Search results for: UAV-based hyperspectral data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25300

Search results for: UAV-based hyperspectral data

23110 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 272
23109 Temperament as a Success Determinant in Formative Assessment

Authors: George Fomunyam Kehdinga

Abstract:

Assessment is a vital part of the educational process, and formative assessment is a way of ensuring that higher education achieves the desired effects. Different factors influence how students perform in assessments in general, and formative assessment in particular and temperament is one of such determining factors. This paper which is a qualitative case study of four universities in four different countries examines how the temperamental make up of students either empowers them to perform excellently in formative assessment or incapacitates their performance. These four universities were chosen from Cameroon, South Africa, United Kingdom and the United States of America and three students were chosen from each institution, six of which were undergraduate student and six postgraduate students. Data in this paper was generated through qualitative interviews and document analyses which was preceded by a temperament test. From the data generated, it was discovered that cholerics who are natural leaders, hence do not struggle to express themselves often perform excellently in formative assessment while sanguines on the other hand who are also extroverts like cholerics perform relatively well. Phlegmatics and melancholics performed averagely and poorly respectively in formative assessment because they are naturally prone to fear and hate such activities because they like keeping to themselves. The paper, therefore, suggest that temperament is a success determinant in formative assessment. It also proposes that lecturers need and understanding of temperaments to be able to fully administer formative assessment in the lecturer room. It also suggests that assessment should be balance in the classroom so that some students because of their temperamental make-up are not naturally disadvantaged while others are performing excellently. Lastly, the paper suggests that since formative assessment is a process of generating data, it should be contextualised or given and individualised approach so as to ensure that trustworthy data is generated.

Keywords: temperament, formative assessment, academic success, students

Procedia PDF Downloads 249
23108 Effect of Measured and Calculated Static Torque on Instantaneous Torque Profile of Switched Reluctance Motor

Authors: Ali Asghar Memon

Abstract:

The simulation modeling of switched reluctance (SR) machine often relies and uses the three data tables identified as static torque characteristics that include flux linkage characteristics, co energy characteristics and static torque characteristics separately. It has been noticed from the literature that the data of static torque used in the simulation model is often calculated so far the literature is concerned. This paper presents the simulation model that include the data of measured and calculated static torque separately to see its effect on instantaneous torque profile of the machine. This is probably for the first time so far the literature review is concerned that static torque from co energy information, and measured static torque directly from experiments are separately used in the model. This research is helpful for accurate modeling of switched reluctance drive.

Keywords: static characteristics, current chopping, flux linkage characteristics, switched reluctance motor

Procedia PDF Downloads 294
23107 Hardware Implementation on Field Programmable Gate Array of Two-Stage Algorithm for Rough Set Reduct Generation

Authors: Tomasz Grzes, Maciej Kopczynski, Jaroslaw Stepaniuk

Abstract:

The rough sets theory developed by Prof. Z. Pawlak is one of the tools that can be used in the intelligent systems for data analysis and processing. Banking, medicine, image recognition and security are among the possible fields of utilization. In all these fields, the amount of the collected data is increasing quickly, but with the increase of the data, the computation speed becomes the critical factor. Data reduction is one of the solutions to this problem. Removing the redundancy in the rough sets can be achieved with the reduct. A lot of algorithms of generating the reduct were developed, but most of them are only software implementations, therefore have many limitations. Microprocessor uses the fixed word length, consumes a lot of time for either fetching as well as processing of the instruction and data; consequently, the software based implementations are relatively slow. Hardware systems don’t have these limitations and can process the data faster than a software. Reduct is the subset of the decision attributes that provides the discernibility of the objects. For the given decision table there can be more than one reduct. Core is the set of all indispensable condition attributes. None of its elements can be removed without affecting the classification power of all condition attributes. Moreover, every reduct consists of all the attributes from the core. In this paper, the hardware implementation of the two-stage greedy algorithm to find the one reduct is presented. The decision table is used as an input. Output of the algorithm is the superreduct which is the reduct with some additional removable attributes. First stage of the algorithm is calculating the core using the discernibility matrix. Second stage is generating the superreduct by enriching the core with the most common attributes, i.e., attributes that are more frequent in the decision table. Described above algorithm has two disadvantages: i) generating the superreduct instead of reduct, ii) additional first stage may be unnecessary if the core is empty. But for the systems focused on the fast computation of the reduct the first disadvantage is not the key problem. The core calculation can be achieved with a combinational logic block, and thus add respectively little time to the whole process. Algorithm presented in this paper was implemented in Field Programmable Gate Array (FPGA) as a digital device consisting of blocks that process the data in a single step. Calculating the core is done by the comparators connected to the block called 'singleton detector', which detects if the input word contains only single 'one'. Calculating the number of occurrences of the attribute is performed in the combinational block made up of the cascade of the adders. The superreduct generation process is iterative and thus needs the sequential circuit for controlling the calculations. For the research purpose, the algorithm was also implemented in C language and run on a PC. The times of execution of the reduct calculation in a hardware and software were considered. Results show increase in the speed of data processing.

Keywords: data reduction, digital systems design, field programmable gate array (FPGA), reduct, rough set

Procedia PDF Downloads 220
23106 Digitally Mapping Aboriginal Journey Ways

Authors: Paul Longley Arthur

Abstract:

This paper reports on an Australian Research Council-funded project utilising the Australian digital research infrastructure the ‘Time-Layered Cultural Map of Australia’ (TLCMap) (https://www.tlcmap.org/) [1]. This resource has been developed to help researchers create digital maps from cultural, textual, and historical data, layered with datasets registered on the platform. TLCMap is a set of online tools that allows humanities researchers to compile humanities data using spatio-temporal coordinates – to upload, gather, analyse and visualise data. It is the only purpose-designed, Australian-developed research tool for humanities and social science researchers to identify geographical clusters and parallel journeys by sight. This presentation discusses a series of Aboriginal mapping and visualisation experiments using TLCMap to show how Indigenous knowledge can reconfigure contemporary understandings of space including the urbanised landscape [2, 3]. The research data being generated – investigating the historical movements of Aboriginal people, the distribution of networks, and their relation to land – lends itself to mapping and geo-spatial visualisation and analysis. TLCMap allows researchers to create layers on a 3D map which pinpoint locations with accompanying information, and this has enabled our research team to plot out traditional historical journeys undertaken by Aboriginal people as well as to compile a gazetteer of Aboriginal place names, many of which have largely been undocumented until now [4]. The documented journeys intersect with and overlay many of today’s urban formations including main roads, municipal boundaries, and state borders. The paper questions how such data can be incorporated into a more culturally and ethically responsive understanding of contemporary urban spaces and as well as natural environments [5].

Keywords: spatio-temporal mapping, visualisation, Indigenous knowledge, mobility and migration, research infrastructure

Procedia PDF Downloads 22
23105 Japanese and Europe Legal Frameworks on Data Protection and Cybersecurity: Asymmetries from a Comparative Perspective

Authors: S. Fantin

Abstract:

This study is the result of the legal research on cybersecurity and data protection within the EUNITY (Cybersecurity and Privacy Dialogue between Europe and Japan) project, aimed at fostering the dialogue between the European Union and Japan. Based on the research undertaken therein, the author offers an outline of the main asymmetries in the laws governing such fields in the two regions. The research is a comparative analysis of the two legal frameworks, taking into account specific provisions, ratio legis and policy initiatives. Recent doctrine was taken into account, too, as well as empirical interviews with EU and Japanese stakeholders and project partners. With respect to the protection of personal data, the European Union has recently reformed its legal framework with a package which includes a regulation (General Data Protection Regulation), and a directive (Directive 680 on personal data processing in the law enforcement domain). In turn, the Japanese law under scrutiny for this study has been the Act on Protection of Personal Information. Based on a comparative analysis, some asymmetries arise. The main ones refer to the definition of personal information and the scope of the two frameworks. Furthermore, the rights of the data subjects are differently articulated in the two regions, while the nature of sanctions take two opposite approaches. Regarding the cybersecurity framework, the situation looks similarly misaligned. Japan’s main text of reference is the Basic Cybersecurity Act, while the European Union has a more fragmented legal structure (to name a few, Network and Information Security Directive, Critical Infrastructure Directive and Directive on the Attacks at Information Systems). On an relevant note, unlike a more industry-oriented European approach, the concept of cyber hygiene seems to be neatly embedded in the Japanese legal framework, with a number of provisions that alleviate operators’ liability by turning such a burden into a set of recommendations to be primarily observed by citizens. With respect to the reasons to fill such normative gaps, these are mostly grounded on three basis. Firstly, the cross-border nature of cybercrime brings to consider both magnitude of the issue and its regulatory stance globally. Secondly, empirical findings from the EUNITY project showed how recent data breaches and cyber-attacks had shared implications between Europe and Japan. Thirdly, the geopolitical context is currently going through the direction of bringing the two regions to significant agreements from a trade standpoint, but also from a data protection perspective (with an imminent signature by both parts of a so-called ‘Adequacy Decision’). The research conducted in this study reveals two asymmetric legal frameworks on cyber security and data protection. With a view to the future challenges presented by the strengthening of the collaboration between the two regions and the trans-national fashion of cybercrime, it is urged that solutions are found to fill in such gaps, in order to allow European Union and Japan to wisely increment their partnership.

Keywords: cybersecurity, data protection, European Union, Japan

Procedia PDF Downloads 126
23104 The Causality between Corruption and Economic Growth in MENA Countries: A Dynamic Panel-Data Analysis

Authors: Nour Mohamad Fayad

Abstract:

Complex and extensively researched, the impact of corruption on economic growth seems to be intricate. Many experts believe that corruption reduces economic development. However, counterarguments have suggested that corruption either promotes growth and development or has no significant impact on economic performance. Clearly, there is no consensus in the economics literature regarding the possible relationship between corruption and economic development. Corruption's complex and clandestine nature, which makes it difficult to define and measure, is one of the obstacles that must be overcome when investigating its effect on an economy. In an attempt to contribute to the ongoing debate, this study examines the impact of corruption on economic growth in the Middle East and North Africa (MENA) region between 2000 and 2021 using a Customized Corruption Index-CCI and panel data on MENA countries. These countries were selected because they are understudied in the economic literature, and despite the World Bank's recent emphasis on corruption in the developing world, the MENA countries have received little attention. The researcher used Cobb-Douglas functional form to test corruption in MENA using a customized index known as Customized Corruption Index-CCI to track corruption over almost 20 years, then used the dynamic panel data. The findings indicate that there is a positive correlation between corruption and economic growth, but this is not consistent across all MENA nations. First, the relatively recent lack of data from MENA nations. This issue is related to the inaccessibility of data for many MENA countries, particularly regarding the returns on resources, private malfeasance, and other variables in Gulf countries. In addition, the researcher encountered several restrictions, such as electricity and internet outages, due to the fact that he is from Lebanon, a country whose citizens have endured difficult living conditions since the Lebanese crisis began in 2019. Demonstrating a customized index known as Customized Corruption Index-CCI that suits the characteristics of MENA countries to peculiarly measure corruption in this region, the outcome of the Customized Corruption Index-CCI is then compared to the Corruption Perception Index-CPI and Control of Corruption from World Governance Indicator-CC from WGI.

Keywords: corruption, economic growth, corruption measurements, empirical review, impact of corruption

Procedia PDF Downloads 75
23103 Evaluation of Illegal Hunting of Red Deer and Conservation Policy of Department of Environment in Iran

Authors: Tahere Fazilat

Abstract:

Caspian red deer or maral (Cervus elaphus maral) is the largest type of deer in iran. Maral in the past has lived in the north forests of Iran from the Caspian sea coast, Alborz mountains chain and oak forest of Zagros margin from the Azarbaijan up to fars province. However, the generation of them was completely destroyed in the north west and west of Iran. According to reports about 50 years and out of reach of humans. In the present studies, data were collected from 2004 to 2014 in the Mazandaran state Hyrcanian forest by means of guard of environment and justiciary office of department of environment of Mazandaran in this process the all arrested illegal hunting of red deer and the population census, estimation and the correlation of these data was assayed. We provide a first evaluation of how suitable these methods are by comparing the results with population estimates obtained using cohort analysis, and by analyzing the within-season variation in number of seen deer. The data gave us the future of red deer in northern forest of Iran and the results of policy of department of environment in Iran in red deer conservation.

Keywords: illegal hunting, red deer, census, concervation

Procedia PDF Downloads 554
23102 Research on Straightening Process Model Based on Iteration and Self-Learning

Authors: Hong Lu, Xiong Xiao

Abstract:

Shaft parts are widely used in machinery industry, however, bending deformation often occurred when this kind of parts is being heat treated. This parts needs to be straightened to meet the requirement of straightness. As for the pressure straightening process, a good straightening stroke algorithm is related to the precision and efficiency of straightening process. In this paper, the relationship between straightening load and deflection during the straightening process is analyzed, and the mathematical model of the straightening process has been established. By the mathematical model, the iterative method is used to solve the straightening stroke. Compared to the traditional straightening stroke algorithm, straightening stroke calculated by this method is much more precise; because it can adapt to the change of material performance parameters. Considering that the straightening method is widely used in the mass production of the shaft parts, knowledge base is used to store the data of the straightening process, and a straightening stroke algorithm based on empirical data is set up. In this paper, the straightening process control model which combine the straightening stroke method based on iteration and straightening stroke algorithm based on empirical data has been set up. Finally, an experiment has been designed to verify the straightening process control model.

Keywords: straightness, straightening stroke, deflection, shaft parts

Procedia PDF Downloads 330
23101 Effects of Elastic, Plyometric and Strength Training on Selected Anaerobic Factors in Sanandaj Elite Volleyball Players

Authors: Majed Zobairy, Fardin Kalvandi, Kamal Azizbaigi

Abstract:

This research was carried out for evaluation of elastic, plyometric and resistance training on selected anaerobic factors in men volleyball players. For these reason 30 elite volleyball players of Sanandaj city randomly divided into 3 groups as follow: elastic training, plyometric training and resistance training. Pre-exercise tests which include vertical jumping, 50 yard speed running and scat test were done and data were recorded. Specific exercise protocol regimen was done for each group and then post-exercise tests again were done. Data analysis showed that there were significant increases in exercise test in each group. One way ANOVA analysis showed that increases in speed records in elastic group were significantly higher than the other groups (p<0/05),based on research data it seems that elastic training can be a useful method and new approach in improving functional test and training regimen.

Keywords: elastic training, plyometric training, strength training, anaerobic power

Procedia PDF Downloads 532
23100 Integrating Data Envelopment Analysis and Variance Inflation Factor to Measure the Efficiency of Decision Making Units

Authors: Mostafa Kazemi, Zahra N. Farkhani

Abstract:

This paper proposes an integrated Data Envelopment Analysis (DEA) and Variance Inflation Factor (VIF) model for measuring the technical efficiency of decision making units. The model is validated using a set of 69% sales representatives’ dairy products. The analysis is done in two stages, in the first stage, VIF technique is used to distinguish independent effective factors of resellers, and in the second stage we used DEA for measuring efficiency for both constant and variable return to scales status. Further DEA is used to examine the utilization of environmental factors on efficiency. Results of this paper indicated an average managerial efficiency of 83% in the whole sales representatives’ dairy products. In addition, technical and scale efficiency were counted 96% and 80% respectively. 38% of sales representative have the technical efficiency of 100% and 72% of the sales representative in terms of managerial efficiency are quite efficient.High levels of relative efficiency indicate a good condition for sales representative efficiency.

Keywords: data envelopment analysis (DEA), relative efficiency, sales representatives’ dairy products, variance inflation factor (VIF)

Procedia PDF Downloads 571
23099 Circular Polarized and Surface Compatible Microstrip Array Antenna Design for Image and Telemetric Data Transfer in UAV and Armed UAV Systems

Authors: Kübra Taşkıran, Bahattin Türetken

Abstract:

In this paper, a microstrip array antenna with circular polarization at 2.4 GHz frequency has been designed using the in order to provide image and telemetric data transmission in Unmanned Aerial Vehicle and Armed Unmanned Aerial Vehicle Systems. In addition to the antenna design, the power divider design was made and the antennas were fed in phase. As a result of the analysis, it was observed that the antenna operates at a frequency of 2.4016 GHz with 12.2 dBi directing gain. In addition, this designed array antenna was transformed into a form compatible with the rocket surface used in A-UAV Systems, and analyzes were made. As a result of these analyzes, it has been observed that the antenna operates on the surface of the missile at a frequency of 2.372 GHz with a directivity gain of 10.2 dBi.

Keywords: cicrostrip array antenna, circular polarization, 2.4 GHz, image and telemetric data, transmission, surface compatible, UAV and armed UAV

Procedia PDF Downloads 107
23098 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 94
23097 Application of Gamma Frailty Model in Survival of Liver Cirrhosis Patients

Authors: Elnaz Saeedi, Jamileh Abolaghasemi, Mohsen Nasiri Tousi, Saeedeh Khosravi

Abstract:

Goals and Objectives: A typical analysis of survival data involves the modeling of time-to-event data, such as the time till death. A frailty model is a random effect model for time-to-event data, where the random effect has a multiplicative influence on the baseline hazard function. This article aims to investigate the use of gamma frailty model with concomitant variable in order to individualize the prognostic factors that influence the liver cirrhosis patients’ survival times. Methods: During the one-year study period (May 2008-May 2009), data have been used from the recorded information of patients with liver cirrhosis who were scheduled for liver transplantation and were followed up for at least seven years in Imam Khomeini Hospital in Iran. In order to determine the effective factors for cirrhotic patients’ survival in the presence of latent variables, the gamma frailty distribution has been applied. In this article, it was considering the parametric model, such as Exponential and Weibull distributions for survival time. Data analysis is performed using R software, and the error level of 0.05 was considered for all tests. Results: 305 patients with liver cirrhosis including 180 (59%) men and 125 (41%) women were studied. The age average of patients was 39.8 years. At the end of the study, 82 (26%) patients died, among them 48 (58%) were men and 34 (42%) women. The main cause of liver cirrhosis was found hepatitis 'B' with 23%, followed by cryptogenic with 22.6% were identified as the second factor. Generally, 7-year’s survival was 28.44 months, for dead patients and for censoring was 19.33 and 31.79 months, respectively. Using multi-parametric survival models of progressive and regressive, Exponential and Weibull models with regard to the gamma frailty distribution were fitted to the cirrhosis data. In both models, factors including, age, bilirubin serum, albumin serum, and encephalopathy had a significant effect on survival time of cirrhotic patients. Conclusion: To investigate the effective factors for the time of patients’ death with liver cirrhosis in the presence of latent variables, gamma frailty model with parametric distributions seems desirable.

Keywords: frailty model, latent variables, liver cirrhosis, parametric distribution

Procedia PDF Downloads 262
23096 Tourism Area Development Optimation Based on Solar-Generated Renewable Energy Technology at Karimunjawa, Central Java Province, Indonesia

Authors: Yanuar Tri Wahyu Saputra, Ramadhani Pamapta Putra

Abstract:

Karimunjawa is one among Indonesian islands which is lacking of electricity supply. Despite condition above, Karimunjawa is an important tourism object in Indonesia's Central Java Province. Solar Power Plant is a potential technology to be applied in Karimunjawa, in order to fulfill the island's electrical supply need and to increase daily life and tourism quality among tourists and local population. This optimation modeling of Karimunjawa uses HOMER software program. The data we uses include wind speed data in Karimunjawa from BMKG (Indonesian Agency for Meteorology, Climatology and Geophysics), annual weather data in Karimunjawa from NASA, electricity requirements assumption data based on number of houses and business infrastructures in Karimunjawa. This modeling aims to choose which three system categories offer the highest financial profit with the lowest total Net Present Cost (NPC). The first category uses only PV with 8000 kW of electrical power and NPC value of $6.830.701. The second category uses hybrid system which involves both 1000 kW PV and 100 kW generator which results in total NPC of $6.865.590. The last category uses only generator with 750 kW of electrical power that results in total NPC of $ 16.368.197, the highest total NPC among the three categories. Based on the analysis above, we can conclude that the most optimal way to fulfill the electricity needs in Karimunjawa is to use 8000 kW PV with lower maintenance cost.

Keywords: Karimunjawa, renewable energy, solar power plant, HOMER

Procedia PDF Downloads 468
23095 Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation

Authors: Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang

Abstract:

This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work.

Keywords: artificial neural network, discrete element method, soil properties, stress-strain-volumetric response

Procedia PDF Downloads 398
23094 Challenges in Achieving Profitability for MRO Companies in the Aviation Industry: An Analytical Approach

Authors: Nur Sahver Uslu, Ali̇ Hakan Büyüklü

Abstract:

Maintenance, Repair, and Overhaul (MRO) costs are significant in the aviation industry. On the other hand, companies that provide MRO services to the aviation industry but are not dominant in the sector, need to determine the right strategies for sustainable profitability in a competitive environment. This study examined the operational real data of a small medium enterprise (SME) MRO company where analytical methods are not widely applied. The company's customers were divided into two categories: airline companies and non-airline companies, and the variables that best explained profitability were analyzed with Logistic Regression for each category and the results were compared. First, data reduction was applied to the transformed variables that went through the data cleaning and preparation stages, and the variables to be included in the model were decided. The misclassification rates for the logistic regression results concerning both customer categories are similar, indicating consistent model performance across different segments. Less profit margin is obtained from airline customers, which can be explained by the variables part description, time to quotation (TTQ), turnaround time (TAT), manager, part cost, and labour cost. The higher profit margin obtained from non-airline customers is explained only by the variables part description, part cost, and labour cost. Based on the two models, it can be stated that it is significantly more challenging for the MRO company, which is the subject of our study, to achieve profitability from Airline customers. While operational processes and organizational structure also affect the profit from airline customers, only the type of parts and costs determine the profit for non-airlines.

Keywords: aircraft, aircraft components, aviation, data analytics, data science, gini index, maintenance, repair, and overhaul, MRO, logistic regression, profit, variable clustering, variable reduction

Procedia PDF Downloads 37
23093 Digital Mapping as a Tool for Finding Cities' DNA

Authors: Sanja Peter

Abstract:

Transformation of urban environments can be compared to evolutionary processes. Systematic digital mapping of historical data can enable capturing some of these processes and their outcomes. For example, it may help reveal the structure of a city’s historical DNA. Gathering historical data for automatic processing may be giving a basis for cultural algorithms. Gothenburg City museum is trying to make city’s heritage information accessible through GIS-platforms and is now partnering with academic institutions to find appropriate methods to make accessible the knowledge on the city’s historical fabric. Hopefully, this will be carried out through a project called Digital Twin Cities. One part of this large project, concerning matters of Cultural Heritage, will be in collaboration with Chalmers University of Technology. The aim is to create a layered map showing historical developments of the city and extracting quantitative data about its built heritage, above and below the earth. It will allow interpreting the information from historic maps through, for example, names of the streets/places, geography, structural changes in urban fabric and information gathered by archaeologists’ excavations. Through the study of these geographical, historical and local metamorphoses, urban environment will reveal its metaphorical DNA or its MEM (Dawkins).

Keywords: Gothenburg, mapping, cultural heritage, city history

Procedia PDF Downloads 142
23092 Theoretical Studies on the Formation Constant, Geometry, Vibrational Frequencies and Electronic Properties Dinuclear Molybdenum Complexes

Authors: Mahboobeh Mohadeszadeh, Behzad Padidaran Moghaddam

Abstract:

In order to measuring dinuclear molybdenum complexes formation constant First,the reactants and the products were optimized separately and then, their frequencies were measured. In next level , with using Hartree-fock (HF) and density functional theory (DFT) methods ,Theoretical studies on the geometrical parameters, electronic properties and vibrational frequencies of dinuclear molybdenum complexes [C40H44Mo2N2O20] were investigated . These calculations were performed with the B3LYP, BPV86, B3PW91 and HF theoretical method using the LANL2DZ (for Mo’s) + 6-311G (for others) basis sets. To estimate the error rate between theoretical data and experimental data, RSquare , SError and RMS values that according with the theoretical and experimental parameters found out DFT methods has more integration with experimental data compare to HF methods. In addition, through electron specification of compounds, the percentage of atomic orbital’s attendance in making molecular orbital’s, atoms electrical charge, the sustainable energy resulting and also HOMO and LUMO orbital’s energy achieved.

Keywords: geometrical parameters, hydrogen bonding, electronic properties, vibrational frequencies

Procedia PDF Downloads 277
23091 Estimation of Human Absorbed Dose Using Compartmental Model

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri

Abstract:

Dosimetry is an indispensable and precious factor in patient treatment planning to minimize the absorbed dose in vital tissues. In this study, compartmental model was used in order to estimate the human absorbed dose of 177Lu-DOTATOC from the biodistribution data in wild type rats. For this purpose, 177Lu-DOTATOC was prepared under optimized conditions and its biodistribution was studied in male Syrian rats up to 168 h. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. Dosimetric estimation of the complex was performed using radiation absorbed dose assessment resource (RADAR). The biodistribution data showed high accumulation in the adrenal and pancreas as the major expression sites for somatostatin receptor (SSTR). While kidneys as the major route of excretion receive 0.037 mSv/MBq, pancreas and adrenal also obtain 0.039 and 0.028 mSv/MBq. Due to the usage of this method, the points of accumulated activity data were enhanced, and further information of tissues uptake was collected that it will be followed by high (or improved) precision in dosimetric calculations.

Keywords: compartmental modeling, human absorbed dose, ¹⁷⁷Lu-DOTATOC, Syrian rats

Procedia PDF Downloads 196
23090 Extracting Attributes for Twitter Hashtag Communities

Authors: Ashwaq Alsulami, Jianhua Shao

Abstract:

Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.

Keywords: attributed community, attribute detection, community, social network

Procedia PDF Downloads 163
23089 A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery

Authors: Yongquan Zhao, Bo Huang

Abstract:

Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery.

Keywords: hybrid spatial-temporal-spectral fusion, high resolution synthetic imagery, least square regression, sparse representation, spectral transformation

Procedia PDF Downloads 235
23088 Using Building Information Modelling to Mitigate Risks Associated with Health and Safety in the Construction and Maintenance of Infrastructure Assets

Authors: Mohammed Muzafar, Darshan Ruikar

Abstract:

BIM, an acronym for Building Information Modelling relates to the practice of creating a computer generated model which is capable of displaying the planning, design, construction and operation of a structure. The resulting simulation is a data-rich, object-oriented, intelligent and parametric digital representation of the facility, from which views and data, appropriate to various users needs can be extracted and analysed to generate information that can be used to make decisions and to improve the process of delivering the facility. BIM also refers to a shift in culture that will influence the way the built environment and infrastructure operates and how it is delivered. One of the main issues of concern in the construction industry at present in the UK is its record on Health & Safety (H&S). It is, therefore, important that new technologies such as BIM are developed to help improve the quality of health and safety. Historically the H&S record of the construction industry in the UK is relatively poor as compared to the manufacturing industries. BIM and the digital environment it operates within now allow us to use design and construction data in a more intelligent way. It allows data generated by the design process to be re-purposed and contribute to improving efficiencies in other areas of a project. This evolutionary step in design is not only creating exciting opportunities for the designers themselves but it is also creating opportunity for every stakeholder in any given project. From designers, engineers, contractors through to H&S managers, BIM is accelerating a cultural change. The paper introduces the concept behind a research project that mitigates the H&S risks associated with the construction, operation and maintenance of assets through the adoption of BIM.

Keywords: building information modeling, BIM levels, health, safety, integration

Procedia PDF Downloads 257
23087 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera

Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl

Abstract:

Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The RMSE between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.

Keywords: neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition

Procedia PDF Downloads 107
23086 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders

Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh

Abstract:

Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.

Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches

Procedia PDF Downloads 77
23085 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments

Authors: Naduni Ranasinghe

Abstract:

E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.

Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model

Procedia PDF Downloads 158
23084 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province

Authors: Leila Rashidian

Abstract:

Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.

Keywords: climate change, Semnan province, Lars.WG model, climate parameters, HADCM₃ model

Procedia PDF Downloads 254
23083 Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran

Authors: Aliakbar Golshani, Seyyed Mehdi Poorhashemi, Mahsa Gharizadeh

Abstract:

The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.

Keywords: NATM tunnel, initial lining, laboratory test data, numerical back-analysis

Procedia PDF Downloads 362
23082 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 170
23081 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 416