Search results for: intelligent monitoring system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19978

Search results for: intelligent monitoring system

17788 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 79
17787 Electronic Payment Recording with Payment History Retrieval Module: A System Software

Authors: Adrian Forca, Simeon Cainday III

Abstract:

The Electronic Payment Recording with Payment History Retrieval Module is developed intendedly for the College of Science and Technology. This system software innovates the manual process of recording the payments done in the department through the development of electronic payment recording system software shifting from the slow and time-consuming procedure to quick yet reliable and accurate way of recording payments because it immediately generates receipts for every transaction. As an added feature to its software process, generation of recorded payment report is integrated eliminating the manual reporting to a more easy and consolidated report. As an added feature to the system, all recorded payments of the students can be retrieved immediately making the system transparent and reliable payment recording software. Viewing the whole process, the system software will shift from the manual process to an organized software technology because the information will be stored in a logically correct and normalized database. Further, the software will be developed using the modern programming language and implement strict programming methods to validate all users accessing the system, evaluate all data passed into the system and information retrieved to ensure data accuracy and reliability. In addition, the system will identify the user and limit its access privilege to establish boundaries of the specific access to information allowed for the store, modify, and update making the information secure against unauthorized data manipulation. As a result, the System software will eliminate the manual procedure and replace with an innovative modern information technology resulting to the improvement of the whole process of payment recording fast, secure, accurate and reliable software innovations.

Keywords: collection, information system, manual procedure, payment

Procedia PDF Downloads 172
17786 Experimental Study of Complete Loss of Coolant Flow (CLOF) Test by System–Integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL) with Passive Residual Heat Removal System (PRHRS)

Authors: Jin Hwa Yang, Hwang Bae, Sung Uk Ryu, Byong Guk Jeon, Sung Jae Yi, Hyun Sik Park

Abstract:

Experimental studies using a large-scale thermal-hydraulic integral test facility, System–integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL), have been carried out to validate the performance of the prototype, SMART. After Fukushima accident, the passive safety systems have been dealt as important designs for retaining of nuclear safety. One of the concerned scenarios for evaluating the passive safety system is a Complete Loss of Coolant Flow (CLOF). The flowrate of coolant in the primary system is maintained by Reactor Coolant Pump (RCP). When the supply of electric power of RCP is shut off, the flowrate of coolant decreases sharply, and the temperature of the coolant increases rapidly. Therefore, the reactor trip signal is activated to prevent the over-heating of the core. In this situation, Passive Residual Heat Removal System (PRHRS) plays a significant role to assure the soundness of the SMART. The PRHRS using a two-phase natural circulation is a passive safety system in the SMART to eliminate the heat of steam generator in the secondary system with heat exchanger submarined in the Emergency Cooling Tank (ECT). As the RCPs continue to coast down, inherent natural circulation in the primary system transfers heat to the secondary system. The transferred heat is removed by PRHRS in the secondary system. In this paper, the progress of the CLOF accident is described with experimental data of transient condition performed by SMART-ITL. Finally, the capability of passive safety system and inherent natural circulation will be evaluated.

Keywords: CLOF, natural circulation, PRHRS, SMART-ITL

Procedia PDF Downloads 444
17785 Using the Cluster Computing to Improve the Computational Speed of the Modular Exponentiation in RSA Cryptography System

Authors: Te-Jen Chang, Ping-Sheng Huang, Shan-Ten Cheng, Chih-Lin Lin, I-Hui Pan, Tsung- Hsien Lin

Abstract:

RSA system is a great contribution for the encryption and the decryption. It is based on the modular exponentiation. We call this system as “a large of numbers for calculation”. The operation of a large of numbers is a very heavy burden for CPU. For increasing the computational speed, in addition to improve these algorithms, such as the binary method, the sliding window method, the addition chain method, and so on, the cluster computer can be used to advance computational speed. The cluster system is composed of the computers which are installed the MPICH2 in laboratory. The parallel procedures of the modular exponentiation can be processed by combining the sliding window method with the addition chain method. It will significantly reduce the computational time of the modular exponentiation whose digits are more than 512 bits and even more than 1024 bits.

Keywords: cluster system, modular exponentiation, sliding window, addition chain

Procedia PDF Downloads 528
17784 Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation

Authors: Mohammad Sahadet Hossain, Shamsil Arifeen, Mehrab Hossian Likhon

Abstract:

In this paper, we analyze a linear time invariant (LTI) descriptor system of large dimension. Since these systems are difficult to simulate, compute and store, we attempt to reduce this large system using Low Rank Cholesky Factorized Alternating Directions Implicit (LRCF-ADI) iteration followed by Square Root Balanced Truncation. LRCF-ADI solves the dual Lyapunov equations of the large system and gives low-rank Cholesky factors of the gramians as the solution. Using these cholesky factors, we compute the Hankel singular values via singular value decomposition. Later, implementing square root balanced truncation, the reduced system is obtained. The bode plots of original and lower order systems are used to show that the magnitude and phase responses are same for both the systems.

Keywords: low-rank cholesky factor alternating directions implicit iteration, LTI Descriptor system, Lyapunov equations, Square-root balanced truncation

Procedia PDF Downloads 420
17783 Study of a Photovoltaic System Using MPPT Buck-Boost Converter

Authors: A. Bouchakour, L. Zaghba, M. Brahami, A. Borni

Abstract:

The work presented in this paper present the design and the simulation of a centrifugal pump coupled to a photovoltaic (PV) generator via a MPPT controller. The PV system operating is just done in sunny period by using water storage instead of electric energy storage. The process concerns the modelling, identification and simulation of a photovoltaic pumping system, the centrifugal pump is driven by an asynchronous three-phase voltage inverter sine triangle PWM motor through. Two configurations were simulated. For the first, it is about the alimentation of the motor pump group from electrical power supply. For the second, the pump unit is connected directly to the photovoltaic panels by integration of a MPPT control. A code of simulation of the solar pumping system was initiated under the Matlab-Simulink environment. Very convivial and flexible graphic interfaces allow an easy use of the code and knowledge of the effects of change of the sunning and temperature on the pumping system.

Keywords: photovoltaic generator, chopper, electrical motor, centrifugal pump

Procedia PDF Downloads 383
17782 A Vehicle Detection and Speed Measurement Algorithm Based on Magnetic Sensors

Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras

Abstract:

Cooperative intelligent transport systems (C-ITS) can greatly improve safety and efficiency in road transport by enabling communication, not only between vehicles themselves but also between vehicles and infrastructure. For that reason, traffic surveillance systems on the road are of great importance. This paper focuses on the development of an on-road unit comprising several magnetic sensors for real-time vehicle detection, movement direction, and speed measurement calculations. Magnetic sensors can feel and measure changes in the earth’s magnetic field. Vehicles are composed of many parts with ferromagnetic properties. Depending on sensors’ sensitivity, changes in the earth’s magnetic field caused by passing vehicles can be detected and analyzed in order to extract information on the properties of moving vehicles. In this paper, we present a prototype algorithm for real-time, high-accuracy, vehicle detection, and speed measurement, which can be implemented as a portable, low-cost, and non-invasive to existing infrastructure solution with the potential to replace existing high-cost implementations. The paper describes the algorithm and presents results from its preliminary lab testing in a close to real condition environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).

Keywords: magnetic sensors, vehicle detection, speed measurement, traffic surveillance system

Procedia PDF Downloads 126
17781 Performance Assessment of Three Unit Redundant System with Environmental and Human Failure Using Copula Approach

Authors: V. V. Singh

Abstract:

We have studied the reliability measures of a system, which consists of two subsystems i.e. subsystem-1 and subsystem-2 in series configuration under different types of failure. The subsystem-1 has three identical units in parallel configuration and operating under 2-out-of-3: G policy and connected to subsystem-2 in series configuration. Each subsystem has different types of failure and repair rates. An important cause for failure of system is unsuitability of the environmental conditions, like overheating, weather conditions, heavy rainfall, storm etc. The environmental failure is taken into account in the proposed repairable system. Supplementary variable technique is used to study of system and some traditional measures such as; availability, reliability, MTTF and profit function are obtained for different values of parameters. In the proposed model, some particular cases of failure rates are explicitly studied.

Keywords: environmental failure, human failure, availability, MTTF, reliability, profit analysis, Gumbel-Hougaard family copula

Procedia PDF Downloads 357
17780 Tenure Track System and Its Impact on Grading Leniency and Student Effort: A Quasi-Experimental Approach

Authors: Shao-Hsun Keng, Hwang-Ruey Song

Abstract:

This paper examines the causal effect of the tenure track system on instructors’ grading practices and teaching effectiveness by taking advantage of a natural experiment in Taiwan. The results show that assistant professors subject to the tenure track policy are more likely to grade leniently and fail fewer students. The course grade is 5% higher in classes taught by assistant professors subject to the tenure system. However, the tendency to grade leniently is reversed after assistant professors subject to the tenure system are promoted to a higher rank. Our findings are consistent with the exchange theory. We also show that teaching and student efforts are adversely affected by the tenure policy, which could reduce student learning and the quality of the workforce in the long run.

Keywords: tenure track system, grading leniency, study time, grade inflation

Procedia PDF Downloads 417
17779 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E.A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for meat products. However, to the best of our knowledge, the incorporation of free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for meats is seldom reported. Therefore, this study aims at protection of the aqueous crude extract of hibiscus flowers utilizing spry drying encapsulation technique. Fourier transform infrared (FTIR), scanning electron microscope (SEM), and zetasizer results confirmed the successful formation of assembled capsules via strong interactions, spherical rough microparticles, and ~ 235 nm of particle size, respectively. Also, the obtained microcapsules enjoy high thermal stability, unlike the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to PVA. Application of the prepared films on the real meat samples displayed low bacterial growth with a slight increase in the pH over the storage time up to 10 days at 4 oC which further proved the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of prepared composite films pave the way towards combined active/smart food packaging applications. This would play a vital role in the food hygiene, including also quality control and assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 86
17778 The Effects of Teacher Efficacy, Instructional Leadership and Professional Learning Communities on Student Achievement in Literacy and Numeracy: A Look at Primary Schools within Sibu Division

Authors: Jarrod Sio Jyh Lih

Abstract:

This paper discusses the factors contributing to student achievement in literacy and numeracy in primary schools within Sibu division. The study involved 694 level 1 primary schoolteachers. Using descriptive statistics, the study observed high levels of practice for teacher efficacy, instructional leadership and professional learning communities (PLCs). The differences between gender, teaching experience and academic qualification were analyzed using the t-test and one-way analysis of variance (ANOVA). The study reported significant differences in respondent perceptions based on teaching experience vis-à-vis teacher efficacy. Here, the post hoc Tukey test revealed that efficaciousness grows with experience. A correlation test observed positive and significant correlations between all independent variables. Binary logistic regression was applied to predict the independent variables’ influence on student achievement. The findings revealed that a dimension of instructional leadership – ‘monitoring student progress’ - emerged as the best predictor of student achievement for literacy and numeracy. The result indicated the students were more than 4 times more likely to achieve the national key performance index for both literacy and numeracy when student progress was monitored. In conclusion, ‘monitoring student progress’ had a positive influence on students’ achievement for literacy and numeracy, hence making it a possible course of action for school heads. However, more comprehensive studies are needed to ascertain its consistency within the context of Malaysia.

Keywords: efficacy, instructional, literacy, numeracy

Procedia PDF Downloads 264
17777 Method of Successive Approximations for Modeling of Distributed Systems

Authors: A. Torokhti

Abstract:

A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function.

Keywords: mathematical modeling, non-linear system, spatially distributed sensors, fusion center

Procedia PDF Downloads 386
17776 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring

Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis

Abstract:

Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.

Keywords: earth observation, monitoring, natural hazards, remote sensing

Procedia PDF Downloads 46
17775 The Kidney-Spine Traffic System: Future Cities, Ensuring World Class Civic Amenities in Urban India

Authors: Abhishek Srivastava, Jeevesh Nandan, Manish Kumar

Abstract:

The study was taken to analyse the alternative source of traffic system for effective and more convenient traffic flow by reducing points of conflicts as well as angle of conflict and keeping in view to minimize the problem of unnecessarily long waiting time, delays, congestion, traffic jam and geometric delays due to intersection between circular and straight lanes. It is a twin kidney-spine type structure system with special allowance for Highway users for quicker passes. Thus reduction in number and intensity of accidents, significance reduction in traffic jam, conservation of valuable time.

Keywords: traffic system, collision reduction of vehicles, smooth flow of vehicles, traffic jam

Procedia PDF Downloads 429
17774 Insect Diversity Potential in Olive Trees in Two Orchards Differently Managed Under an Arid Climate in the Western Steppe Land, Algeria

Authors: Samir Ali-arous, Mohamed Beddane, Khaled Djelouah

Abstract:

This study investigated the insect diversity of olive (Olea europaea Linnaeus (Oleaceae)) groves grown in an arid climate in Algeria. In this context, several sampling methods were used within two orchards differently managed. Fifty arthropod species belonging to diverse orders and families were recorded. Hymenopteran species were quantitatively the most abundant, followed by species associated with Heteroptera, Aranea, Coleoptera and Homoptera orders. Regarding functional feeding groups, phytophagous species were dominant in the weeded and the unweeded orchard; however, higher abundance was recorded in the weeded site. Predators were ranked second, and pollinators were more frequent in the unweeded olive orchard. Two-factor Anova with repeated measures had revealed high significant effect of the weed management system, measures repetition and interaction with measurement repetition on arthropod’s abundances (P < 0.05). Likewise, generalized linear models showed that N/S ratio varied significantly between the two weed management approaches, in contrast, the remaining diversity indices including the Shannon index H’ had no significant correlation. Moreover, diversity parameters of arthropod’s communities in each agro-system highlighted multiples significant correlations (P <0.05). Rarefaction and extrapolation (R/E) sampling curves, evidenced that the survey and monitoring carried out in both sites had a optimum coverage of entomofauna present including scarce and transient species. Overall, calculated diversity and similarity indices were greater in the unweeded orchard than in the weeded orchard, demonstrating spontaneous flora's key role in entomofaunal diversity. Principal Component Analysis (PCA) has defined correlations between arthropod’s abundances and naturally occurring plants in olive orchards, including beneficials.

Keywords: Algeria, olive, insects, diversity, wild plants

Procedia PDF Downloads 79
17773 Obtaining the Analytic Dependence for Estimating the Ore Mill Operation Modes

Authors: Baghdasaryan Marinka

Abstract:

The particular significance of comprehensive estimation of the increase in the operation efficiency of the mill motor electromechanical system, providing the main technological process for obtaining a metallic concentrate, as well as the technical state of the system are substantiated. The works carried out in the sphere of investigating, creating, and improving the operation modes of electric drive motors and ore-grinding mills have been studied. Analytic dependences for estimating the operation modes of the ore-grinding mills aimed at improving the ore-crashing process maintenance and technical service efficiencies have been obtained. The obtained analytic dependencies establish a link between the technological and power parameters of the electromechanical system, and allow to estimate the state of the system and reveal the controlled parameters required for the efficient management in case of changing the technological parameters. It has been substantiated that the changes in the technological factors affecting the consumption power of the drive motor do not cause an instability in the electromechanical system.

Keywords: electromechanical system, estimation, operation mode, productivity, technological process, the mill filling degree

Procedia PDF Downloads 273
17772 The Implementation of an E-Government System in Developing Countries: A Case of Taita Taveta County, Kenya

Authors: Tabitha Mberi, Tirus Wanyoike, Joseph Sevilla

Abstract:

The use of Information and Communication Technology (ICT) in Government is gradually becoming a major requirement to transform delivery of services to its stakeholders by improving quality of service and efficiency. In Kenya, the devolvement of government from local authorities to county governments has resulted in many counties adopting online revenue collection systems which can be easily accessed by its stakeholders. Strathmore Research and Consortium Centre (SRCC) implemented a revenue collection system in Taita Taveta, a County in coastal Kenya. It consisted of two systems that are integrated; an online system dubbed “CountyPro” for processing county services such as Business Permit applications, General Billing, Property Rates Payments and any other revenue streams from the county. The second part was a Point of Sale(PoS) system used by the county revenue collectors to charge for market fees and vehicle parking fees. This study assesses the success and challenges in adoption of the integrated system. Qualitative and quantitative data collection methods were used to collect data on the adoption of the system with the researcher using focus groups, interviews, and questionnaires to collect data from various users of the system An analysis was carried out and revealed that 87% of the county revenue officers who are situated in county offices describe the system as efficient and has made their work easier in terms of processing of transactions for customers.

Keywords: e-government, counties, information technology, online system, point of sale

Procedia PDF Downloads 253
17771 Development and Automation of Medium-Scale NFT Hydroponic Systems: Design Methodology and State of the Art Review

Authors: Oscar Armando González-Marin, Jhon F. Rodríguez-León, Oscar Mota-Pérez, Jorge Pineda-Piñón, Roberto S. Velázquez-González., Julio C. Sosa-Savedra

Abstract:

Over the past six years, the World Meteorological Organization (WMO) has recorded the warmest years since 1880, primarily attributed to climate change. In addition, the overexploitation of agricultural lands, combined with food and water scarcity, has highlighted the urgent need for sustainable cultivation methods. Hydroponics has emerged as a sustainable farming technique that enables plant cultivation using nutrient solutions without the requirement for traditional soil. Among hydroponic methods, the Nutrient Film Technique (NFT) facilitates plant growth by circulating a nutrient solution continuously. This approach allows the monitoring and precise control of nutritional parameters, with potential for automation and technological integration. This study aims to present the state of the art of automated NFT hydroponic systems, discussing their design methodologies and considerations for implementation. Moreover, a medium-scale NFT system developed at CICATA-QRO is introduced, detailing its current manual management and progress toward automation.

Keywords: automation, hydroponics, nutrient film technique, sustainability

Procedia PDF Downloads 59
17770 Evaluation of Computed Tomographic Anatomy of Respiratory System in Caspian Pond Turtle (Mauremys caspica)

Authors: Saghar Karimi, Mohammad Saeed Ahrari Khafi, Amin Abolhasani Foroughi

Abstract:

In recent decades, keeping exotic species as pet animals has become widespread. Turtles are exotic species from chelonians, which are interested by many people. Caspian pond and European pond turtles from Emydidea family are commonly kept as pets in Iran. Presence of the shell in turtles makes achievement to a comprehensive clinical examination impossible. Respiratory system is one of the most important structures to be examined completely. Presence of the air in the respiratory system makes radiography the first modality to think of; however, image quality would be affected by the shell. Computed tomography (CT) as a radiography-based and non-invasive technique provides cross-sectional scans with little superimposition. The aim of this study was to depict normal computed tomographic anatomy of the respiratory system in Caspian Pond Turtle. Five adult Caspian pond turtle were scanned using a 16-detector CT machine. Our results showed that computed tomography is able to well illustrated different parts of respiratory system in turtle and can be used for detecting abnormalities and disorders.

Keywords: anatomy, computed tomography, respiratory system, turtle

Procedia PDF Downloads 205
17769 Numerical Analysis of a Pilot Solar Chimney Power Plant

Authors: Ehsan Gholamalizadeh, Jae Dong Chung

Abstract:

Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance.

Keywords: buoyancy-driven flow, computational fluid dynamics, heat transfer, renewable energy, solar chimney power plant

Procedia PDF Downloads 266
17768 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach

Authors: Kamalendu Pal

Abstract:

This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a combination of linguistic variables, fuzzy numbers, and by using defuzzification process. The results show that the designed evaluation method creates suitable mechanism in order to improve the performance of the knowledge-based system.

Keywords: case-based reasoning, fuzzy number, legal decision-support system, linguistic variable, rule-based reasoning, system evaluation

Procedia PDF Downloads 370
17767 Three Tier Indoor Localization System for Digital Forensics

Authors: Dennis L. Owuor, Okuthe P. Kogeda, Johnson I. Agbinya

Abstract:

Mobile localization has attracted a great deal of attention recently due to the introduction of wireless networks. Although several localization algorithms and systems have been implemented and discussed in the literature, very few researchers have exploited the gap that exists between indoor localization, tracking, external storage of location information and outdoor localization for the purpose of digital forensics during and after a disaster. The contribution of this paper lies in the implementation of a robust system that is capable of locating, tracking mobile device users and store location information for both indoor and partially outdoor the cloud. The system can be used during disaster to track and locate mobile phone users. The developed system is a mobile application built based on Android, Hypertext Preprocessor (PHP), Cascading Style Sheets (CSS), JavaScript and MATLAB for the Android mobile users. Using Waterfall model of software development, we have implemented a three level system that is able to track, locate and store mobile device information in secure database (cloud) on almost a real time basis. The outcome of the study showed that the developed system is efficient with regard to the tracking and locating mobile devices. The system is also flexible, i.e. can be used in any building with fewer adjustments. Finally, the system is accurate for both indoor and outdoor in terms of locating and tracking mobile devices.

Keywords: indoor localization, digital forensics, fingerprinting, tracking and cloud

Procedia PDF Downloads 343
17766 Early Prediction of Diseases in a Cow for Cattle Industry

Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan

Abstract:

In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.

Keywords: IoT, machine learning, health care, dairy cows

Procedia PDF Downloads 77
17765 Practitioner System in Vocational Education: Perspectives of Academics and Industry Practitioners

Authors: Hsiao-Tseng Lin, Nguyen Ngoc Dat, Szu-Mei Hsiao, R. J. Hernández-Díaz

Abstract:

The practitioner system has become an important tool for universities working to shrink the gap between industry and vocational education. Beginning in 2015, Meiho University conducted a consecutive three-year program for teaching excellence, funded in part by Taiwan’s Ministry of Education, with a total project funding of over $2.5 million USD. One of the highlights of this program is the recruitment of 300 industry practitioners to participate in collaborative teaching, a dual-mentor system, and curriculum planning. More than 60% of the practitioners boast more than 10 years of practical industry experience, and 52% of them have earned master's degree or higher. Students rated their overall program satisfaction over 4.5(out of 5.0) on average. This study explores the perspectives of academics and industry practitioners using in-depth interviews and surveys, along with an examination of the challenges of the practitioner system. The paper enables the framing of practitioner system policies by vocational education institutions and industry to facilitate more effective and efficient transfer of knowledge between academics and practitioners, leading to enhanced university competitive advantage, which would ultimately benefit society.

Keywords: collaborative teaching, industry practitioners, practitioner system, vocational education

Procedia PDF Downloads 217
17764 Measuring Technology of Airship Propeller Thrust and Torque in China Academy of Aerospace Aerodynamics

Authors: Ma Hongqiang, Yang Hui, Wen Haoju, Feng Jiabo, Bi Zhixian, Nie Ying

Abstract:

In order to measure thrust and torque of airship propeller, a two-component balance and data acquisition system was developed in China Academy of Aerospace Aerodynamics(CAAA) in early time. During the development, some problems were encountered. At first, the measuring system and its protective parts made the weight of whole system increase significantly. Secondly, more parts might induce more failures, so the reliability of the system was decreased. In addition, the rigidity of the system was lowered, and the structure was more possible to vibrate. Therefore, CAAA and the Academy of Opto-Electronics, Chinese Academy of Science(AOECAS) developed a new technology, use the propeller supporting rack as a spring element, attach strain gages onto it, sum up as a generalized balance. And new math models, new calibration methods and new load determining methods were developed.

Keywords: airship, propeller, thrust and torque, flight test

Procedia PDF Downloads 362
17763 Inverse Scattering for a Second-Order Discrete System via Transmission Eigenvalues

Authors: Abdon Choque-Rivero

Abstract:

The Jacobi system with the Dirichlet boundary condition is considered on a half-line lattice when the coefficients are real valued. The inverse problem of recovery of the coefficients from various data sets containing the so-called transmission eigenvalues is analyzed. The Marchenko method is utilized to solve the corresponding inverse problem.

Keywords: inverse scattering, discrete system, transmission eigenvalues, Marchenko method

Procedia PDF Downloads 148
17762 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 42
17761 TMBCoI-SIOT: Trust Management System Based on the Community of Interest for the Social Internet of Things

Authors: Oumaima Ben Abderrahim, Mohamed Houcine Elhedhili, Leila Saidane

Abstract:

In this paper, we propose a trust management system based on clustering architecture for the social internet of things called TMBCO-SIOT. The proposed model integrates numerous factors such as direct and indirect trust; transaction factor; precaution factor; and social modeling of trust. The novelty of our approach can be summed up in two aspects. The first aspect concerns the architecture based on the community of interest (CoT) where each community is headed by an administrator (admin). However, the second aspect is the trust management system that tries to prevent On-Off attacks and mitigates dishonest recommendations using the k-means algorithm and guarantor things. The effectiveness of the proposed system is proved by simulation against malicious nodes.

Keywords: IoT, trust management system, attacks, trust, dishonest recommendations, K-means algorithm

Procedia PDF Downloads 216
17760 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System

Authors: Deyu Zhou, Xiao Xue, Lizhen Cui

Abstract:

With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.

Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks

Procedia PDF Downloads 85
17759 Zeros Elimination from the National Currency

Authors: Zahra Karimi

Abstract:

The purpose of this paper is to investigate the role and importance of accounting for the implementation of the VAT system in the country. For this purpose, after the evaluation of specifications and important advantages of the VAT and the experience of other countries, important role of accounting in the precise determination of taxes, strategies to prevent escape of tax and realization of tax revenues of government, necessary control to increase the efficiency and accuracy of the calculations discussed. High-dependence of government to borrowing from the banking system and inflation tax and a low general ratio of tax revenues to GDP, indicating the inadequacy of the country's tax system. It can be said that being of a proper accounting system consider as a prerequisite for successful implementation of VAT in the country. So it's crucial for accountants with responsibility announce its full fitness to meet the requirements. For successful implementation of VAT as such a multi-stage sales tax and the tax on the price.

Keywords: accounting, tax reform in Iran, Value Added Tax (VAT), economic

Procedia PDF Downloads 388