings under bending are therefore to be investigated in terms of damage mechanics as part of a German national research project aiming to optimize the verifications for steel structures based on a wider database and a validated damage prediction. For this purpose, first, fundamental factors influencing the load-bearing behavior of girders with web openings under bending load were investigated numerically without taking material damage into account. Various parameter studies were carried out for this purpose. For example, the factors under study were the opening shape, size and position as well as structural aspects as the span length, arrangement of stiffeners and loading situation. The load-bearing behavior is evaluated using resulting load-deformation curves. These results are compared with the design rules and critically analyzed. Experimental tests are also planned based on these results. Moreover, the implementation of damage mechanics in the form of the modified Bai-Wierzbicki model was examined. After the experimental tests will have been carried out, the numerical models are validated and further influencing factors will be investigated on the basis of parametric studies.Keywords: damage mechanics, finite element, steel structures, web openings
Procedia PDF Downloads 173431 Improved Regression Relations Between Different Magnitude Types and the Moment Magnitude in the Western Balkan Earthquake Catalogue
Authors: Anila Xhahysa, Migena Ceyhan, Neki Kuka, Klajdi Qoshi, Damiano Koxhaj
Abstract:
The seismic event catalog has been updated in the framework of a bilateral project supported by the Central European Investment Fund and with the extensive support of Global Earthquake Model Foundation to update Albania's national seismic hazard model. The earthquake catalogue prepared within this project covers the Western Balkan area limited by 38.0° - 48°N, 12.5° - 24.5°E and includes 41,806 earthquakes that occurred in the region between 510 BC and 2022. Since the moment magnitude characterizes the earthquake size accurately and the selected ground motion prediction equations for the seismic hazard assessment employ this scale, it was chosen as the uniform magnitude scale for the catalogue. Therefore, proxy values of moment magnitude had to be obtained by using new magnitude conversion equations between the local and other magnitude types to this unified scale. The Global Centroid Moment Tensor Catalogue was considered the most authoritative for moderate to large earthquakes for moment magnitude reports; hence it was used as a reference for calibrating other sources. The best fit was observed when compared to some regional agencies, whereas, with reports of moment magnitudes from Italy, Greece and Turkey, differences were observed in all magnitude ranges. For teleseismic magnitudes, to account for the non-linearity of the relationships, we used the exponential model for the derivation of the regression equations. The obtained regressions for the surface wave magnitude and short-period body-wave magnitude show considerable differences with Global Earthquake Model regression curves, especially for low magnitude ranges. Moreover, a conversion relation was obtained between the local magnitude of Albania and the corresponding moment magnitude as reported by the global and regional agencies. As errors were present in both variables, the Deming regression was used.Keywords: regression, seismic catalogue, local magnitude, tele-seismic magnitude, moment magnitude
Procedia PDF Downloads 69430 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 153429 In-silico Target Identification and Molecular Docking of Withaferin A and Withanolide D to Understand their Anticancer Therapeutic Potential
Authors: Devinder Kaur Sugga, Ekamdeep Kaur, Jaspreet Kaur, C. Rajesh, Preeti Rajesh, Harsimran Kaur
Abstract:
Withanolides are steroidal lactones and are highly oxygenated phytoconstituents that can be developed as potential anti-carcinogenic agents. The two main withanolides, namely Withaferin A and Withanolides D, have been extensively studied for their pharmacological activities. Both these withanolides are present in the Withania somnifera (WS) leaves belonging to the family Solanaceae, also known as “Indian ginseng .”In this study effects of WS leaf extract on the MCF7 breast cancer cell line were investigated by performing a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate the cytotoxic effects and in vitro wound-healing assay to study the effect on cancer cell migration. Our data suggest WS extracts have cytotoxic effects and are effective anti-migrating agents and thus can be a source of potential candidates for the development of potential agents against metastasis. Thus, it can be a source of potential candidates for the development of potential agents against metastasis. Insight into these results, the in-silico approach to identify the possible protein targets interacting with withanolides was taken. Protein kinase C alpha (PKCα) was among the selected 5 top-ranked target proteins identified by the Swiss Target Prediction tool. PKCα is known to promote the growth and invasion of cancer cells and is being evaluated as a prognostic biomarker and therapeutic target in clinically aggressive tumors. Molecular docking of Withaferin A and Withanolides D was performed using AutoDock Vina. Both the bioactive compounds interacted with PKCα. The targets predicted using this approach will serve as leads for the possible therapeutic potential of withanolides, the bioactive ingredients of WS extracts, as anti-cancer drugs.Keywords: withania somnifera, withaferin A, withanolides D, PKCα
Procedia PDF Downloads 146428 Distribution of Cytochrome P450 Gene in Patients Taking Medical Cannabis
Authors: Naso Isaiah Thanavisuth
Abstract:
Introduction: Medical cannabis can be used for treatment, including anorexia, pain, inflammation, multiple sclerosis, Parkinson's disease, epilepsy, cancer, and metabolic syndrome-related disorders. However, medical cannabis leads to adverse effects (AEs), which is delta-9-tetrahydrocannabinol (THC). In previous studies, the major of THC metabolism enzymes are CYP2C9. Especially, the variation of CYP2C9 gene consist of CYP2C9*2 on exon 3 (C430T) (Arg144Cys) and CYP2C9*3 on exon 7 (A1075C) (Ile359Leu) to decrease enzyme activity. Notwithstanding, there is no data describing whether the variant of CYP2C9 genes are a pharmacogenetics marker for prediction of THC-induced AEs in Thai patients. Objective: We want to investigate the association between CYP2C9 gene and THC-induced AEs in Thai patients. Method: We enrolled 39 Thai patients with medical cannabis treatment consisting of men and women who were classified by clinical data. The quality of DNA extraction was assessed by using NanoDrop ND-1000. The CYP2C9*2 and *3 genotyping were conducted using the TaqMan real time PCR assay (ABI, Foster City, CA, USA). Results: All Thai patients who received the medical cannabis consist of twenty four (61.54%) patients who were female and fifteen (38.46%) were male, with age range 27- 87 years. Moreover, the most AEs in Thai patients who were treated with medical cannabis between cases and controls were tachycardia, arrhythmia, dry mouth, and nausea. Particularly, thirteen (72.22%) medical cannabis-induced AEs were female and age range 33 – 69 years. In this study, none of the medical cannabis groups carried CYP2C9*2 variants in Thai patients. The CYP2C9*3 variants (*1/*3, intermediate metabolizer, IM) and (*3/*3, poor metabolizer, PM) were found, three of thirty nine (7.69%) and one of thirty nine (2.56%) , respectively. Conclusion: This is the first study to confirm the genetic polymorphism of CYP2C9 and medical cannabis-induced AEs in the Thai population. Although, our results indicates that there is no found the CYP2C9*2. However, the variation of CYP2C9 allele might serve as a pharmacogenetics marker for screening before initiating the therapy with medical cannabis for prevention of medical cannabis-induced AEs.Keywords: CYP2C9, medical cannabis, adverse effects, THC, P450
Procedia PDF Downloads 105427 Econophysical Approach on Predictability of Financial Crisis: The 2001 Crisis of Turkey and Argentina Case
Authors: Arzu K. Kamberli, Tolga Ulusoy
Abstract:
Technological developments and the resulting global communication have made the 21st century when large capitals are moved from one end to the other via a button. As a result, the flow of capital inflows has accelerated, and capital inflow has brought with it crisis-related infectiousness. Considering the irrational human behavior, the financial crisis in the world under the influence of the whole world has turned into the basic problem of the countries and increased the interest of the researchers in the reasons of the crisis and the period in which they lived. Therefore, the complex nature of the financial crises and its linearly unexplained structure have also been included in the new discipline, econophysics. As it is known, although financial crises have prediction mechanisms, there is no definite information. In this context, in this study, using the concept of electric field from the electrostatic part of physics, an early econophysical approach for global financial crises was studied. The aim is to define a model that can take place before the financial crises, identify financial fragility at an earlier stage and help public and private sector members, policy makers and economists with an econophysical approach. 2001 Turkey crisis has been assessed with data from Turkish Central Bank which is covered between 1992 to 2007, and for 2001 Argentina crisis, data was taken from IMF and the Central Bank of Argentina from 1997 to 2007. As an econophysical method, an analogy is used between the Gauss's law used in the calculation of the electric field and the forecasting of the financial crisis. The concept of Φ (Financial Flux) has been adopted for the pre-warning of the crisis by taking advantage of this analogy, which is based on currency movements and money mobility. For the first time used in this study Φ (Financial Flux) calculations obtained by the formula were analyzed by Matlab software, and in this context, in 2001 Turkey and Argentina Crisis for Φ (Financial Flux) crisis of values has been confirmed to give pre-warning.Keywords: econophysics, financial crisis, Gauss's Law, physics
Procedia PDF Downloads 153426 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage
Authors: Meng H. Lean, Wei-Ping L. Chu
Abstract:
The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport
Procedia PDF Downloads 354425 Comparison of the Anthropometric Obesity Indices in Prediction of Cardiovascular Disease Risk: Systematic Review and Meta-analysis
Authors: Saeed Pourhassan, Nastaran Maghbouli
Abstract:
Statement of the problem: The relationship between obesity and cardiovascular diseases has been studied widely(1). The distribution of fat tissue gained attention in relation to cardiovascular risk factors during lang-time research (2). American College of Cardiology/American Heart Association (ACC/AHA) is widely and the most reliable tool to be used as a cardiovascular risk (CVR) assessment tool(3). This study aimed to determine which anthropometric index is better in discrimination of high CVR patients from low risks using ACC/AHA score in addition to finding the best index as a CVR predictor among both genders in different races and countries. Methodology & theoretical orientation: The literature in PubMed, Scopus, Embase, Web of Science, and Google Scholar were searched by two independent investigators using the keywords "anthropometric indices," "cardiovascular risk," and "obesity." The search strategy was limited to studies published prior to Jan 2022 as full-texts in the English language. Studies using ACC/AHA risk assessment tool as CVR and those consisted at least 2 anthropometric indices (ancient ones and novel ones) are included. Study characteristics and data were extracted. The relative risks were pooled with the use of the random-effect model. Analysis was repeated in subgroups. Findings: Pooled relative risk for 7 studies with 16,348 participants were 1.56 (1.35-1.72) for BMI, 1.67(1.36-1.83) for WC [waist circumference], 1.72 (1.54-1.89) for WHR [waist-to-hip ratio], 1.60 (1.44-1.78) for WHtR [waist-to-height ratio], 1.61 (1.37-1.82) for ABSI [A body shape index] and 1.63 (1.32-1.89) for CI [Conicity index]. Considering gender, WC among females and WHR among men gained the highest RR. The heterogeneity of studies was moderate (α²: 56%), which was not decreased by subgroup analysis. Some indices such as VAI and LAP were evaluated just in one study. Conclusion & significance: This meta-analysis showed WHR could predict CVR better in comparison to BMI or WHtR. Some new indices like CI and ABSI are less accurate than WHR and WC. Among women, WC seems to be a better choice to predict cardiovascular disease risk.Keywords: obesity, cardiovascular disease, risk assessment, anthropometric indices
Procedia PDF Downloads 102424 Analysis of Dynamics Underlying the Observation Time Series by Using a Singular Spectrum Approach
Authors: O. Delage, H. Bencherif, T. Portafaix, A. Bourdier
Abstract:
The main purpose of time series analysis is to learn about the dynamics behind some time ordered measurement data. Two approaches are used in the literature to get a better knowledge of the dynamics contained in observation data sequences. The first of these approaches concerns time series decomposition, which is an important analysis step allowing patterns and behaviors to be extracted as components providing insight into the mechanisms producing the time series. As in many cases, time series are short, noisy, and non-stationary. To provide components which are physically meaningful, methods such as Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) or, more recently, Empirical Adaptive Wavelet Decomposition (EAWD) have been proposed. The second approach is to reconstruct the dynamics underlying the time series as a trajectory in state space by mapping a time series into a set of Rᵐ lag vectors by using the method of delays (MOD). Takens has proved that the trajectory obtained with the MOD technic is equivalent to the trajectory representing the dynamics behind the original time series. This work introduces the singular spectrum decomposition (SSD), which is a new adaptive method for decomposing non-linear and non-stationary time series in narrow-banded components. This method takes its origin from singular spectrum analysis (SSA), a nonparametric spectral estimation method used for the analysis and prediction of time series. As the first step of SSD is to constitute a trajectory matrix by embedding a one-dimensional time series into a set of lagged vectors, SSD can also be seen as a reconstruction method like MOD. We will first give a brief overview of the existing decomposition methods (EMD-EWT-EAWD). The SSD method will then be described in detail and applied to experimental time series of observations resulting from total columns of ozone measurements. The results obtained will be compared with those provided by the previously mentioned decomposition methods. We will also compare the reconstruction qualities of the observed dynamics obtained from the SSD and MOD methods.Keywords: time series analysis, adaptive time series decomposition, wavelet, phase space reconstruction, singular spectrum analysis
Procedia PDF Downloads 104423 Reverse Logistics Network Optimization for E-Commerce
Authors: Albert W. K. Tan
Abstract:
This research consolidates a comprehensive array of publications from peer-reviewed journals, case studies, and seminar reports focused on reverse logistics and network design. By synthesizing this secondary knowledge, our objective is to identify and articulate key decision factors crucial to reverse logistics network design for e-commerce. Through this exploration, we aim to present a refined mathematical model that offers valuable insights for companies seeking to optimize their reverse logistics operations. The primary goal of this research endeavor is to develop a comprehensive framework tailored to advising organizations and companies on crafting effective networks for their reverse logistics operations, thereby facilitating the achievement of their organizational goals. This involves a thorough examination of various network configurations, weighing their advantages and disadvantages to ensure alignment with specific business objectives. The key objectives of this research include: (i) Identifying pivotal factors pertinent to network design decisions within the realm of reverse logistics across diverse supply chains. (ii) Formulating a structured framework designed to offer informed recommendations for sound network design decisions applicable to relevant industries and scenarios. (iii) Propose a mathematical model to optimize its reverse logistics network. A conceptual framework for designing a reverse logistics network has been developed through a combination of insights from the literature review and information gathered from company websites. This framework encompasses four key stages in the selection of reverse logistics operations modes: (1) Collection, (2) Sorting and testing, (3) Processing, and (4) Storage. Key factors to consider in reverse logistics network design: I) Centralized vs. decentralized processing: Centralized processing, a long-standing practice in reverse logistics, has recently gained greater attention from manufacturing companies. In this system, all products within the reverse logistics pipeline are brought to a central facility for sorting, processing, and subsequent shipment to their next destinations. Centralization offers the advantage of efficiently managing the reverse logistics flow, potentially leading to increased revenues from returned items. Moreover, it aids in determining the most appropriate reverse channel for handling returns. On the contrary, a decentralized system is more suitable when products are returned directly from consumers to retailers. In this scenario, individual sales outlets serve as gatekeepers for processing returns. Considerations encompass the product lifecycle, product value and cost, return volume, and the geographic distribution of returns. II) In-house vs. third-party logistics providers: The decision between insourcing and outsourcing in reverse logistics network design is pivotal. In insourcing, a company handles the entire reverse logistics process, including material reuse. In contrast, outsourcing involves third-party providers taking on various aspects of reverse logistics. Companies may choose outsourcing due to resource constraints or lack of expertise, with the extent of outsourcing varying based on factors such as personnel skills and cost considerations. Based on the conceptual framework, the authors have constructed a mathematical model that optimizes reverse logistics network design decisions. The model will consider key factors identified in the framework, such as transportation costs, facility capacities, and lead times. The authors have employed mixed LP to find the optimal solutions that minimize costs while meeting organizational objectives.Keywords: reverse logistics, supply chain management, optimization, e-commerce
Procedia PDF Downloads 38422 Contribution of Research to Innovation Management in the Traditional Fruit Production
Authors: Camille Aouinaït, Danilo Christen, Christoph Carlen
Abstract:
Introduction: Small and Medium-sized Enterprises (SMEs) are facing different challenges such as pressures on environmental resources, the rise of downstream power, and trade liberalization. Remaining competitive by implementing innovations and engaging in collaborations could be a strategic solution. In Switzerland, the Federal Institute for Research in Agriculture (Agroscope), the Federal schools of technology (EPFL and ETHZ), Cantonal universities and Universities of Applied Sciences (UAS) can provide substantial inputs. UAS were developed with specific missions to match the labor markets and society needs. Research projects produce patents, publications and improved networks of scientific expertise. The study’s goal is to measure the contribution of UAS and research organization to innovation and the impact of collaborations with partners in the non-academic environment in Swiss traditional fruit production. Materials and methods: The European projects Traditional Food Network to improve the transfer of knowledge for innovation (TRAFOON) and Social Impact Assessment of Productive Interactions between science and society (SIAMPI) frame the present study. The former aims to fill the gap between the needs of traditional food producing SMEs and innovations implemented following European projects. The latter developed a method to assess the impacts of scientific research. On one side, interviews with market players have been performed to make an inventory of needs of Swiss SMEs producing apricots and berries. The participative method allowed matching the current needs and the existing innovations coming from past European projects. Swiss stakeholders (e.g. producers, retailers, an inter-branch organization of fruits and vegetables) directly rated the needs on a five-Likert scale. To transfer the knowledge to SMEs, training workshops have been organized for apricot and berries actors separately, on specific topics. On the other hand, a mapping of a social network is drawn to characterize the links between actors, with a focus on the Swiss canton of Valais and UAS Valais Wallis. Type and frequency of interactions among actors have identified thanks to interviews. Preliminary results: A list of 369 SMEs needs grouped in 22 categories was produced with 37 fulfilled questionnaires. Swiss stakeholders rated 31 needs very important. Training workshops on apricot are focusing on varietal innovations, storage, disease (bacterial blight), pest (Drosophila suzukii), sorting and rootstocks. Entrepreneurship was targeted through trademark discussions in berry production. The UAS Valais Wallis collaborated on a few projects with Agroscope along with industries, at European and national levels. Political and public bodies interfere with the central area of agricultural vulgarization that induces close relationships between the research and the practical side. Conclusions: The needs identified by Swiss stakeholders are becoming part of training workshops to incentivize innovations. The UAS Valais Wallis takes part in collaboration projects with the research environment and market players that bring innovations helping SMEs in their contextual environment. Then, a Strategic Research and Innovation Agenda will be created in order to pursue research and answer the issues facing by SMEs.Keywords: agriculture, innovation, knowledge transfer, university and research collaboration
Procedia PDF Downloads 394421 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation
Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou
Abstract:
An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures
Procedia PDF Downloads 493420 Development of a Predictive Model to Prevent Financial Crisis
Authors: Tengqin Han
Abstract:
Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.Keywords: delinquency, mortgage, model development, model validation
Procedia PDF Downloads 228419 Theoretical Prediction on the Lifetime of Sessile Evaporating Droplet in Blade Cooling
Authors: Yang Shen, Yongpan Cheng, Jinliang Xu
Abstract:
The effective blade cooling is of great significance for improving the performance of turbine. The mist cooling emerges as the promising way compared with the transitional single-phase cooling. In the mist cooling, the injected droplet will evaporate rapidly, and cool down the blade surface due to the absorbed latent heat, hence the lifetime for evaporating droplet becomes critical for design of cooling passages for the blade. So far there have been extensive studies on the droplet evaporation, but usually the isothermal model is applied for most of the studies. Actually the surface cooling effect can affect the droplet evaporation greatly, it can prolong the droplet evaporation lifetime significantly. In our study, a new theoretical model for sessile droplet evaporation with surface cooling effect is built up in toroidal coordinate. Three evaporation modes are analyzed during the evaporation lifetime, include “Constant Contact Radius”(CCR) mode、“Constant Contact Angle”(CCA) mode and “stick-slip”(SS) mode. The dimensionless number E0 is introduced to indicate the strength of the evaporative cooling, it is defined based on the thermal properties of the liquid and the atmosphere. Our model can predict accurately the lifetime of evaporation by validating with available experimental data. Then the temporal variation of droplet volume, contact angle and contact radius are presented under CCR, CCA and SS mode, the following conclusions are obtained. 1) The larger the dimensionless number E0, the longer the lifetime of three evaporation cases is; 2) The droplet volume over time still follows “2/3 power law” in the CCA mode, as in the isothermal model without the cooling effect; 3) In the “SS” mode, the large transition contact angle can reduce the evaporation time in CCR mode, and increase the time in CCA mode, the overall lifetime will be increased; 4) The correction factor for predicting instantaneous volume of the droplet is derived to predict the droplet life time accurately. These findings may be of great significance to explore the dynamics and heat transfer of sessile droplet evaporation.Keywords: blade cooling, droplet evaporation, lifetime, theoretical analysis
Procedia PDF Downloads 142418 Influence of Improved Roughage Quality and Period of Meal Termination on Digesta Load in the Digestive Organs of Goats
Authors: Rasheed A. Adebayo, Mehluli M. Moyo, Ignatius V. Nsahlai
Abstract:
Ruminants are known to relish roughage for productivity but the effect of its quality on digesta load in rumen, omasum, abomasum and other distal organs of the digestive tract is yet unknown. Reticulorumen fill is a strong indicator for long-term control of intake in ruminants. As such, the measurement and prediction of digesta load in these compartments may be crucial to productivity in the ruminant industry. The current study aimed at determining the effect of (a) diet quality on digesta load in digestive organs of goats, and (b) period of meal termination on the reticulorumen fill and digesta load in other distal compartments of the digestive tract of goats. Goats were fed with urea-treated hay (UTH), urea-sprayed hay (USH) and non-treated hay (NTH). At the end of eight weeks of a feeding trial period, upon termination of a meal in the morning, afternoon or evening, all goats were slaughtered in random groups of three per day to measure reticulorumen fill and digesta loads in other distal compartments of the digestive tract. Both diet quality and period affected (P < 0.05) the measure of reticulorumen fill. However, reticulorumen fill in the evening was larger (P < 0.05) than afternoon, while afternoon was similar (P > 0.05) to morning. Also, diet quality affected (P < 0.05) the wet omasal digesta load, wet abomasum, dry abomasum and dry caecum digesta loads but did not affect (P > 0.05) both wet and dry digesta loads in other compartments of the digestive tract. Period of measurement did not affect (P > 0.05) the wet omasal digesta load, and both wet and dry digesta loads in other compartments of the digestive tract except wet abomasum digesta load (P < 0.05) and dry caecum digesta load (P < 0.05). Both wet and dry reticulorumen fill were correlated (P < 0.05) with omasum (r = 0.623) and (r = 0.723), respectively. In conclusion, reticulorumen fill of goats decreased by improving the roughage quality; and the period of meal termination and measurement of the fill is a key factor to the quantity of digesta load.Keywords: digesta, goats, meal termination, reticulo-rumen fill
Procedia PDF Downloads 373417 Application of Artificial Neural Network for Single Horizontal Bare Tube and Bare Tube Bundles (Staggered) of Large Particles: Heat Transfer Prediction
Authors: G. Ravindranath, S. Savitha
Abstract:
This paper presents heat transfer analysis of single horizontal bare tube and heat transfer analysis of staggered arrangement of bare tube bundles bare tube bundles in gas-solid (air-solid) fluidized bed and predictions are done by using Artificial Neural Network (ANN) based on experimental data. Fluidized bed provide nearly isothermal environment with high heat transfer rate to submerged objects i.e. due to through mixing and large contact area between the gas and the particle, a fully fluidized bed has little temperature variation and gas leaves at a temperature which is close to that of the bed. Measurement of average heat transfer coefficient was made by local thermal simulation technique in a cold bubbling air-fluidized bed of size 0.305 m. x 0.305 m. Studies were conducted for single horizontal Bare Tube of length 305mm and 28.6mm outer diameter and for bare tube bundles of staggered arrangement using beds of large (average particle diameter greater than 1 mm) particle (raagi and mustard). Within the range of experimental conditions influence of bed particle diameter ( Dp), Fluidizing Velocity (U) were studied, which are significant parameters affecting heat transfer. Artificial Neural Networks (ANNs) have been receiving an increasing attention for simulating engineering systems due to some interesting characteristics such as learning capability, fault tolerance, and non-linearity. Here, feed-forward architecture and trained by back-propagation technique is adopted to predict heat transfer analysis found from experimental results. The ANN is designed to suit the present system which has 3 inputs and 2 out puts. The network predictions are found to be in very good agreement with the experimental observed values of bare heat transfer coefficient (hb) and nusselt number of bare tube (Nub).Keywords: fluidized bed, large particles, particle diameter, ANN
Procedia PDF Downloads 365