Search results for: energy performance assessment
1498 Sampling and Chemical Characterization of Particulate Matter in a Platinum Mine
Authors: Juergen Orasche, Vesta Kohlmeier, George C. Dragan, Gert Jakobi, Patricia Forbes, Ralf Zimmermann
Abstract:
Underground mining poses a difficult environment for both man and machines. At more than 1000 meters underneath the surface of the earth, ores and other mineral resources are still gained by conventional and motorised mining. Adding to the hazards caused by blasting and stone-chipping, the working conditions are best described by the high temperatures of 35-40°C and high humidity, at low air exchange rates. Separate ventilation shafts lead fresh air into a mine and others lead expended air back to the surface. This is essential for humans and machines working deep underground. Nevertheless, mines are widely ramified. Thus the air flow rate at the far end of a tunnel is sensed to be close to zero. In recent years, conventional mining was supplemented by mining with heavy diesel machines. These very flat machines called Load Haul Dump (LHD) vehicles accelerate and ease work in areas favourable for heavy machines. On the other hand, they emit non-filtered diesel exhaust, which constitutes an occupational hazard for the miners. Combined with a low air exchange, high humidity and inorganic dust from the mining it leads to 'black smog' underneath the earth. This work focuses on the air quality in mines employing LHDs. Therefore we performed personal sampling (samplers worn by miners during their work), stationary sampling and aethalometer (Microaeth MA200, Aethlabs) measurements in a platinum mine in around 1000 meters under the earth’s surface. We compared areas of high diesel exhaust emission with areas of conventional mining where no diesel machines were operated. For a better assessment of health risks caused by air pollution we applied a separated gas-/particle-sampling tool (or system), with first denuder section collecting intermediate VOCs. These multi-channel silicone rubber denuders are able to trap IVOCs while allowing particles ranged from 10 nm to 1 µm in diameter to be transmitted with an efficiency of nearly 100%. The second section is represented by a quartz fibre filter collecting particles and adsorbed semi-volatile organic compounds (SVOC). The third part is a graphitized carbon black adsorber – collecting the SVOCs that evaporate from the filter. The compounds collected on these three sections were analyzed in our labs with different thermal desorption techniques coupled with gas chromatography and mass spectrometry (GC-MS). VOCs and IVOCs were measured with a Shimadzu Thermal Desorption Unit (TD20, Shimadzu, Japan) coupled to a GCMS-System QP 2010 Ultra with a quadrupole mass spectrometer (Shimadzu). The GC was equipped with a 30m, BP-20 wax column (0.25mm ID, 0.25µm film) from SGE (Australia). Filters were analyzed with In-situ derivatization thermal desorption gas chromatography time-of-flight-mass spectrometry (IDTD-GC-TOF-MS). The IDTD unit is a modified GL sciences Optic 3 system (GL Sciences, Netherlands). The results showed black carbon concentrations measured with the portable aethalometers up to several mg per m³. The organic chemistry was dominated by very high concentrations of alkanes. Typical diesel engine exhaust markers like alkylated polycyclic aromatic hydrocarbons were detected as well as typical lubrication oil markers like hopanes.Keywords: diesel emission, personal sampling, aethalometer, mining
Procedia PDF Downloads 1571497 Knowledge Sharing Behavior and Cognitive Dissonance: The Influence of Assertive Conflict Management Strategy and Team Psychological Safety
Authors: Matthew P. Mancini, Vincent Ribiere
Abstract:
Today’s workers face more numerous and complex challenges and are required to be increasingly interdependent and faster learners. Knowledge sharing activities between people have been understood as a significant element affecting organizational innovation performance. While they do have the potential to spark cognitive conflict, disagreement is important from an organizational perspective because it can stimulate the development of new ideas and perhaps pave the way for creativity, innovation, and competitive advantage. How teams cope with the cognitive conflict dimension of knowledge sharing and the associated interpersonal risk is what captures our attention. Specifically, assertive conflict management strategies have a positive influence on knowledge sharing behaviors, and team psychological safety has a positive influence on knowledge sharing intention. This paper focuses on explaining the impact that these factors have on the shaping of an individual’s decision to engage or not in knowledge sharing activities. To accomplish this, we performed an empirical analysis on the results of our questionnaire about knowledge-sharing related conflict management and team psychological safety in pharmaceutical enterprises located in North America, Europe, and Asia. First, univariate analysis is used to characterize behavior regarding conflict management strategy into two groups. Group 1 presents assertive conflict management strategies and group 2 shows unassertive ones. Then, by using SEM methodology, we evaluated the relationships between them and the team psychological safety construct with the knowledge sharing process. The results of the SEM analysis show that assertive conflict management strategies affect the knowledge sharing process the most with a small, but significant effect from team psychological safety. The findings suggest that assertive conflict management strategies are just as important as knowledge sharing intentions for encouraging knowledge sharing behavior. This paper provides clear insights into how employees manage the sharing of their knowledge in the face of conflict and interpersonal risk and the relative importance of these factors in sustaining productive knowledge sharing activities.Keywords: cognitive dissonance, conflict management, knowledge sharing, organizational behavior, psychological safety
Procedia PDF Downloads 3161496 Payload Bay Berthing of an Underwater Vehicle With Vertically Actuated Thrusters
Authors: Zachary Cooper-Baldock, Paulo E. Santos, Russell S. A. Brinkworth, Karl Sammut
Abstract:
In recent years, large unmanned underwater vehicles such as the Boeing Voyager and Anduril Ghost Shark have been developed. These vessels can be structured to contain onboard internal payload bays. These payload bays can serve a variety of purposes – including the launch and recovery (LAR) of smaller underwater vehicles. The LAR of smaller vessels is extremely important, as it enables transportation over greater distances, increased time on station, data transmission and operational safety. The larger vessel and its payload bay structure complicate the LAR of UUVs in contrast to static docks that are affixed to the seafloor, as they actively impact the local flow field. These flow field impacts require analysis to determine if UUV vessels can be safely launched and recovered inside the motherships. This research seeks to determine the hydrodynamic forces exerted on a vertically over-actuated, small, unmanned underwater vehicle (OUUV) during an internal LAR manoeuvre and compare this to an under-actuated vessel (UUUV). In this manoeuvre, the OUUV is navigated through the stern wake region of the larger vessel to a set point within the internal payload bay. The manoeuvre is simulated using ANSYS Fluent computational fluid dynamics models, covering the entire recovery of the OUUV and UUUV. The analysis of the OUUV is compared against the UUUV to determine the differences in the exerted forces. Of particular interest are the drag, pressure, turbulence and flow field effects exerted as the OUUV is driven inside the payload bay of the larger vessel. The hydrodynamic forces and flow field disturbances are used to determine the feasibility of making such an approach. From the simulations, it was determined that there was no significant detrimental physical forces, particularly with regard to turbulence. The flow field effects exerted by the OUUV are significant. The vertical thrusters exert significant wake structures, but their orientation ensures the wake effects are exerted below the UUV, minimising the impact. It was also seen that OUUV experiences higher drag forces compared to the UUUV, which will correlate to an increased energy expenditure. This investigation found no key indicators that recovery via a mothership payload bay was not feasible. The turbulence, drag and pressure phenomenon were of a similar magnitude to existing static and towed dock structures.Keywords: underwater vehicles, submarine, autonomous underwater vehicles, AUV, computational fluid dynamics, flow fields, pressure, turbulence, drag
Procedia PDF Downloads 911495 Temperature Dependence of Photoluminescence Intensity of Europium Dinuclear Complex
Authors: Kwedi L. M. Nsah, Hisao Uchiki
Abstract:
Quantum computation is a new and exciting field making use of quantum mechanical phenomena. In classical computers, information is represented as bits, with values either 0 or 1, but a quantum computer uses quantum bits in an arbitrary superposition of 0 and 1, enabling it to reach beyond the limits predicted by classical information theory. lanthanide ion quantum computer is an organic crystal, having a lanthanide ion. Europium is a favored lanthanide, since it exhibits nuclear spin coherence times, and Eu(III) is photo-stable and has two stable isotopes. In a europium organic crystal, the key factor is the mutual dipole-dipole interaction between two europium atoms. Crystals of the complex were formed by making a 2 :1 reaction of Eu(fod)3 and bpm. The transparent white crystals formed showed brilliant red luminescence with a 405 nm laser. The photoluminescence spectroscopy was observed both at room and cryogenic temperatures (300-14 K). The luminescence spectrum of [Eu(fod)3(μ-bpm) Eu(fod)3] showed characteristic of Eu(III) emission transitions in the range 570–630 nm, due to the deactivation of 5D0 emissive state to 7Fj. For the application of dinuclear Eu3+ complex to q-bit device, attention was focused on 5D0 -7F0 transition, around 580 nm. The presence of 5D0 -7F0 transition at room temperature revealed that at least one europium symmetry had no inversion center. Since the line was unsplit by the crystal field effect, any multiplicity observed was due to a multiplicity of Eu3+ sites. For q-bit element, more narrow line width of 5D0 → 7F0 PL band in Eu3+ ion was preferable. Cryogenic temperatures (300 K – 14 K) was applicable to reduce inhomogeneous broadening and distinguish between ions. A CCD image sensor was used for low temperature Photoluminescence measurement, and a far better resolved luminescent spectrum was gotten by cooling the complex at 14 K. A red shift by 15 cm-1 in the 5D0 - 7F0 peak position was observed upon cooling, the line shifted towards lower wavenumber. An emission spectrum at the 5D0 - 7F0 transition region was obtained to verify the line width. At this temperature, a peak with magnitude three times that at room temperature was observed. The temperature change of the 5D0 state of Eu(fod)3(μ-bpm)Eu(fod)3 showed a strong dependence in the vicinity of 60 K to 100 K. Thermal quenching was observed at higher temperatures than 100 K, at which point it began to decrease slowly with increasing temperature. The temperature quenching effect of Eu3+ with increase temperature was caused by energy migration. 100 K was the appropriate temperature for the observation of the 5D0 - 7F0 emission peak. Europium dinuclear complex bridged by bpm was successfully prepared and monitored at cryogenic temperatures. At 100 K the Eu3+-dope complex has a good thermal stability and this temperature is appropriate for the observation of the 5D0 - 7F0 emission peak. Sintering the sample above 600o C could also be a method to consider but the Eu3+ ion can be reduced to Eu2+, reasons why cryogenic temperature measurement is preferably over other methods.Keywords: Eu(fod)₃, europium dinuclear complex, europium ion, quantum bit, quantum computer, 2, 2-bipyrimidine
Procedia PDF Downloads 1811494 Reading as Moral Afternoon Tea: An Empirical Study on the Compensation Effect between Literary Novel Reading and Readers’ Moral Motivation
Authors: Chong Jiang, Liang Zhao, Hua Jian, Xiaoguang Wang
Abstract:
The belief that there is a strong relationship between reading narrative and morality has generally become the basic assumption of scholars, philosophers, critics, and cultural critics. The virtuality constructed by literary novels inspires readers to regard the narrative as a thinking experiment, creating the distance between readers and events so that they can freely and morally experience the positions of different roles. Therefore, the virtual narrative combined with literary characteristics is always considered as a "moral laboratory." Well-established findings revealed that people show less lying and deceptive behaviors in the morning than in the afternoon, called the morning morality effect. As a limited self-regulation resource, morality will be constantly depleted with the change of time rhythm under the influence of the morning morality effect. It can also be compensated and restored in various ways, such as eating, sleeping, etc. As a common form of entertainment in modern society, literary novel reading gives people more virtual experience and emotional catharsis, just as a relaxing afternoon tea that helps people break away from fast-paced work, restore physical strength, and relieve stress in a short period of leisure. In this paper, inspired by the compensation control theory, we wonder whether reading literary novels in the digital environment could replenish a kind of spiritual energy for self-regulation to compensate for people's moral loss in the afternoon. Based on this assumption, we leverage the social annotation text content generated by readers in digital reading to represent the readers' reading attention. We then recognized the semantics and calculated the readers' moral motivation expressed in the annotations and investigated the fine-grained dynamics of the moral motivation changing in each time slot within 24 hours of a day. Comprehensively comparing the division of different time intervals, sufficient experiments showed that the moral motivation reflected in the annotations in the afternoon is significantly higher than that in the morning. The results robustly verified the hypothesis that reading compensates for moral motivation, which we called the moral afternoon tea effect. Moreover, we quantitatively identified that such moral compensation can last until 14:00 in the afternoon and 21:00 in the evening. In addition, it is interesting to find that the division of time intervals of different units impacts the identification of moral rhythms. Dividing the time intervals by four-hour time slot brings more insights of moral rhythms compared with that of three-hour and six-hour time slot.Keywords: digital reading, social annotation, moral motivation, morning morality effect, control compensation
Procedia PDF Downloads 1491493 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete
Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier
Abstract:
Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior
Procedia PDF Downloads 691492 Spatial Analysis in the Impact of Aquifer Capacity Reduction on Land Subsidence Rate in Semarang City between 2014-2017
Authors: Yudo Prasetyo, Hana Sugiastu Firdaus, Diyanah Diyanah
Abstract:
The phenomenon of the lack of clean water supply in several big cities in Indonesia is a major problem in the development of urban areas. Moreover, in the city of Semarang, the population density and growth of physical development is very high. Continuous and large amounts of underground water (aquifer) exposure can result in a drastically aquifer supply declining in year by year. Especially, the intensity of aquifer use in the fulfilment of household needs and industrial activities. This is worsening by the land subsidence phenomenon in some areas in the Semarang city. Therefore, special research is needed to know the spatial correlation of the impact of decreasing aquifer capacity on the land subsidence phenomenon. This is necessary to give approve that the occurrence of land subsidence can be caused by loss of balance of pressure on below the land surface. One method to observe the correlation pattern between the two phenomena is the application of remote sensing technology based on radar and optical satellites. Implementation of Differential Interferometric Synthetic Aperture Radar (DINSAR) or Small Baseline Area Subset (SBAS) method in SENTINEL-1A satellite image acquisition in 2014-2017 period will give a proper pattern of land subsidence. These results will be spatially correlated with the aquifer-declining pattern in the same time period. Utilization of survey results to 8 monitoring wells with depth in above 100 m to observe the multi-temporal pattern of aquifer change capacity. In addition, the pattern of aquifer capacity will be validated with 2 underground water cavity maps from observation of ministries of energy and natural resources (ESDM) in Semarang city. Spatial correlation studies will be conducted on the pattern of land subsidence and aquifer capacity using overlapping and statistical methods. The results of this correlation will show how big the correlation of decrease in underground water capacity in influencing the distribution and intensity of land subsidence in Semarang city. In addition, the results of this study will also be analyzed based on geological aspects related to hydrogeological parameters, soil types, aquifer species and geological structures. The results of this study will be a correlation map of the aquifer capacity on the decrease in the face of the land in the city of Semarang within the period 2014-2017. So hopefully the results can help the authorities in spatial planning and the city of Semarang in the future.Keywords: aquifer, differential interferometric synthetic aperture radar (DINSAR), land subsidence, small baseline area subset (SBAS)
Procedia PDF Downloads 1821491 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins
Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan
Abstract:
Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.Keywords: cognition, generalized correlation coefficient, GWAS, twins
Procedia PDF Downloads 1241490 Perception and Effect of Gender-Based Violence on Sustainable Development and Education of Girl-Child in Southwestern Nigeria
Authors: Afolabi Comfort Yemisi
Abstract:
Gender-based violence remains a serious threat to the growth, health, and safety of women and girls globally, including Nigeria. The rising violence of various shades of violence, especially against women and girls in the guise of cultural preservation, raised serious concerns. The challenge of this harmful gender narrative is more critical in attaining the Sustainable Development Goals and Goal 4 (Quality Education) in Nigeria. The study investigated the perception and effects of gender-based violence on sustainable development and education of the girl-child in Southwestern Nigeria. Primary and Secondary data were used for the study. Primary data were obtained using a structured questionnaire administered to young females in tertiary institutions, secondary schools, non-governmental organizations, and government institutions dealing with gender-based violence in the study area, while the secondary data were sourced from journals, books and dailies. A multistage random sampling technique was employed to select a sample of 360 respondents who completed the questionnaire for the study. Descriptive statistics and regression analysis were applied to the data collected. The result revealed a high prevalence of gender-based violence, and it was perceived to be culturally motivated. Sexual violence, sexual harassment and psychological violence were the significant forms of gender-based violence that adversely affected the Sustainable Development Goal 4. The result further revealed that loss of concentration, shame and depression, school drop-out, poor academic performance and inferiority complex were the major effects of gender-based violence on the education of girl-child in the study area. The study recommended that to avert catastrophic damages and adverse effects of gender-based violence on the girl-child, there is a need for thorough awareness and sensitization programmes to build their resilience. Also, enforcement of established laws against gender-based violence by both government and non-governmental institutions is sacrosanct.Keywords: perception, effects, gender-based violence, sustainable development, education, girl-child, sensitisation
Procedia PDF Downloads 131489 Development of a Microfluidic Device for Low-Volume Sample Lysis
Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman
Abstract:
We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet
Procedia PDF Downloads 791488 KUCERIA: A Media to Increase Students’ Reading Interest and Nutrition Knowledge
Authors: Luthfia A. Eka, Bertri M. Masita, G. Indah Lestari, Rizka. Ryanindya, Anindita D. Nur, Asih. Setiarini
Abstract:
The preferred habit nowadays is to watch television or listen to the radio rather than reading a newspaper or magazine. The low interest in reading is the reason to the Indonesian government passed a regulation to foster interest in reading early in schoolchildren through literacy programs. Literacy programs are held for the first 10 - 15 minutes before classes begin and children are asked to read books other than textbooks such as storybooks or magazines. In addition, elementary school children have a tendency to buy less healthy snacks around the school and do not know the nutrition fact from the food purchased. Whereas snacks contribute greatly in the fulfillment of energy and nutrients of children every day. The purpose of this study was to increase reading interest as well as knowledge of nutrition and health for elementary school students. This study used quantitative method with experimental study design for four months with twice intervention per week and deepened by qualitative method in the form of interview. The participants were 130 students consisting of 3rd and 4th graders in selected elementary school in Depok City. The Interventions given using KUCERIA (Child Storybook) which were storybooks with pictures consisting of 12 series about nutrition and health given at school literacy hours. There were five questions given by using the crossword method to find out the students' understanding of the story content in each series. To maximize the understanding and absorption of information, two students were asked to retell the story in front of the class and one student to fill the crossword on the board for each series. In addition, interviews were conducted by asking questions about students' interest in reading books. Intervention involved not only students but also teachers and parents in order to optimize students' reading habits. Analysis showed > 80% of student could answer 3 of 5 questions correctly in each series, which showed they had an interest in what they read. Research data on nutrition and health knowledge were analyzed using Wilcoxon and Chi-Square Test to see the relationship. However, only 46% of students completed 12 series and the rest lost to follow up due to school schedule incompatibility with the program. The results showed that there was a significant increase of knowledge (p = 0.000) between before intervention with 66,53 score and after intervention with 81,47 score. Retention of knowledge was conducted one month after the last intervention was administered and the analysis result showed no significant decrease of knowledge (p = 0,000) from 79,17 score to 75,48 score. There is also no relationship between sex and class with knowledge. Hence, an increased interest in reading of elementary school students and nutritional knowledge interventions using KUCERIA was proved successful. These interventions may be replicated in other schools or learning communities.Keywords: literation, reading interest, nutrition knowledge, school children
Procedia PDF Downloads 1481487 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions
Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer
Abstract:
The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping
Procedia PDF Downloads 2111486 Ecofriendly Synthesis of Au-Ag@AgCl Nanocomposites and Their Catalytic Activity on Multicomponent Domino Annulation-Aromatization for Quinoline Synthesis
Authors: Kanti Sapkota, Do Hyun Lee, Sung Soo Han
Abstract:
Nanocomposites have been widely used in various fields such as electronics, catalysis, and in chemical, biological, biomedical and optical fields. They display broad biomedical properties like antidiabetic, anticancer, antioxidant, antimicrobial and antibacterial activities. Moreover, nanomaterials have been used for wastewater treatment. Particularly, bimetallic hybrid nanocomposites exhibit unique features as compared to their monometallic components. Hybrid nanomaterials not only afford the multifunctionality endowed by their constituents but can also show synergistic properties. In addition, these hybrid nanomaterials have noteworthy catalytic and optical properties. Notably, Au−Ag based nanoparticles can be employed in sensor and catalysis due to their characteristic composition-tunable plasmonic properties. Due to their importance and usefulness, various efforts were developed for their preparation. Generally, chemical methods have been described to synthesize such bimetallic nanocomposites. In such chemical synthesis, harmful and hazardous chemicals cause environmental contamination and increase toxicity levels. Therefore, ecologically benevolent processes for the synthesis of nanomaterials are highly desirable to diminish such environmental and safety concerns. In this regard, here we disclose a simple, cost-effective, external additive free and eco-friendly method for the synthesis of Au-Ag@AgCl nanocomposites using Nephrolepis cordifolia root extract. Au-Ag@AgCl NCs were obtained by the simultaneous reduction of cationic Ag and Au into AgCl in the presence of plant extract. The particle size of 10 to 50 nm was observed with the average diameter of 30 nm. The synthesized nanocomposite was characterized by various modern characterization techniques. For example, UV−visible spectroscopy was used to determine the optical activity of the synthesized NCs, and Fourier transform infrared (FT-IR) spectroscopy was employed to investigate the functional groups present in the biomolecules that were responsible for both reducing and capping agents during the formation of nanocomposites. Similarly, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and energy-dispersive X-ray (EDX) spectroscopy were used to determine crystallinity, size, oxidation states, thermal stability and weight loss of the synthesized nanocomposites. As a synthetic application, the synthesized nanocomposite exhibited excellent catalytic activity for the multicomponent synthesis of biologically interesting quinoline molecules via domino annulation-aromatization reaction of aniline, arylaldehyde, and phenyl acetylene derivatives. Interestingly, the nanocatalyst was efficiently recycled for five times without substantial loss of catalytic properties.Keywords: nanoparticles, catalysis, multicomponent, quinoline
Procedia PDF Downloads 1281485 Neurofeedback for Anorexia-RelaxNeuron-Aimed in Dissolving the Root Neuronal Cause
Authors: Kana Matsuyanagi
Abstract:
Anorexia Nervosa (AN) is a psychiatric disorder characterized by a relentless pursuit of thinness and strict restriction of food. The current therapeutic approaches for AN predominantly revolve around outpatient psychotherapies, which create significant financial barriers for the majority of affected patients, hindering their access to treatment. Nonetheless, AN exhibit one of the highest mortality and relapse rates among psychological disorders, underscoring the urgent need to provide patients with an affordable self-treatment tool, enabling those unable to access conventional medical intervention to address their condition autonomously. To this end, a neurofeedback software, termed RelaxNeuron, was developed with the objective of providing an economical and portable means to aid individuals in self-managing AN. Electroencephalography (EEG) was chosen as the preferred modality for RelaxNeuron, as it aligns with the study's goal of supplying a cost-effective and convenient solution for addressing AN. The primary aim of the software is to ameliorate the negative emotional responses towards food stimuli and the accompanying aberrant eye-tracking patterns observed in AN patient, ultimately alleviating the profound fear towards food an elemental symptom and, conceivably, the fundamental etiology of AN. The core functionality of RelaxNeuron hinges on the acquisition and analysis of EEG signals, alongside an electrocardiogram (ECG) signal, to infer the user's emotional state while viewing dynamic food-related imagery on the screen. Moreover, the software quantifies the user's performance in accurately tracking the moving food image. Subsequently, these two parameters undergo further processing in the subsequent algorithm, informing the delivery of either negative or positive feedback to the user. Preliminary test results have exhibited promising outcomes, suggesting the potential advantages of employing RelaxNeuron in the treatment of AN, as evidenced by its capacity to enhance emotional regulation and attentional processing through repetitive and persistent therapeutic interventions.Keywords: Anorexia Nervosa, fear conditioning, neurofeedback, BCI
Procedia PDF Downloads 461484 Executive Functions Directly Associated with Severity of Perceived Pain above and beyond Depression in the Context of Medical Rehabilitation
Authors: O. Elkana, O Heyman, S. Hamdan, M. Franko, J. Vatine
Abstract:
Objective: To investigate whether a direct link exists between perceived pain (PP) and executive functions (EF), above and beyond the influence of depression symptoms, in the context of medical rehabilitation. Design: Cross-sectional study. Setting: Rehabilitation Hospital. Participants: 125 medical records of hospitalized patients were screened for matching to our inclusion criteria. Only 60 patients were found fit and were asked to participate. 19 decline to participate on personal basis. The 41 neurologically intact patients (mean age 46, SD 14.96) that participated in this study were in their sub-acute stage of recovery, with fluent Hebrew, with intact upper limb (to neutralize influence on psychomotor performances) and without an organic brain damage. Main Outcome Measures: EF were assessed using the Wisconsin Card Sorting Test (WCST) and the Stop-Signal Test (SST). PP was measured using 3 well-known pain questionnaires: Pain Disability Index (PDI), The Short-Form McGill Questionnaire (SF-MPQ) and the Pain Catastrophizing Scale (PCS). Perceived pain index (PPI) was calculated by the mean score composite from the 3 pain questionnaires. Depression symptoms were assessed using the Patient Health Questionnaire (PHQ-9). Results: The results indicate that irrespective of the presence of depression symptoms, PP is directly correlated with response inhibition (SST partial correlation: r=0.5; p=0.001) and mental flexibility (WSCT partial correlation: r=-0.37; p=0.021), suggesting decreased performance in EF as PP severity increases. High correlations were found between the 3 pain measurements: SF-MPQ with PDI (r=0.62, p<0.001), SF-MPQ with PCS (r=0.58, p<0.001) and PDI with PCS (r=0.38, p=0.016) and each questionnaire alone was also significantly associated with EF; thus, no specific questionnaires ‘pulled’ the results obtained by the general index (PPI). Conclusion: Examining the direct association between PP and EF, beyond the contribution of depression symptoms, provides further clinical evidence suggesting that EF and PP share underlying mediating neuronal mechanisms. Clinically, the importance of assessing patients' EF abilities as well as PP severity during rehabilitation is underscored.Keywords: depression, executive functions, mental-flexibility, neuropsychology, pain perception, perceived pain, response inhibition
Procedia PDF Downloads 2481483 The Observable Method for the Regularization of Shock-Interface Interactions
Authors: Teng Li, Kamran Mohseni
Abstract:
This paper presents an inviscid regularization technique that is capable of regularizing the shocks and sharp interfaces simultaneously in the shock-interface interaction simulations. The direct numerical simulation of flows involving shocks has been investigated for many years and a lot of numerical methods were developed to capture the shocks. However, most of these methods rely on the numerical dissipation to regularize the shocks. Moreover, in high Reynolds number flows, the nonlinear terms in hyperbolic Partial Differential Equations (PDE) dominates, constantly generating small scale features. This makes direct numerical simulation of shocks even harder. The same difficulty happens in two-phase flow with sharp interfaces where the nonlinear terms in the governing equations keep sharpening the interfaces to discontinuities. The main idea of the proposed technique is to average out the small scales that is below the resolution (observable scale) of the computational grid by filtering the convective velocity in the nonlinear terms in the governing PDE. This technique is named “observable method” and it results in a set of hyperbolic equations called observable equations, namely, observable Navier-Stokes or Euler equations. The observable method has been applied to the flow simulations involving shocks, turbulence, and two-phase flows, and the results are promising. In the current paper, the observable method is examined on the performance of regularizing shocks and interfaces at the same time in shock-interface interaction problems. Bubble-shock interactions and Richtmyer-Meshkov instability are particularly chosen to be studied. Observable Euler equations will be numerically solved with pseudo-spectral discretization in space and third order Total Variation Diminishing (TVD) Runge Kutta method in time. Results are presented and compared with existing publications. The interface acceleration and deformation and shock reflection are particularly examined.Keywords: compressible flow simulation, inviscid regularization, Richtmyer-Meshkov instability, shock-bubble interactions.
Procedia PDF Downloads 3491482 Production of Ferroboron by SHS-Metallurgy from Iron-Containing Rolled Production Wastes for Alloying of Cast Iron
Authors: G. Zakharov, Z. Aslamazashvili, M. Chikhradze, D. Kvaskhvadze, N. Khidasheli, S. Gvazava
Abstract:
Traditional technologies for processing iron-containing industrial waste, including steel-rolling production, are associated with significant energy costs, the long duration of processes, and the need to use complex and expensive equipment. Waste generated during the industrial process negatively affects the environment, but at the same time, it is a valuable raw material and can be used to produce new marketable products. The study of the effectiveness of self-propagating high-temperature synthesis (SHS) methods, which are characterized by the simplicity of the necessary equipment, the purity of the final product, and the high processing speed, is under the wide scientific and practical interest to solve the set problem. The work presents technological aspects of the production of Ferro boron by the method of SHS - metallurgy from iron-containing wastes of rolled production for alloying of cast iron and results of the effect of alloying element on the degree of boron assimilation with liquid cast iron. Features of Fe-B system combustion have been investigated, and the main parameters to control the phase composition of synthesis products have been experimentally established. Effect of overloads on patterns of cast ligatures formation and mechanisms structure formation of SHS products was studied. It has been shown that an increase in the content of hematite Fe₂O₃ in iron-containing waste leads to an increase in the content of phase FeB and, accordingly, the amount of boron in the ligature. Boron content in ligature is within 3-14%, and the phase composition of obtained ligatures consists of Fe₂B and FeB phases. Depending on the initial composition of the wastes, the yield of the end product reaches 91 - 94%, and the extraction of boron is 70 - 88%. Combustion processes of high exothermic mixtures allow to obtain a wide range of boron-containing ligatures from industrial wastes. In view of the relatively low melting point of the obtained SHS-ligature, the positive dynamics of boron absorption by liquid iron is established. According to the obtained data, the degree of absorption of the ligature by alloying gray cast iron at 1450°C is 80-85%. When combined with the treatment of liquid cast iron with magnesium, followed by alloying with the developed ligature, boron losses are reduced by 5-7%. At that, uniform distribution of boron micro-additives in the volume of treated liquid metal is provided. Acknowledgment: This work was supported by Shota Rustaveli Georgian National Science Foundation of Georgia (SRGNSFG) under the GENIE project (grant number № CARYS-19-802).Keywords: self-propagating high-temperature synthesis, cast iron, industrial waste, ductile iron, structure formation
Procedia PDF Downloads 1231481 Seeking Compatibility between Green Infrastructure and Recentralization: The Case of Greater Toronto Area
Authors: Sara Saboonian, Pierre Filion
Abstract:
There are two distinct planning approaches attempting to transform the North American suburb so as to reduce its adverse environmental impacts. The first one, the recentralization approach, proposes intensification, multi-functionality and more reliance on public transit and walking. It thus offers an alternative to the prevailing low-density, spatial specialization and automobile dependence of the North American suburb. The second approach concentrates instead on the provision of green infrastructure, which rely on natural systems rather than on highly engineered solutions to deal with the infrastructure needs of suburban areas. There are tensions between these two approaches as recentralization generally overlooks green infrastructure, which can be space consuming (as in the case of water retention systems), and thus conflicts with the intensification goals of recentralization. The research investigates three Canadian planned suburban centres in the Greater Toronto Area, where recentralization is the current planning practice, despite rising awareness of the benefits of green infrastructure. Methods include reviewing the literature on green infrastructure planning, a critical analysis of the Ontario provincial plans for recentralization, surveying residents’ preferences regarding alternative suburban development models, and interviewing officials who deal with the local planning of the three centres. The case studies expose the difficulties in creating planned suburban centres that accommodate green infrastructure while adhering to recentralization principles. Until now, planners have been mostly focussed on recentralization at the expense of green infrastructure. In this context, the frequent lack of compatibility between recentralization and the space requirements of green infrastructure explains the limited presence of such infrastructures in planned suburban centres. Finally, while much attention has been given in the planning discourse to the economic and lifestyle benefits of recentralization, much less has been made of the wide range of advantages of green infrastructure, which explains limited public mobilization over the development of green infrastructure networks. The paper will concentrate on ways of combining recentralization with green infrastructure strategies and identify the aspects of the two approaches that are most compatible with each other. The outcome of such blending will marry high density, public-transit oriented developments, which generate walkability and street-level animation, with the presence of green space, naturalized settings and reliance on renewable energy. The paper will advance a planning framework that will fuse green infrastructure with recentralization, thus ensuring the achievement of higher density and reduced reliance on the car along with the provision of critical ecosystem services throughout cities. This will support and enhance the objectives of both green infrastructure and recentralization.Keywords: environmental-based planning, green infrastructure, multi-functionality, recentralization
Procedia PDF Downloads 1311480 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas
Authors: Julien Caudeville, Muriel Ismert
Abstract:
Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.Keywords: health risk, environment, composite indicator, hotspot areas
Procedia PDF Downloads 2471479 High-Pressure Polymorphism of 4,4-Bipyridine Hydrobromide
Authors: Michalina Aniola, Andrzej Katrusiak
Abstract:
4,4-Bipyridine is an important compound often used in chemical practice and more recently frequently applied for designing new metal organic framework (MoFs). Here we present a systematic high-pressure study of its hydrobromide salt. 4,4-Bipyridine hydrobromide monohydrate, 44biPyHBrH₂O, at ambient-pressure is orthorhombic, space group P212121 (phase a). Its hydrostatic compression shows that it is stable to 1.32 GPa at least. However, the recrystallization above 0.55 GPa reveals a new hidden b-phase (monoclinic, P21/c). Moreover, when the 44biPyHBrH2O is heated to high temperature the chemical reactions of this compound in methanol solution can be observed. High-pressure experiments were performed using a Merrill-Bassett diamond-anvil cell (DAC), modified by mounting the anvils directly on the steel supports, and X-ray diffraction measurements were carried out on a KUMA and Excalibur diffractometer equipped with an EOS CCD detector. At elevated pressure, the crystal of 44biPyHBrH₂O exhibits several striking and unexpected features. No signs of instability of phase a were detected to 1.32 GPa, while phase b becomes stable at above 0.55 GPa, as evidenced by its recrystallizations. Phases a and b of 44biPyHBrH2O are partly isostructural: their unit-cell dimensions and the arrangement of ions and water molecules are similar. In phase b the HOH-Br- chains double the frequency of their zigzag motifs, compared to phase a, and the 44biPyH+ cations change their conformation. Like in all monosalts of 44biPy determined so far, in phase a the pyridine rings are twisted by about 30 degrees about bond C4-C4 and in phase b they assume energy-unfavorable planar conformation. Another unusual feature of 44biPyHBrH2O is that all unit-cell parameters become longer on the transition from phase a to phase b. Thus the volume drop on the transition to high-pressure phase b totally depends on the shear strain of the lattice. Higher temperature triggers chemical reactions of 44biPyHBrH2O with methanol. When the saturated methanol solution compound precipitated at 0.1 GPa and temperature of 423 K was required to dissolve all the sample, the subsequent slow recrystallization at isochoric conditions resulted in disalt 4,4-bipyridinium dibromide. For the 44biPyHBrH2O sample sealed in the DAC at 0.35 GPa, then dissolved at isochoric conditions at 473 K and recrystallized by slow controlled cooling, a reaction of N,N-dimethylation took place. It is characteristic that in both high-pressure reactions of 44biPyHBrH₂O the unsolvated disalt products were formed and that free base 44biPy and H₂O remained in the solution. The observed reactions indicate that high pressure destabilized ambient-pressure salts and favors new products. Further studies on pressure-induced reactions are carried out in order to better understand the structural preferences induced by pressure.Keywords: conformation, high-pressure, negative area compressibility, polymorphism
Procedia PDF Downloads 2461478 The Role of Zakat on Sustainable Economic Development by Rumah Zakat
Authors: Selamat Muliadi
Abstract:
This study aimed to explain conceptual the role of Zakat on sustainable economic development by Rumah Zakat. Rumah Zakat is a philanthropic institution that manages zakat and other social funds through community empowerment programs. In running the program, including economic empowerment and socio health services are designed for these recipients. Rumah Zakat's connection with the establisment of Sustainable Development Goals (SDGs) which is to help impoverished recipients economically and socially. It’s an important agenda that the government input into national development, even the region. The primary goal of Zakat on sustainable economic development, not only limited to economic variables but based on Islamic principles, has comprehensive characteristics. The characteristics include moral, material, spiritual, and social aspects. In other words, sustainable economic development is closely related to improving people’s living standard (Mustahiq). The findings provide empiricial evidence regarding the positive contribution and effectiveness of zakat targeting in reducing poverty and improve the welfare of people related with the management of zakat. The purpose of this study was to identify the role of Zakat on sustainable economic development, which was applied by Rumah Zakat. This study used descriptive method and qualitative analysis. The data source was secondary data collected from documents and texts related to the research topic, be it books, articles, newspapers, journals, or others. The results showed that the role of zakat on sustainable economic development by Rumah Zakat has been quite good and in accordance with the principle of Islamic economics. Rumah Zakat programs are adapted to support intended development. The contribution of the productive program implementation has been aligned with four goals in the Sustainable Development Goals, i.e., Senyum Juara (Quality Education), Senyum Lestari (Clean Water and Sanitation), Senyum Mandiri (Entrepreneur Program) and Senyum Sehat (Free Maternity Clinic). The performance of zakat in the sustainable economic empowerment community at Rumah Zakat is taking into account dimensions such as input, process, output, and outcome.Keywords: Zakat, social welfare, sustainable economic development, charity
Procedia PDF Downloads 1361477 The Effect of MOOC-Based Distance Education in Academic Engagement and Its Components on Kerman University Students
Authors: Fariba Dortaj, Reza Asadinejad, Akram Dortaj, Atena Baziyar
Abstract:
The aim of this study was to determine the effect of distance education (based on MOOC) on the components of academic engagement of Kerman PNU. The research was quasi-experimental method that cluster sampling with an appropriate volume was used in this study (one class in experimental group and one class in controlling group). Sampling method is single-stage cluster sampling. The statistical society is students of Kerman Payam Noor University, which) were selected 40 of them as sample (20 students in the control group and 20 students in experimental group). To test the hypothesis, it was used the analysis of univariate and Co-covariance to offset the initial difference (difference of control) in the experimental group and the control group. The instrument used in this study is academic engagement questionnaire of Zerang (2012) that contains component of cognitive, behavioral and motivational engagement. The results showed that there is no significant difference between mean scores of academic components of academic engagement in experimental group and the control group on the post-test, after elimination of the pre-test. The adjusted mean scores of components of academic engagement in the experimental group were higher than the adjusted average of scores after the test in the control group. The use of technology-based education in distance education has been effective in increasing cognitive engagement, motivational engagement and behavioral engagement among students. Experimental variable with the effect size 0.26, predicted 26% of cognitive engagement component variance. Experimental variable with the effect size 0.47, predicted 47% of the motivational engagement component variance. Experimental variable with the effect size 0.40, predicted 40% of behavioral engagement component variance. So teaching with technology (MOOC) has a positive impact on increasing academic engagement and academic performance of students in educational technology. The results suggest that technology (MOOC) is used to enrich the teaching of other lessons of PNU.Keywords: educational technology, distance education, components of academic engagement, mooc technology
Procedia PDF Downloads 1491476 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis
Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo
Abstract:
Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine
Procedia PDF Downloads 1731475 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater
Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif
Abstract:
Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.
Procedia PDF Downloads 901474 Modelling Volatility Spillovers and Cross Hedging among Major Agricultural Commodity Futures
Authors: Roengchai Tansuchat, Woraphon Yamaka, Paravee Maneejuk
Abstract:
From the past recent, the global financial crisis, economic instability, and large fluctuation in agricultural commodity price have led to increased concerns about the volatility transmission among them. The problem is further exacerbated by commodities volatility caused by other commodity price fluctuations, hence the decision on hedging strategy has become both costly and useless. Thus, this paper is conducted to analysis the volatility spillover effect among major agriculture including corn, soybeans, wheat and rice, to help the commodity suppliers hedge their portfolios, and manage the risk and co-volatility of them. We provide a switching regime approach to analyzing the issue of volatility spillovers in different economic conditions, namely upturn and downturn economic. In particular, we investigate relationships and volatility transmissions between these commodities in different economic conditions. We purposed a Copula-based multivariate Markov Switching GARCH model with two regimes that depend on an economic conditions and perform simulation study to check the accuracy of our proposed model. In this study, the correlation term in the cross-hedge ratio is obtained from six copula families – two elliptical copulas (Gaussian and Student-t) and four Archimedean copulas (Clayton, Gumbel, Frank, and Joe). We use one-step maximum likelihood estimation techniques to estimate our models and compare the performance of these copula using Akaike information criterion (AIC) and Bayesian information criteria (BIC). In the application study of agriculture commodities, the weekly data used are conducted from 4 January 2005 to 1 September 2016, covering 612 observations. The empirical results indicate that the volatility spillover effects among cereal futures are different, as response of different economic condition. In addition, the results of hedge effectiveness will also suggest the optimal cross hedge strategies in different economic condition especially upturn and downturn economic.Keywords: agricultural commodity futures, cereal, cross-hedge, spillover effect, switching regime approach
Procedia PDF Downloads 2021473 Fostering Teacher Professional Well-being: Understanding the Impact of School Administration Leadership and Other Factors
Authors: Monika Simkute-Bukante
Abstract:
Teachers significantly influence student achievements, personal development, and academic success. Consequently, they are subject to heightened expectations and scrutiny from governments, school administrations, parents, and even students. Increasing responsibilities and pressures impact teachers’ professional well-being, contributing to a global trend of increased teacher turnover and shortages due to stress and heavy workloads. Given the critical role of teachers in educating young people, it is essential to implement strategies to retain them. School administrations are pivotal in creating an environment conducive to optimal performance. However, there remains a gap in understanding how school administration leadership impacts teachers' professional well-being and its potential for improvement. This research aims to define teacher professional well-being, identify its attributes, and explore the factors influencing it, with a particular focus on the role of school administration. Employing the concept analysis method, this study reviews scholarly publications from 2019 to 2024 to articulate the components of teacher professional well-being. The findings highlight key attributes of teacher well-being, including self-efficacy, work engagement, job satisfaction, relationships with colleagues and students, support from administration, work autonomy, school climate, time pressure, workload, resilience, stress, burnout, and turnover intentions. The analysis demonstrates that school administration leadership directly affects these aspects by providing support in challenging situations, empowering teachers, offering recognition, facilitating open communication, and ensuring autonomy at work. In conclusion, the research shows that teachers' professional well-being is heavily dependent on relationships with school administration, colleagues, and students, as well as the overall school climate. It suggests that by enhancing these elements, school leaders can significantly improve teacher professional well-being. Recommendations are made for developing strategies to support these relationships, thereby fostering an environment that enhances teacher retention and effectiveness.Keywords: concept analysis, teacher professional well-being, school administration leadership, well-being factors
Procedia PDF Downloads 541472 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 4291471 Flotation of Rare Earth Oxides from Iron-Oxide Silicate Rich Tailings Using Fatty Acids
Authors: George B. Abaka-Wood, Massimiliano Zanin, Jonas Addai-Mensah, William Skinner
Abstract:
The versatility of froth flotation has made it vital in the beneficiation of rare earth elements minerals from either high or low-grade ores. There has been a significant increase in the quantity of iron oxide silicate-rich tailings generated from the extraction of primary commodities such as copper and gold in Australia, which have been identified to contain very low-grade rare earth oxides (≤ 1%). There is a vast knowledge gap in the beneficiation of rare earth oxides from such tailings. The aim of this research is to investigate the feasibility of using fatty acids as collectors for the flotation recovery and upgrade of rare earth oxides from selected iron-oxide silicate-rich tailings. Two forms of fatty acid collectors (oleic acid and sodium oleate) were tested in this investigation. Flotation tests were carried out using a 1.2 L Denver D-12 cell. The effects of pulp pH, fatty acid dosage, particle size distribution (-150 +75 µm, -75 +38 µm and -38 µm) and conventional depressants (sodium silicate and starch) dosage on flotation recovery of rare earth oxides were investigated. A comparison of the flotation results indicated that sodium oleate was the more efficient fatty acid for rare earth oxides flotation at all the pulp pH investigated. The flotation performance was found to be particle size-dependent. Both sodium silicate and starch were unselective in decreasing the recovery of iron oxides and silicate minerals, respectively with the corresponding decrease in rare earth oxides recovery. Generally, iron oxides and silicate minerals formed the substantial fraction of the flotation concentrates obtained, both in the absence and presence of depressants, resulting in a generally low rare earth oxides upgrade, even though rare earth oxides recoveries were high. The flotation tests carried out on the tailings sample suggest the feasibility of rare earth oxides recovery using fatty acids, although particle size distribution and minerals liberation are key limiting factors in achieving selective rare earth oxides upgrade.Keywords: depressants, flotation, oleic acid, sodium oleate
Procedia PDF Downloads 1891470 Translation Directionality: An Eye Tracking Study
Authors: Elahe Kamari
Abstract:
Research on translation process has been conducted for more than 20 years, investigating various issues and using different research methodologies. Most recently, researchers have started to use eye tracking to study translation processes. They believed that the observable, measurable data that can be gained from eye tracking are indicators of unobservable cognitive processes happening in the translators’ mind during translation tasks. The aim of this study was to investigate directionality in translation processes through using eye tracking. The following hypotheses were tested: 1) processing the target text requires more cognitive effort than processing the source text, in both directions of translation; 2) L2 translation tasks on the whole require more cognitive effort than L1 tasks; 3) cognitive resources allocated to the processing of the source text is higher in L1 translation than in L2 translation; 4) cognitive resources allocated to the processing of the target text is higher in L2 translation than in L1 translation; and 5) in both directions non-professional translators invest more cognitive effort in translation tasks than do professional translators. The performance of a group of 30 male professional translators was compared with that of a group of 30 male non-professional translators. All the participants translated two comparable texts one into their L1 (Persian) and the other into their L2 (English). The eye tracker measured gaze time, average fixation duration, total task length and pupil dilation. These variables are assumed to measure the cognitive effort allocated to the translation task. The data derived from eye tracking only confirmed the first hypothesis. This hypothesis was confirmed by all the relevant indicators: gaze time, average fixation duration and pupil dilation. The second hypothesis that L2 translation tasks requires allocation of more cognitive resources than L1 translation tasks has not been confirmed by all four indicators. The third hypothesis that source text processing requires more cognitive resources in L1 translation than in L2 translation and the fourth hypothesis that target text processing requires more cognitive effort in L2 translation than L1 translation were not confirmed. It seems that source text processing in L2 translation can be just as demanding as in L1 translation. The final hypothesis that non-professional translators allocate more cognitive resources for the same translation tasks than do the professionals was partially confirmed. One of the indicators, average fixation duration, indicated higher cognitive effort-related values for professionals.Keywords: translation processes, eye tracking, cognitive resources, directionality
Procedia PDF Downloads 4641469 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models
Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan
Abstract:
Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network
Procedia PDF Downloads 28