Search results for: composite non-manufacturing indices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2906

Search results for: composite non-manufacturing indices

716 Earthquake Retrofitting of Concrete Structures Using Steel Bracing with the Results of Linear and Nonlinear Static Analysis

Authors: Ehsan Sadie

Abstract:

The use of steel braces in concrete structures has been considered by researchers in recent decades due to its easy implementation, economics and the ability to create skylights in braced openings compared to shear wall openings as well as strengthening weak concrete structures to earthquakes. The purpose of this article is to improve and strengthen concrete structures with steel bracing. In addition, cases such as different numbers of steel braces in different openings of concrete structures and interaction between concrete frames and metal braces have been studied. In this paper, by performing static nonlinear analysis and examining ductility, the relative displacement of floors, examining the performance of samples, and determining the coefficient of behavior of composite frames (concrete frames with metal bracing), the behavior of reinforced concrete frames is compared with frame without bracing. The results of analyzes and studies show that the addition of metal bracing increases the strength and stiffness of the frame and reduces the ductility and lateral displacement of the structure. In general, the behavior of the structure against earthquakes will be improved.

Keywords: behavior coefficient, bracing, concrete structure, convergent bracing, earthquake, linear static analysis, nonlinear analysis, pushover curve

Procedia PDF Downloads 178
715 Effect of Chitosan and Ascorbic Acid Coating on the Refrigerated Tilapia Fish Fillet (Oreochromis niliticus)

Authors: Jau-Shya Lee, Rossita Shapawi, Vin Cent Pua

Abstract:

Tilapia is a popular cultured fresh-water fish in Malaysia. The highly perishable nature of the fish and increasing demand for high-quality ready-to-cook fish has intensified the search for better fish preservation method. Chitosan edible coating has been evident to extend the shelf life of fish fillet. This work was attempted to explore the potential of ascorbic acid in enhancing the shelf life extension ability of chitosan coated Tilapia fillet under refrigeration condition (4 ± 1oC). A 3 2 Factorial Design which comprising of three concentrations of chitosan (1, 1.5 and 2%) and two concentrations of ascorbic acids (2.5 and 5%) was used. The fish fillets were analyzed for total viable count, thiobarbituric acid (TBA) value, pH, aw and colour changes at 3-day interval over 15-day storage. The shelf life of chitosan coated (1.5% and 2%) fillet was increased to 15 days as compared to uncoated fish fillet which can only last for nine days. The inhibition of microbial growth of fish fillet was enhanced with the addition of 5% of ascorbic acids in 2% of chitosan. The TBA value, pH and aw for chitosan coated samples were found lower than that of uncoated sample (p<0.05). The colour stability of the fish fillet was also improved by the composite coating. Overall, 2% of chitosan and 5% of ascorbic acid formed the most effective coating to enhance the quality and to lengthen the shelf life of refrigerated Tilapia fillet.

Keywords: ascorbic acid, chitosan, edible coating, fish fillet

Procedia PDF Downloads 394
714 Soil Carbon Stock in Sub-Optimal Land for the Development of Cymbopogon Nardus L. At Simawang Village, West Sumatera, Indonesia

Authors: Juniarti, Yusniwati, Anwar. A, Armansyah, Febriamansyah, R.

Abstract:

Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20 – 40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 t ha-1 at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done.

Keywords: climate changes, sereh wangi (Cymbopogon nardus L.), soil carbon stock, sub optimal land

Procedia PDF Downloads 461
713 Impacts of Climate Elements on the Annual Periodic Behavior of the Shallow Groundwater Level: Case Study from Central-Eastern Europe

Authors: Tamas Garamhegyi, Jozsef Kovacs, Rita Pongracz, Peter Tanos, Balazs Trasy, Norbert Magyar, Istvan G. Hatvani

Abstract:

Like most environmental processes, shallow groundwater fluctuation under natural circumstances also behaves periodically. With the statistical tools at hand, it can easily be determined if a period exists in the data or not. Thus, the question may be raised: Does the estimated average period time characterize the whole time period, or not? This is especially important in the case of such complex phenomena as shallow groundwater fluctuation, driven by numerous factors. Because of the continuous changes in the oscillating components of shallow groundwater time series, the most appropriate method should be used to investigate its periodicity, this is wavelet spectrum analysis. The aims of the research were to investigate the periodic behavior of the shallow groundwater time series of an agriculturally important and drought sensitive region in Central-Eastern Europe and its relationship to the European pressure action centers. During the research ~216 shallow groundwater observation wells located in the eastern part of the Great Hungarian Plain with a temporal coverage of 50 years were scanned for periodicity. By taking the full-time interval as 100%, the presence of any period could be determined in percentages. With the complex hydrogeological/meteorological model developed in this study, non-periodic time intervals were found in the shallow groundwater levels. On the local scale, this phenomenon linked to drought conditions, and on a regional scale linked to the maxima of the regional air pressures in the Gulf of Genoa. The study documented an important link between shallow groundwater levels and climate variables/indices facilitating the necessary adaptation strategies on national and/or regional scales, which have to take into account the predictions of drought-related climatic conditions.

Keywords: climate change, drought, groundwater periodicity, wavelet spectrum and coherence analyses

Procedia PDF Downloads 385
712 Analyzing Land use change and its impacts on the Urban Environment in a Fast Growing Metropolitan City of Pakistan

Authors: Muhammad Nasar-u-Minallah, Dagmar Haase, Salman Qureshi

Abstract:

In a rapidly growing developing country cities are becoming more urbanized leading to modifications in urban climate. Rapid urbanization, especially unplanned urban land expansion, together with climate change has a profound impact on the urban settlement and urban thermal environment. Cities, particularly Pakistan are facing remarkably environmental issues and uneven development, and thus it is important to strengthen the investigation of urban environmental pressure brought by land-use changes and urbanization. The present study investigated the long term modification of the urban environment by urbanization utilizing Spatio-temporal dynamics of land-use change, urban population data, urban heat islands, monthly maximum, and minimum temperature of thirty years, multi remote sensing imageries, and spectral indices such as Normalized Difference Built-up Index and Normalized Difference Vegetation Index. The results indicate rapid growth in an urban built-up area and a reduction in vegetation cover in the last three decades (1990-2020). A positive correlation between urban heat islands and Normalized Difference Built-up Index, whereas a negative correlation between urban heat islands and the Normalized Difference Vegetation Index clearly shows how urbanization is affecting the local environment. The increase in air and land surface temperature temperatures is dangerous to human comfort. Practical approaches, such as increasing the urban green spaces and proper planning of the cities, have been suggested to help prevent further modification of the urban thermal environment by urbanization. The findings of this work are thus important for multi-sectorial use in the cities of Pakistan. By taking into consideration these results, the urban planners, decision-makers, and local government can make different policies to mitigate the urban land use impacts on the urban thermal environment in Pakistan.

Keywords: land use, urban environment, local climate, Lahore

Procedia PDF Downloads 111
711 Tribological Properties of Different Mass Ratio High Velocity Oxygen Fuel-Sprayed Al₂O₃-TiO₂ Coatings on Ti-6Al-4V Alloy

Authors: Mehmet Fahri Sarac, Gokcen Akgun

Abstract:

Ti–6Al–4V alloys are widely used in biomedical industries because of its attractive mechanical and physicochemical properties. However, they have poor wear resistance. High velocity oxygen fuel (HVOF) coatings were investigated as a way to improve the wear resistance of this alloy. In this paper, different mass ratio of Al₂O₃-TiO₂ powders (60/40, 87/13 and 97/3) was employed to enhance the tribological properties of Ti–6Al–4V. The tribological behavior was investigated by wear tests using ball-on-disc and pin-on-disc tribometer. The microstructures of the contact surfaces were determined by a scanning electron microscopy before and after the test to study the wear mechanism. Uncoated and coated surfaces after wear test are also subjected to micro-hardness tests. The tribological test results showed that the microhardness, friction and wear resistance of coated Ti-6Al-4V alloys increases by increasing TiO₂ content in the powder composite when other experimental conditions were constant. Finally, Al₂O₃-TiO₂ powder composites for the investigated conditions, both coating samples had satisfactory values of friction and wear resistance, and they could be suitable candidates for Ti–6Al–4V material.

Keywords: HVOF (High Velocity Oxygen Fuel), Al₂O₃-TiO₂, Ti-6Al-4V, tribology

Procedia PDF Downloads 195
710 The Impact of Heat Waves on Human Health: State of Art in Italy

Authors: Vito Telesca, Giuseppina A. Giorgio

Abstract:

The earth system is subject to a wide range of human activities that have changed the ecosystem more rapidly and extensively in the last five decades. These global changes have a large impact on human health. The relationship between extreme weather events and mortality are widely documented in different studies. In particular, a number of studies have investigated the relationship between climatological variations and the cardiovascular and respiratory system. The researchers have become interested in the evaluation of the effect of environmental variations on the occurrence of different diseases (such as infarction, ischemic heart disease, asthma, respiratory problems, etc.) and mortality. Among changes in weather conditions, the heat waves have been used for investigating the association between weather conditions and cardiovascular events and cerebrovascular, using thermal indices, which combine air temperature, relative humidity, and wind speed. The effects of heat waves on human health are mainly found in the urban areas and they are aggravated by the presence of atmospheric pollution. The consequences of these changes for human health are of growing concern. In particular, meteorological conditions are one of the environmental aspects because cardiovascular diseases are more common among the elderly population, and such people are more sensitive to weather changes. In addition, heat waves, or extreme heat events, are predicted to increase in frequency, intensity, and duration with climate change. In this context, are very important public health and climate change connections increasingly being recognized by the medical research, because these might help in informing the public at large. Policy experts claim that a growing awareness of the relationships of public health and climate change could be a key in breaking through political logjams impeding action on mitigation and adaptation. The aims of this study are to investigate about the importance of interactions between weather variables and your effects on human health, focusing on Italy. Also highlighting the need to define strategies and practical actions of monitoring, adaptation and mitigation of the phenomenon.

Keywords: climate change, illness, Italy, temperature, weather

Procedia PDF Downloads 247
709 Sources and Potential Ecological Risks of Heavy Metals in the Sediment Samples From Coastal Area in Ondo, Southwest Nigeria

Authors: Ogundele Lasun Tunde, Ayeku Oluwagbemiga Patrick

Abstract:

Heavy metals are released into the sediments in aquatic environment from both natural and anthropogenic sources and they are considered as worldwide issue due to their deleterious ecological risks and food chain disruption. In this study, sediments samples were collected at three major sites (Awoye, Abereke and Ayetoro) along Ondo coastal area using VanVeen grab sampler. The concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn were determined by employing Atomic Absorption Spectroscopy (AAS). The combined concentrations data were subjected to Positive Matrix Factorization (PMF) receptor approach for source identification and apportionment. The probable risks that might be posed by heavy metals in the sediment were estimated by potential and integrated ecological risks indices. Among the measured heavy metals, Fe had the average concentrations of 20.38 ± 2.86, 23.56 ± 4.16 and 25.32 ± 4.83 lg/g at Abereke, Awoye and Ayetoro sites, respectively. The PMF resulted in identification of four sources of heavy metals in the sediments. The resolved sources and their percentage contributions were oil exploration (39%), industrial waste/sludge (35%), detrital process (18%) and Mn-sources (8%). Oil exploration activities and industrial wastes are the major sources that contribute heavy metals into the coastal sediments. The major pollutants that posed ecological risks to the local aquatic ecosystem are As, Pb, Cr and Cd (40 B Ei ≤ 80) classifying the sites as moderate risk. The integrate risks values of Awoye, Abereke and Ayetoro are 231.2, 234.0 and 236.4, respectively suggesting that the study areas had a moderate ecological risk. The study showed the suitability of PMF receptor model for source identification of heavy metals in the sediments. Also, the intensive anthropogenic activities and natural sources could largely discharge heavy metals into the study area, which may increase the heavy metal contents of the sediments and further contribute to the associated ecological risk, thus affecting the local aquatic ecosystem.

Keywords: positive matrix factorization, sediments, heavy metals, sources, ecological risks

Procedia PDF Downloads 23
708 Structural Alteration of MoS₂ by Incorporating Fe, Co Composite for an Enhanced Oxygen Evolution Reaction

Authors: Krishnamoorthy Sathiyan, Shanti Gopal Patra, Ronen Bar-Ziv, Tomer Zidki

Abstract:

Developing efficient non-noble metal catalysts that are cheap and durable for oxygen evolution reaction (OER) is a great challenge. Moreover, altering the electronic structure of the catalyst and structural engineering of the materials provide a new direction for enhancing the OER. Herein, we have successfully synthesized Fe and Co incorporated MoS₂ catalysts, which show improved catalytic activity for OER when compared with MoS₂, Fe-MoS₂, and Co-MoS₂. It was found that at an optimal ratio of Fe and Co, the electronic and structural modification of MoS₂ occurs, which leads to change in orientation and thereby enhances the active catalytic sites on the edges, which are more exposed for OER. The nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray analysis (EDX), Elemental Mapping, transmission electron microscope (TEM), and high-resolution transmission electron microscope (HR-TEM) analysis. Among all, a particular ratio of FeCo-MoS₂ exhibits a much smaller onset with better catalytic current density. The remarkable catalytic activity is mainly attributed to the synergistic effect from the Fe and Co. Most importantly, our work provides an essential insight in altering the electronic structure of MoS₂ based materials by incorporating promoters such as Co and Fe in an optimal amount, which enhances OER activity.

Keywords: electrocatalysts, molybdenum disulfide, oxygen evolution reaction, transition metals

Procedia PDF Downloads 130
707 Soil Carbon Stock in Sub-Optimal Land due to Climate Change on Development Cymbopogon nardus L. at Simawang Village, West Sumatera, Indonesia

Authors: Juniarti Yuni

Abstract:

Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20–40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 T/Ha at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done.

Keywords: climate changes, sereh wangi (Cymbopogon nardus L.), soil carbon stock, sub optimal land

Procedia PDF Downloads 300
706 Preparation of Nb Silicide-Based Alloy Powder by Hydrogenation-Dehydrogenation (HDH) Reaction

Authors: Gi-Beom Park, Hyong-Gi Park, Seong-Yong Lee, Jaeho Choi, Seok Hong Min, Tae Kwon Ha

Abstract:

The Nb silicide-based alloy has the excellent high-temperature strength and relatively lower density than the Ni-based superalloy; therefore, it has been receiving a lot of attention for the next generation high-temperature material. To enhance the high temperature creep property and oxidation resistance, Si was added to the Nb-based alloy, resulting in a multi-phase microstructure with metal solid solution and silicide phase. Since the silicide phase has a low machinability due to its brittle nature, it is necessary to fabricate components using the powder metallurgy. However, powder manufacturing techniques for the alloys have not yet been developed. In this study, we tried to fabricate Nb-based alloy powder by the hydrogenation-dehydrogenation reaction. The Nb-based alloy ingot was prepared by vacuum arc melting and it was annealed in the hydrogen atmosphere for the hydrogenation. After annealing, the hydrogen concentration was increased from 0.004wt% to 1.22wt% and Nb metal phase was transformed to Nb hydride phase. The alloy after hydrogenation could be easily pulverized into powder by ball milling due to its brittleness. For dehydrogenation, the alloy powders were annealed in the vacuum atmosphere. After vacuum annealing, the hydrogen concentration was decreased to 0.003wt% and Nb hydride phase was transformed back to Nb metal phase.

Keywords: Nb alloy, Nb metal and silicide composite, powder, hydrogenation-dehydrogenation reaction

Procedia PDF Downloads 245
705 Comparative Study of Concrete Filled Steel I-Girder Bridge with Conventional Type of Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura, Abdul Habib Ghaforzai

Abstract:

Steel and concrete composite bridge with concrete filled steel I-girder (CFIG) was proposed and FEM and laboratory tests were conducted to analysis bending and shear behavior. The proposed form of structural steel I-section is mainly used at the intermediate support zone by placing infilled concrete into the top and bottom flanges of steel I-section to resist negative bending moment. The bending and shear tests were carried out to find out the significance of CFIG section. The result for test showing that the bending and shear capacity of proposed CFIG is at least 3 times and 2 times greater than conventional steel I-section (IG) respectively. Finite element study was also carried out to ensure the result for laboratory tests due to bending and shear behavior and load transfer behavior of proposed structural form. Finite element result result agreed the test result. A design example was carried out for a four-span continuous highway bridge and design method was established.

Keywords: bending strength, concrete filled steel I-girder, steel I-girder, FEM, limit states design and shear strength

Procedia PDF Downloads 131
704 Surface Coatings of Boards Made from Alternative Materials

Authors: Stepan Hysek, Petra Gajdacova

Abstract:

In recent years, alternative materials, such as annual plants or recycled and waste materials are becoming more and more popular input material for the production of composite materials. They can be used for the production of insulation boards, construction boards or furniture boards. Surface finishing of those boards is essential for utilization in furniture. However, some difficulties could occur during coating of boards from alternative materials; physical and chemical differences from conventional particleboards need to be considered. From the physical aspects, surface soundness and surface roughness mainly determine the quality of the surface. Since surface layers of boards from alternative materials have often lower density, these characteristics could be deteriorated and thus the production process needs to be optimized. Also, chemical reactions of board’s material with coating could be undesirable. The objective of this study is to evaluate the parameters affecting the surface quality of boards made form alternative materials and to find possibilities of the coating of these boards. In this study, boards of particles from rapeseed stems were produced using a laboratory press. Surface soundness, as representatives of mechanical properties and surface roughness, as representative of physical properties, were measured on boards from rapeseed stems. Results clearly indicated that produced boards had lower surface quality than commercially produced particle boards from wood. Therefore, higher thickness of surface coating on rapeseed based boards is needed.

Keywords: coating, surface, annual plant, composites, particleboard

Procedia PDF Downloads 266
703 Variations in Heat and Cold Waves over Southern India

Authors: Amit G. Dhorde

Abstract:

It is now well established that the global surface air temperatures have increased significantly during the period that followed the industrial revolution. One of the main predictions of climate change is that the occurrences of extreme weather events will increase in future. In many regions of the world, high-temperature extremes have already started occurring with rising frequency. The main objective of the present study is to understand spatial and temporal changes in days with heat and cold wave conditions over southern India. The study area includes the region of India that lies to the south of Tropic of Cancer. To fulfill the objective, daily maximum and minimum temperature data for 80 stations were collected for the period 1969-2006 from National Data Center of India Meteorological Department. After assessing the homogeneity of data, 62 stations were finally selected for the study. Heat and cold waves were classified as slight, moderate and severe based on the criteria given by Indias' meteorological department. For every year, numbers of days experiencing heat and cold wave conditions were computed. This data was analyzed with linear regression to find any existing trend. Further, the time period was divided into four decades to investigate the decadal frequency of the occurrence of heat and cold waves. The results revealed that the average annual temperature over southern India shows an increasing trend, which signifies warming over this area. Further, slight cold waves during winter season have been decreasing at the majority of the stations. The moderate cold waves also show a similar pattern at the majority of the stations. This is an indication of warming winters over the region. Besides this analysis, other extreme indices were also analyzed such as extremely hot days, hot days, very cold nights, cold nights, etc. This analysis revealed that nights are becoming warmer and days are getting warmer over some regions too.

Keywords: heat wave, cold wave, southern India, decadal frequency

Procedia PDF Downloads 128
702 Design and 3D-Printout of The Stack-Corrugate-Sheel Core Sandwiched Decks for The Bridging System

Authors: K. Kamal

Abstract:

Structural sandwich panels with core of Advanced Composites Laminates l Honeycombs / PU-foams are used in aerospace applications and are also fabricated for use now in some civil engineering applications. An all Advanced Composites Foot Over Bridge (FOB) system, designed and developed for pedestrian traffic is one such application earlier, may be cited as an example here. During development stage of this FoB, a profile of its decks was then spurred as a single corrugate sheet core sandwiched between two Glass Fibre Reinforced Plastics(GFRP) flat laminates. Once successfully fabricated and used, these decks did prove suitable also to form other structure on assembly, such as, erecting temporary shelters. Such corrugated sheet core profile sandwiched panels were then also tried using the construction materials but any conventional method of construction only posed certain difficulties in achieving the required core profile monolithically within the sandwiched slabs and hence it was then abended. Such monolithic construction was, however, subsequently eased out on demonstration by dispensing building materials mix through a suitably designed multi-dispenser system attached to a 3D Printer. This study conducted at lab level was thus reported earlier and it did include the fabrication of a 3D printer in-house first as ‘3DcMP’ as well as on its functional operation, some required sandwich core profiles also been 3D-printed out producing panels hardware. Once a number of these sandwich panels in single corrugated sheet core monolithically printed out, panels were subjected to load test in an experimental set up as also their structural behavior was studied analytically, and subsequently, these results were correlated as reported in the literature. In achieving the required more depths and also to exhibit further the stronger and creating sandwiched decks of better structural and mechanical behavior, further more complex core configuration such as stack corrugate sheets core with a flat mid plane was felt to be the better sandwiched core. Such profile remained as an outcome that turns out merely on stacking of two separately printed out monolithic units of single corrugated sheet core developed earlier as above and bonded them together initially, maintaining a different orientation. For any required sequential understanding of the structural behavior of any such complex profile core sandwiched decks with special emphasis to study of the effect in the variation of corrugation orientation in each distinct tire in this core, it obviously calls for an analytical study first. The rectangular,simply supported decks have therefore been considered for analysis adopting the ‘Advanced Composite Technology(ACT), some numerical results along with some fruitful findings were obtained and these are all presented here in this paper. From this numerical result, it has been observed that a mid flat layer which eventually get created monolethically itself, in addition to eliminating the bonding process in development, has been found to offer more effective bending resistance by such decks subjected to UDL over them. This is understood to have resulted here since the existence of a required shear resistance layer at the mid of the core in this profile, unlike other bending elements. As an addendum to all such efforts made as covered above and was published earlier, this unique stack corrugate sheet core profile sandwiched structural decks, monolithically construction with ease at the site itself, has been printed out from a 3D Printer. On employing 3DcMP and using some innovative building construction materials, holds the future promises of such research & development works since all those several aspects of a 3D printing in construction are now included such as reduction in the required construction time, offering cost effective solutions with freedom in design of any such complex shapes thus can widely now be realized by the modern construction industry.

Keywords: advance composite technology(ACT), corrugated laminates, 3DcMP, foot over bridge (FOB), sandwiched deck units

Procedia PDF Downloads 172
701 Chemical Properties of Yushania alpina and Bamusa oldhamii Bamboo Species

Authors: Getu Dessalegn Asfaw, Yalew Dessalegn Asfaw

Abstract:

This research aims to examine the chemical composition of bamboo species in Ethiopia under the effect of age and culm height. The chemical composition of bamboo species in Ethiopia has not been investigated so far. The highest to the lowest cellulose and hemicellulose contents are Injibara (Y. alpina), Mekaneselam (Y. alpina), and Kombolcha (B. oldhamii), whereas lignin, extractives, and ash contents are Kombolcha, Mekanesealm, and Injibra, respectively. As a result of this research, the highest and lowest cellulose, hemicelluloses and lignin contents are at the age of 2 and 1 year old, respectively. Whereas extractives and ash contents are decreased at the age of the culm matured. The cellulose, hemicelluloses, lignin, and ash contents of the culm increase from the bottom to top along the height, however, extractive contents decrease from the bottom to top position. The cellulose content of Injibara, Kombolch, and Mekaneselam bamboo was recorded at 51±1.7–53±1.8%, 45±1.6%–48±1.5%, and 48±1.8–51±1.6%, and hemicelluloses content was measured at 20±1.2–23±1.1%, 17±1.0–19±0.9%, and 18±1.0–20±1.0%, lignin content was measured 19±1.0–21±1.1%, 27±1.2–29±1.1%, and 21±1.1–24±1.1%, extractive content was measured 3.9±0.2 –4.5±0.2%, 6.6±0.3–7.8±0.4%, and 4.7±0.2–5.2±0.1%, ash content was measured 1.6±0.1–2.1±0.1%, 2.8±0.1–3.5±0.2%, and 1.9±0.1–2.5±0.1% at the ages of 1–3 years old, respectively. This result demonstrated that bamboo species in Ethiopia can be a source of feedstock for lignocelluloses ethanol and bamboo composite production since they have higher cellulose content.

Keywords: age, bamboo species, culm height, chemical composition

Procedia PDF Downloads 107
700 Novel Anticorrosion Epoxy Reinforced Graphitic Nanocomposite as a Durable Surface

Authors: Shimaa A. Higazy, Mohamed S. Selim, Olfat E. El-Azabawy, Abeer A. Hassan

Abstract:

We designed novel epoxy/graphitic carbon nitride (g-C₃N₄) nanocomposite materials as suitable surface coatings. g-C₃N₄ nanosheets were facilely prepared and dispersed in the epoxy resin via solution casting. This research focuses on the mechanical and anticorrosion properties of g-C₃N₄ nanofiller reinforced epoxy nanocomposites. The structures, sizes, and morphologies of designed polymeric nanocomposites and nanofillers were elucidated using various techniques such as FT-IR, NMR, FE-TEM, FE-SEM. The developed nanocomposite was applied as a surface coating by air-assisted spray method. The structure-property relationship was studied for different concentrations of nanofiller in the epoxy matrix. The anticorrosive properties were studied via electrochemical experiments, including potentiodynamic polarization, electrochemical impedance, and open-circuit potential analyses, as well as salt spray test. Mechanical durability was assessed by various methods, such as impact, T-bending, and crosscut tests. Surface heterogeneity, elasticity, and corrosion-resistance features are among the merits of developed composite. The highest improvement was achieved with well dispersion of g-C₃N₄ sheets fillers. This fascinating epoxy nanostructured coating provides a promising anticorrosive coatings for a sustainable future environment.

Keywords: epoxy, nanocomposite, surface coating, anticorrosive properties, mechanical durability

Procedia PDF Downloads 88
699 Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites

Authors: S. Alrekabi, A. Cundy, A. Lampropoulos, I. Savina

Abstract:

Due to their remarkable mechanical properties, multi-wall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes tend to form large agglomerates and bundles as a consequence of Van der Waals forces. In this study, effective dispersion of low concentrations of MWCNTs at 0.01%, 0.025%, and 0.05% by weight of cement in the composite was achieved by applying different sonication conditions in combination with the use of polycarboxylate ether as a surfactant. UV-Visible spectroscopy and Transmission electron microscopy (TEM) were used to assess the dispersion of MWCNTs in water, while the dispersion states of MWCNTs within the cement composites and their surface interactions were examined by scanning electron microscopy (SEM). A high sonication intensity applied over a short time period significantly enhanced the dispersion of MWCNTs at initial mixing stages, and 0.025% of MWCNTs wt. of cement, caused 86% and 27% improvement in tensile strength and compressive strength respectively, compared with a plain cement mortar.

Keywords: dispersion, mechanical performance, multi wall carbon nanotubes, sonication conditions

Procedia PDF Downloads 321
698 A Comparative Analysis of Clustering Approaches for Understanding Patterns in Health Insurance Uptake: Evidence from Sociodemographic Kenyan Data

Authors: Nelson Kimeli Kemboi Yego, Juma Kasozi, Joseph Nkruzinza, Francis Kipkogei

Abstract:

The study investigated the low uptake of health insurance in Kenya despite efforts to achieve universal health coverage through various health insurance schemes. Unsupervised machine learning techniques were employed to identify patterns in health insurance uptake based on sociodemographic factors among Kenyan households. The aim was to identify key demographic groups that are underinsured and to provide insights for the development of effective policies and outreach programs. Using the 2021 FinAccess Survey, the study clustered Kenyan households based on their health insurance uptake and sociodemographic features to reveal patterns in health insurance uptake across the country. The effectiveness of k-prototypes clustering, hierarchical clustering, and agglomerative hierarchical clustering in clustering based on sociodemographic factors was compared. The k-prototypes approach was found to be the most effective at uncovering distinct and well-separated clusters in the Kenyan sociodemographic data related to health insurance uptake based on silhouette, Calinski-Harabasz, Davies-Bouldin, and Rand indices. Hence, it was utilized in uncovering the patterns in uptake. The results of the analysis indicate that inclusivity in health insurance is greatly related to affordability. The findings suggest that targeted policy interventions and outreach programs are necessary to increase health insurance uptake in Kenya, with the ultimate goal of achieving universal health coverage. The study provides important insights for policymakers and stakeholders in the health insurance sector to address the low uptake of health insurance and to ensure that healthcare services are accessible and affordable to all Kenyans, regardless of their socio-demographic status. The study highlights the potential of unsupervised machine learning techniques to provide insights into complex health policy issues and improve decision-making in the health sector.

Keywords: health insurance, unsupervised learning, clustering algorithms, machine learning

Procedia PDF Downloads 138
697 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites

Authors: Yung-Chung Chuang

Abstract:

The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.

Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics

Procedia PDF Downloads 142
696 Heavy Metals and Carcinogenic Risk Assessment in Free-Ranged Livestock of Lead-Contaminated Goldmine Communities of Zamfara State, Northern Nigeria

Authors: Sulaiman Rabiu, Muazu Gusau Abubakar, Jafar Usman Zakari

Abstract:

The consumption of meat is of great importance as it provides a good source of proteins and significant amount of essential trace element to the body. However, contamination of meat and meat products with heavy metals is becoming a serious threat to food safety and public health. Therefore, the present study is aimed to evaluate the concentration of some heavy metals in muscles and entrails of free-ranged cattle, sheep and goats. A total of sixty (60) fresh samples of muscles, liver, kidney, small intestines and stomach of free ranged cattle, sheep and goats were collected from abattoirs of different goldmine communities of Anka, Bukkuyum, Maru andTalata-Mafara Local Government Areas of Zamfara State, Nigeria. The samples were digested using 10 mL of a mixed 70% high grade concentration of HNO₃ and 65% HCl (4:1 v/v); the mixture was heated until dense fumes disappeared forming a clear transparent solution and diluted to 50 mL with deionized water. Actual concentrations of Cd, Cr, Cu, Co, As, Ni, Mn, Pb and Zn were determined using Microwave Plasma Atomic Emission Spectrophotometer (MP-AES). From the results obtained, goat liver had the highest mean concentration of lead, arsenic, cobalt and manganese (12.43± 0.31, 14.25±0.32, 3.47± 0.86 and 12.68± 0.92 mg/kg respectively) while goat kidney had the highest concentration of copper and zinc (10.08±0.61 and 24.16±1.30 mg/kg respectively). The highest concentrations of cadmium and nickel were recorded in sheep kidney (7.75± 0.65 and 2.08±0.10 mg/kg respectively). Cattle muscles had the highest chromium concentration than all the organs analysed. The target hazard quotients (THQs) for all the metals were below 1.0, but TR which is a risk indices for carcinogenicity indicates an alarming result that requires stringent control to protect public health.Therefore, intensive public health awareness on the risk associated with contamination of heavy metals in meat should be advocated.

Keywords: contamination, goldmine, heavy metals, meat

Procedia PDF Downloads 111
695 Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production

Authors: Premrudee Promdet, Fan Cui, Gi Byoung Hwang, Ka Chuen To, Sanjayan Sathasivam, Claire J. Carmalt, Ivan P. Parkin

Abstract:

A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites.

Keywords: photocatalysis, photoelectrochemical cell (PEC), aerosol-assisted chemical vapor deposition (AACVD), surface plasmon resonance (SPR)

Procedia PDF Downloads 219
694 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite

Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala

Abstract:

The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.

Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂

Procedia PDF Downloads 131
693 Quantitative Ethno-Botanical Analysis and Conservation Issues of Medicinal Flora from Alpine and Sub-Alpine, Hindukush Region of Pakistan

Authors: Gul Jan

Abstract:

It is the first quantitative ethno-botanical analysis and conservation issues of medicinal flora of Alpine and Sub-alpine, Hindikush region of Pakistan. The objective of the study aims to report, compare the uses and highlight the ethno-Botanical significance of medicinal plants for treatment of various diseases. A total of 250 (242 males and 8 females) local informants including 10 Local Traditional Healers were interviewed. Information was collected through semi-structured interviews, analyzed and compared by quantitative ethno-botanical indices such as Jaccard index (JI), Informant Consensus Factor (ICF), use value (UV) and Relative frequency of citation (RFC).Thorough survey indicated that 57 medicinal plants belongs to 43 families were investigated to treat various illnesses. The highest ICF is recorded for digestive system (0.69%), Circolatory system (0.61%), urinary tract system, (0.53%) and respiratory system (0.52%). Used value indicated that, Achillea mellefolium (UV = 0.68), Aconitum violaceum (UV = 0.69), Valeriana jatamansi (UV = 0.63), Berberis lyceum (UV = 0.65) and are exceedingly medicinal plant species used in the region. In comparison, highest similarity index is recorded in these studies with JI 17.72 followed by 16.41. According to DMR output, Pinus williciana ranked first due to multipurpose uses among all species and was found most threatened with higher market value. Unwise used of natural assets pooled with unsuitable harvesting practices have exaggerated pressure on plant species of the research region. The main issues causative to natural variety loss found were over grazing of animals, forest violation, wild animal hunting, fodder, plant collection as medicine, fuel wood, forest fire, and invasive species negatively affect the natural resources. For viable utilization, in situ and ex situ conservation, skillful collecting, and reforestation project may be the resolution. Further wide field management research is required.

Keywords: quantitative analysis, conservations issues, medicinal flora, alpine and sub-alpine, Hindukush region

Procedia PDF Downloads 307
692 The Effects of Cardiovascular Risk on Age-Related Cognitive Decline in Healthy Older Adults

Authors: A. Badran, M. Hollocks, H. Markus

Abstract:

Background: Common risk factors for cardiovascular disease are associated with age-related cognitive decline. There has been much interest in treating modifiable cardiovascular risk factors in the hope of reducing cognitive decline. However, there is currently no validated neuropsychological test to assess the subclinical cognitive effects of vascular risk. The Brief Memory and Executive Test (BMET) is a clinical screening tool, which was originally designed to be sensitive and specific to Vascular Cognitive Impairment (VCI), an impairment characterised by decline in frontally-mediated cognitive functions (e.g. Executive Function and Processing Speed). Objective: To cross-sectionally assess the validity of the BMET as a measure of the subclinical effects of vascular risk on cognition, in an otherwise healthy elderly cohort. Methods: Data from 346 participants (57 ± 10 years) without major neurological or psychiatric disorders were included in this study, gathered as part of a previous multicentre validation study for the BMET. Framingham Vascular Age was used as a surrogate measure of vascular risk, incorporating several established risk factors. Principal Components Analysis of the subtests was used to produce common constructs: an index for Memory and another for Executive Function/Processing Speed. Univariate General Linear models were used to relate Vascular Age to performance on Executive Function/Processing Speed and Memory subtests of the BMET, adjusting for Age, Premorbid Intelligence and Ethnicity. Results: Adverse vascular risk was associated with poorer performance on both the Memory and Executive Function/Processing Speed indices, adjusted for Age, Premorbid Intelligence and Ethnicity (p=0.011 and p<0.001, respectively). Conclusions: Performance on the BMET reflects the subclinical effects of vascular risk on cognition, in age-related cognitive decline. Vascular risk is associated with decline in both Executive Function/Processing Speed and Memory groups of subtests. Future studies are needed to explore whether treating vascular risk factors can effectively reduce age-related cognitive decline.

Keywords: age-related cognitive decline, vascular cognitive impairment, subclinical cerebrovascular disease, cognitive aging

Procedia PDF Downloads 471
691 ED Machining of Particulate Reinforced Metal Matrix Composites

Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar

Abstract:

This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.

Keywords: metal matrix composites (MMCS), metal removal rate (MRR), surface roughness (SR), surface integrity (SI), tool wear rate (TWR), technique for order preference by similarity to ideal solution (TOPSIS)

Procedia PDF Downloads 291
690 Stereological Evaluation of Liver of Rabbit Fetuses After Transplantation of Human Wharton’s Jelly-Derived Mesenchymal Stromal/Stem Cells

Authors: Zahra Khodabandeh, Leila Rezaeian, Mohammad Amin Edalatmanesh, Asghar Mogheiseh, Nader Tanideh, Mehdi Dianatpour, Shahrokh Zare, Hossein Bordbar, Neda Baghban, Amin Tamadon

Abstract:

Background: In-utero xenotransplantation of stem cells in abnormal fetuses effectively treats several genetic illnesses. Objective: The current research aimed to evaluate structural and morphological alterations in the liver of rabbit fetuses following xenotransplantation of human Wharton’s jelly-derived mesenchymal stromal cells (hWJ-MSCs) using a stereological technique. Methods: hWJ-MSCs were isolated from the human umbilical cord, and their authenticity was established by flow cytometry and differentiation. At gestational day 14, the rabbits were anesthetized, and hWJ-MSCs were injected into the uteri of 24 fetuses. Twenty-two fetuses were born successfully. Ten rabbit liver specimens were prepared from injected fetuses, including eight rabbits on day three following birth and two rabbits on the 21st post-natal day. The non-injected fetuses were considered positive controls. The livers of the control and hWJ-MSCs-treated rabbits were fixed, processed, stained, and examined through stereological approaches. Results: In the hWJ-MSCs-treated group, the mean liver weight and volume increased by 42% and 78% compared to the control group. The total volume of the hepatocytes increased by 63% and that of sinusoids by threefold in the treated rabbits. The total volume of the central veins increased by 70%. The total number corresponding to hepatocytes in the experimental group increased by 112% compared to the rabbits in the control. The total volume of the hepatocyte nuclei in the experimental group increased by 117% compared to the rabbits in the control. Conclusion: After xenotransplantation of human MSCs, host tissue microenvironments (here, the rabbit liver) were altered, and these included quantitative factors corresponding to the liver tissue and hepatocyte morphometric indices.

Keywords: xenotransplantation, mesenchymal stromal, stem cell, Wharton ‘s jelly, liver

Procedia PDF Downloads 101
689 Tungsten-Based Powders Produced in Plasma Systems

Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii

Abstract:

The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.

Keywords: plasma, powders, production, tungsten-based

Procedia PDF Downloads 120
688 Non-Steroidal Anti-inflammatory Drugs, Plant Extracts, and Characterized Microparticles to Modulate Antimicrobial Resistance of Epidemic Meca Positive S. Aureus of Dairy Origin

Authors: Amjad I. Aqib, Shanza R. Khan, Tanveer Ahmad, Syed A. R. Shah, Muhammad A. Naseer, Muhammad Shoaib, Iqra Sarwar, Muhammad F. A. Kulyar, Zeeshan A. Bhutta, Mumtaz A. Khan, Mahboob Ali, Khadija Yasmeen

Abstract:

The current study focused on resistance modulation of dairy linked epidemic mec A positive S. aureus for resistance modulation by plant extract (Eucalyptus globolus, Calotropis procera), NSAIDs, and star like microparticles. Zinc oxide {ZnO}c and {Zn (OH)₂} microparticles were synthesized by solvothermal method and characterized by calcination, X-ray diffraction (XRD), and scanning electron microscope (SEM). Plant extracts were prepared by the Soxhlet extraction method. The study found 34% of subclinical samples (n=200) positive for S. aureus from dairy milk having significant (p < 0.05) association of assumed risk factors with pathogen. The antimicrobial assay showed 55, 42, 41, and 41% of S. aureus resistant to oxacillin, ciprofloxacin, streptomycin, and enoxacin. Amoxicillin showed the highest percentage of increase in zone of inhibitions (ZOI) at 100mg of Calotropis procera extract (31.29%) followed by 1mg/mL (28.91%) and 10mg/mL (21.68%) of Eucalyptus globolus. Amoxicillin increased ZOI by 42.85, 37.32, 29.05, and 22.78% in combination with 500 ug/ml with each of diclofenac, aspirin, ibuprofen, and meloxicam, respectively. Fractional inhibitory concentration indices (FICIs) showed synergism of amoxicillin with diclofenac and aspirin and indifferent synergy with ibuprofen and meloxicam. The preliminary in vitro finding of combination of microparticles with amoxicillin proved to be synergistic, giving rise to 26.74% and 14.85% increase in ZOI of amoxicillin in combination with zinc oxide and zinc hydroxide, respectively. The modulated antimicrobial resistance incurred by NSAIDs, plant extracts, and microparticles against pathogenic S. aureus invite immediate attention to probe alternative antimicrobial sources.

Keywords: antimicrobial resistance, dairy milk, nanoparticles, NSIDs, plant extracts, resistance modulation, S. aureus

Procedia PDF Downloads 213
687 Prevalence of Malnutrition and Associated Factors among Children Aged 6-59 Months at Hidabu Abote District, North Shewa, Oromia Regional State

Authors: Kebede Mengistu, Kassahun Alemu, Bikes Destaw

Abstract:

Introduction: Malnutrition continues to be a major public health problem in developing countries. It is the most important risk factor for the burden of diseases. It causes about 300, 000 deaths per year and responsible for more than half of all deaths in children. In Ethiopia, child malnutrition rate is one of the most serious public health problem and the highest in the world. High malnutrition rates in the country pose a significant obstacle to achieving better child health outcomes. Objective: To assess prevalence of malnutrition and associated factors among children aged 6-59 months at Hidabu Abote district, North shewa, Oromia. Methods: A community based cross sectional study was conducted on 820 children aged 6-59 months from September 8-23, 2012 at Hidabu Abote district. Multistage sampling method was used to select households. Children were selected from each kebeles by simple random sampling. Anthropometric measurements and structured questioners were used. Data was processed using EPi-info soft ware and exported to SPSS for analysis. Then after, sex, age, months, height, and weight transferred with HHs number to ENA for SMART 2007software to convert nutritional data into Z-scores of the indices; H/A, W/H and W/A. Bivariate and multivariate logistic regressions were used to identify associated factors of malnutrition. Results: The analysis this study revealed that, 47.6%, 30.9% and 16.7% of children were stunted, underweight and wasted, respectively. The main associated factors of stunting were found to be child age, family monthly income, children were received butter as pre-lacteal feeding and family planning. Underweight was associated with number of children HHs and children were received butter as per-lacteal feeding but un treatment of water in HHs only associated with wasting. Conclusion and recommendation: From the findings of this study, it is concluded that malnutrition is still an important problem among children aged 6-59 months. Therefore, especial attention should be given on intervention of malnutrition.

Keywords: children, Hidabu Abote district, malnutrition, public health

Procedia PDF Downloads 427