Search results for: porous particles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2307

Search results for: porous particles

147 Made on Land, Ends Up in the Water "I-Clare" Intelligent Remediation System for Removal of Harmful Contaminants in Water using Modified Reticulated Vitreous Carbon Foam

Authors: Sabina Żołędowska, Tadeusz Ossowski, Robert Bogdanowicz, Jacek Ryl, Paweł Rostkowski, Michał Kruczkowski, Michał Sobaszek, Zofia Cebula, Grzegorz Skowierzak, Paweł Jakóbczyk, Lilit Hovhannisyan, Paweł Ślepski, Iwona Kaczmarczyk, Mattia Pierpaoli, Bartłomiej Dec, Dawid Nidzworski

Abstract:

The circular economy of water presents a pressing environmental challenge in our society. Water contains various harmful substances, such as drugs, antibiotics, hormones, and dioxides, which can pose silent threats. Water pollution has severe consequences for aquatic ecosystems. It disrupts the balance of ecosystems by harming aquatic plants, animals, and microorganisms. Water pollution poses significant risks to human health. Exposure to toxic chemicals through contaminated water can have long-term health effects, such as cancer, developmental disorders, and hormonal imbalances. However, effective remediation systems can be implemented to remove these contaminants using electrocatalytic processes, which offer an environmentally friendly alternative to other treatment methods, and one of them is the innovative iCLARE system. The project's primary focus revolves around a few main topics: Reactor design and construction, selection of a specific type of reticulated vitreous carbon foams (RVC), analytical studies of harmful contaminants parameters and AI implementation. This high-performance electrochemical reactor will be build based on a novel type of electrode material. The proposed approach utilizes the application of reticulated vitreous carbon foams (RVC) with deposited modified metal oxides (MMO) and diamond thin films. The following setup is characterized by high surface area development and satisfactory mechanical and electrochemical properties, designed for high electrocatalytic process efficiency. The consortium validated electrode modification methods that are the base of the iCLARE product and established the procedures for the detection of chemicals detection: - deposition of metal oxides WO3 and V2O5-deposition of boron-doped diamond/nanowalls structures by CVD process. The chosen electrodes (porous Ferroterm electrodes) were stress tested for various parameters that might occur inside the iCLARE machine–corosis, the long-term structure of the electrode surface during electrochemical processes, and energetic efficacy using cyclic polarization and electrochemical impedance spectroscopy (before and after electrolysis) and dynamic electrochemical impedance spectroscopy (DEIS). This tool allows real-time monitoring of the changes at the electrode/electrolyte interphase. On the other hand, the toxicity of iCLARE chemicals and products of electrolysis are evaluated before and after the treatment using MARA examination (IBMM) and HPLC-MS-MS (NILU), giving us information about the harmfulness of using electrode material and the efficiency of iClare system in the disposal of pollutants. Implementation of data into the system that uses artificial intelligence and the possibility of practical application is in progress (SensDx).

Keywords: waste water treatement, RVC, electrocatalysis, paracetamol

Procedia PDF Downloads 52
146 Insect Cell-Based Models: Asutralian Sheep bBlowfly Lucilia Cuprina Embryo Primary Cell line Establishment and Transfection

Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls, and the parasite has developed resistance to nearly all control chemicals used in the past. It is, therefore, critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi, and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.

Keywords: lucilia cuprina, primary cell line establishment, RNA interference, insect cell transfection

Procedia PDF Downloads 52
145 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstone's Reservoir Quality, Sarir Formation, Sirt Basin Libya

Authors: Faraj M. Elkhatri

Abstract:

The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. ( present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.

Keywords: pore throat, fine migration, formation damage, solids plugging, porosity loss

Procedia PDF Downloads 126
144 Evaluation of Invasive Tree Species for Production of Phosphate Bonded Composites

Authors: Stephen Osakue Amiandamhen, Schwaller Andreas, Martina Meincken, Luvuyo Tyhoda

Abstract:

Invasive alien tree species are currently being cleared in South Africa as a result of the forest and water imbalances. These species grow wildly constituting about 40% of total forest area. They compete with the ecosystem for natural resources and are considered as ecosystem engineers by rapidly changing disturbance regimes. As such, they are harvested for commercial uses but much of it is wasted because of their form and structure. The waste is being sold to local communities as fuel wood. These species can be considered as potential feedstock for the production of phosphate bonded composites. The presence of bark in wood-based composites leads to undesirable properties, and debarking as an option can be cost implicative. This study investigates the potentials of these invasive species processed without debarking on some fundamental properties of wood-based panels. Some invasive alien tree species were collected from EC Biomass, Port Elizabeth, South Africa. They include Acacia mearnsii (Black wattle), A. longifolia (Long-leaved wattle), A. cyclops (Red-eyed wattle), A. saligna (Golden-wreath wattle) and Eucalyptus globulus (Blue gum). The logs were chipped as received. The chips were hammer-milled and screened through a 1 mm sieve. The wood particles were conditioned and the quantity of bark in the wood was determined. The binding matrix was prepared using a reactive magnesia, phosphoric acid and class S fly ash. The materials were mixed and poured into a metallic mould. The composite within the mould was compressed at room temperature at a pressure of 200 KPa. After initial setting which took about 5 minutes, the composite board was demoulded and air-cured for 72 h. The cured product was thereafter conditioned at 20°C and 70% relative humidity for 48 h. Test of physical and strength properties were conducted on the composite boards. The effect of binder formulation and fly ash content on the properties of the boards was studied using fitted response surface technology, according to a central composite experimental design (CCD) at a fixed wood loading of 75% (w/w) of total inorganic contents. The results showed that phosphate/magnesia ratio of 3:1 and fly ash content of 10% was required to obtain a product of good properties and sufficient strength for intended applications. The proposed products can be used for ceilings, partitioning and insulating wall panels.

Keywords: invasive alien tree species, phosphate bonded composites, physical properties, strength

Procedia PDF Downloads 265
143 Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy

Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr

Abstract:

Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.

Keywords: ageing, casting, mechanical strength, precipitates

Procedia PDF Downloads 477
142 Solutions of Thickening the Sludge from the Wastewater Treatment by a Rotor with Bars

Authors: Victorita Radulescu

Abstract:

Introduction: The sewage treatment plants, in the second stage, are formed by tanks having as main purpose the formation of the suspensions with high possible solid concentration values. The paper presents a solution to produce a rapid concentration of the slurry and sludge, having as main purpose the minimization as much as possible the size of the tanks. The solution is based on a rotor with bars, tested into two different areas of industrial activity: the remediation of the wastewater from the oil industry and, in the last year, into the mining industry. Basic Methods: It was designed, realized and tested a thickening system with vertical bars that manages to reduce sludge moisture content from 94% to 87%. The design was based on the hypothesis that the streamlines of the vortices detached from the rotor with vertical bars accelerate, under certain conditions, the sludge thickening. It is moved at the lateral sides, and in time, it became sediment. The formed vortices with the vertical axis in the viscous fluid, under the action of the lift, drag, weight, and inertia forces participate at a rapid aggregation of the particles thus accelerating the sludge concentration. Appears an interdependence between the Re number attached to the flow with vortex induced by the vertical bars and the size of the hydraulic compaction phenomenon, resulting from an accelerated process of sedimentation, therefore, a sludge thickening depending on the physic-chemical characteristics of the resulting sludge is projected the rotor's dimensions. Major findings/ Results: Based on the experimental measurements was performed the numerical simulation of the hydraulic rotor, as to assure the necessary vortices. The experimental measurements were performed to determine the optimal height and the density of the bars for the sludge thickening system, to assure the tanks dimensions as small as possible. The time thickening/settling was reduced by 24% compared to the conventional used systems. In the present, the thickeners intend to decrease the intermediate stage of water treatment, using primary and secondary settling; but they assume a quite long time, the order of 10-15 hours. By using this system, there are no intermediary steps; the thickening is done automatically when are created the vortices. Conclusions: The experimental tests were carried out in the wastewater treatment plant of the Refinery of oil from Brazi, near the city Ploiesti. The results prove its efficiency in reducing the time for compacting the sludge and the smaller humidity of the evacuated sediments. The utilization of this equipment is now extended and it is tested the mining industry, with significant results, in Lupeni mine, from the Jiu Valley.

Keywords: experimental tests, hydrodynamic modeling, rotor efficiency, wastewater treatment

Procedia PDF Downloads 100
141 Impact of UV on Toxicity of Zn²⁺ and ZnO Nanoparticles to Lemna minor

Authors: Gabriela Kalcikova, Gregor Marolt, Anita Jemec Kokalj, Andreja Zgajnar Gotvajn

Abstract:

Since the 90’s, nanotechnology is one of the fastest growing fields of science. Nanomaterials are increasingly becoming part of many products and technologies. Metal oxide nanoparticles are among the most used nanomaterials. Zinc oxide nanoparticles (nZnO) is widely used due to its versatile properties; it has been used in products including plastics, paints, food, batteries, solar cells and cosmetic products. It is also a very effective photocatalyst used for water treatment. Such expanding application of nZnO increases their possible occurrence in the environment. In the aquatic ecosystem nZnO interact with natural environmental factors such as UV radiation, and thus it is essential to evaluate possible interaction between them. In this context, the aim of our study was to evaluate combined ecotoxicity of nZnO and Zn²⁺ on duckweed Lemna minor in presence or absence UV. Inhibition of vegetative growth of duckweed Lemna minor was monitored over a period of 7 days in multi-well plates. After the experiment, specific growth rate was determined. ZnO nanoparticles used were of primary size 13.6 ± 1.7 nm. The test was conducted with nominal nZnO and Zn²⁺ (in form of ZnCl₂) concentrations of 1, 10, 100 mg/L. Experiment was repeated with presence of natural intensity of UV (8h UV, 10 W/m² UVA, 0.5 W/m² UVB). Concentration of Zn during the test was determined by ICP-MS. In the regular experiment (absence of UV) the specific growth rate was slightly increased by low concentrations of nZnO and Zn²⁺ in comparison to control. However, 10 and 100 mg/L of Zn²⁺ resulted in 45% and 68% inhibition of the specific growth rate, respectively. In case of nZnO both concentrations (10 and 100 mg/L) resulted in similar ~ 30% inhibition and the response was not dose-dependent. The lack of the dose-response relationship is often observed in case of nanoparticles. The possible explanation is that the physical impact prevails instead of chemical ones. In the presence of UV the toxicity of Zn²⁺ was increased and 100 mg/L of Zn²⁺ caused total inhibition of the specific growth rate (100%). On the other hand, 100 mg/L of nZnO resulted in low inhibition (19%) in comparison to the experiment without UV (30%). It is thus expected, that tested nZnO is low photoactive, but could have a good UV absorption and/or reflective properties and thus protect duckweed against UV impacts. Measured concentration of Zn in the test suspension decreased only about 4% after 168h in the case of ZnCl₂. On the other hand concentration of Zn in nZnO test decreased by 80%. It is expected that nZnO were partially dissolved in the medium and at the same time agglomeration and sedimentation of particles took place and thus the concentration of Zn at the water level decreased. Results of our study indicated, that nZnO combined with UV of natural intensity does not increase toxicity of nZnO, but slightly protect the plant against UV negative effects. When Zn²⁺ and ZnO results are compared it seems that dissolved Zn plays a central role in the nZnO toxicity.

Keywords: duckweed, environmental factors, nanoparticles, toxicity

Procedia PDF Downloads 301
140 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging

Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs

Abstract:

Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.

Keywords: biocomposites, nanocellulose, starch, wheat

Procedia PDF Downloads 187
139 Barrier Membrane Influence Histology of Guided Bone Regenerations: A Systematic Review and Meta-Analysis

Authors: Laura Canagueral-Pellice, Antonio Munar-Frau, Adaia Valls-Ontanon, Joao Carames, Federico Hernandez-Alfaro, Jordi Caballe-Serrano

Abstract:

Objective: Guided bone regeneration (GBR) aims to replace the missing bone with a new structure to achieve long-term stability of rehabilitations. The aim of the present systematic review and meta-analysis is to determine the effect of barrier membranes on histological outcomes after GBR procedures. Moreover, the effect of the grafting material and tissue gain were analyzed. Materials & methods: Two independent reviewers performed an electronic search in Pubmed and Scopus, identifying all eligible publications up to March 2020. Only randomized controlled trials (RCTs) assessing a histological analysis of augmented areas were included. Results: A total of 6 publications were included for the present systematic review. A total of 110 biopsied sites were analysed; 10 corresponded to vertical bone augmentation procedures, whereas 100 analysed horizontal regeneration procedures. A mean tissue gain of 3 ± 1.48mm was obtained for horizontal defects. Histological assessment of new bone formation, residual particle and sub-epithelial connective tissue (SCT) was reported. The four main barrier membranes used were natural collagen membranes, e-PTFE, polylactic resorbable membranes and acellular dermal matrix membranes (AMDG). The analysis demonstrated that resorbable membranes result in higher values of new bone formation and lower values of residual particles and SCT. Xenograft resulted in lower new bone formation compared to allograft; however, no statistically significant differences were observed regarding residual particle and SCT. Overall, regeneration procedures adding autogenous bone, plasma derivate or growth factors achieved in general greater new bone formation and tissue gain. Conclusions: There is limited evidence favoring the effect of a certain type of barrier membrane in GBR. Data needs to be evaluated carefully; however, resorbable membranes are correlated with greater new bone formation values, especially when combined with allograft materials and/or the addition of autogenous bone, platelet reach plasma (PRP) or growth factors in the regeneration area. More studies assessing the histological outcomes of different GBR protocols and procedures testing different biomaterials are needed to maximize the clinical and histological outcomes in bone regeneration science.

Keywords: barrier membrane, graft material, guided bone regeneration, implant surgery, histology

Procedia PDF Downloads 124
138 Development and Characterization of Novel Topical Formulation Containing Niacinamide

Authors: Sevdenur Onger, Ali Asram Sagiroglu

Abstract:

Hyperpigmentation is a cosmetically unappealing skin problem caused by an overabundance of melanin in the skin. Its pathophysiology is caused by melanocytes being exposed to paracrine melanogenic stimuli, which can upregulate melanogenesis-related enzymes (such as tyrosinase) and cause melanosome formation. Tyrosinase is linked to the development of melanosomes biochemically, and it is the main target of hyperpigmentation treatment. therefore, decreasing tyrosinase activity to reduce melanosomes has become the main target of hyperpigmentation treatment. Niacinamide (NA) is a natural chemical found in a variety of plants that is used as a skin-whitening ingredient in cosmetic formulations. NA decreases melanogenesis in the skin by inhibiting melanosome transfer from melanocytes to covering keratinocytes. Furthermore, NA protects the skin from reactive oxygen species and acts as a main barrier with the skin, reducing moisture loss by increasing ceramide and fatty acid synthesis. However, it is very difficult for hydrophilic compounds such as NA to penetrate deep into the skin. Furthermore, because of the nicotinic acid in NA, it is an irritant. As a result, we've concentrated on strategies to increase NA skin permeability while avoiding its irritating impacts. Since nanotechnology can affect drug penetration behavior by controlling the release and increasing the period of permanence on the skin, it can be a useful technique in the development of whitening formulations. Liposomes have become increasingly popular in the cosmetics industry in recent years due to benefits such as their lack of toxicity, high penetration ability in living skin layers, ability to increase skin moisture by forming a thin layer on the skin surface, and suitability for large-scale production. Therefore, liposomes containing NA were developed for this study. Different formulations were prepared by varying the amount of phospholipid and cholesterol and examined in terms of particle sizes, polydispersity index (PDI) and pH values. The pH values of the produced formulations were determined to be suitable with the pH value of the skin. Particle sizes were determined to be smaller than 250 nm and the particles were found to be of homogeneous size in the formulation (pdi<0.30). Despite the important advantages of liposomal systems, they have low viscosity and stability for topical use. For these reasons, in this study, liposomal cream formulations have been prepared for easy topical application of liposomal systems. As a result, liposomal cream formulations containing NA have been successfully prepared and characterized. Following the in-vitro release and ex-vivo diffusion studies to be conducted in the continuation of the study, it is planned to test the formulation that gives the most appropriate result on the volunteers after obtaining the approval of the ethics committee.

Keywords: delivery systems, hyperpigmentation, liposome, niacinamide

Procedia PDF Downloads 92
137 Pickering Dry Emulsion System for Dissolution Enhancement of Poorly Water Soluble Drug (Fenofibrate)

Authors: Nitin Jadhav, Pradeep R. Vavia

Abstract:

Poor water soluble drugs are difficult to promote for oral drug delivery as they demonstrate poor and variable bioavailability because of its poor solubility and dissolution in GIT fluid. Nowadays lipid based formulations especially self microemulsifying drug delivery system (SMEDDS) is found as the most effective technique. With all the impressive advantages, the need of high amount of surfactant (50% - 80%) is the major drawback of SMEDDS. High concentration of synthetic surfactant is known for irritation in GIT and also interference with the function of intestinal transporters causes changes in drug absorption. Surfactant may also reduce drug activity and subsequently bioavailability due to the enhanced entrapment of drug in micelles. In chronic treatment these issues are very conspicuous due to the long exposure. In addition the liquid self microemulsifying system also suffers from stability issues. Recently one novel approach of solid stabilized micro and nano emulsion (Pickering emulsion) has very admirable properties such as high stability, absence or very less concentration of surfactant and easily converts into the dry form. So here we are exploring pickering dry emulsion system for dissolution enhancement of anti-lipemic, extremely poorly water soluble drug (Fenofibrate). Oil moiety for emulsion preparation was selected mainly on the basis of higher solubility of drug. Captex 300 was showed higher solubility for fenofibrate, hence selected as oil for emulsion. With Silica (solid stabilizer); Span 20 was selected to improve the wetting property of it. Emulsion formed by Silica and Span20 as stabilizer at the ratio 2.5:1 (silica: span 20) was found very stable at the particle size 410 nm. The prepared emulsion was further preceded for spray drying and formed microcapsule evaluated for in-vitro dissolution study, in-vivo pharmacodynamic study and characterized for DSC, XRD, FTIR, SEM, optical microscopy etc. The in vitro study exhibits significant dissolution enhancement of formulation (85 % in 45 minutes) as compared to plain drug (14 % in 45 minutes). In-vivo study (Triton based hyperlipidaemia model) exhibits significant reduction in triglyceride and cholesterol with formulation as compared to plain drug indicating increasing in fenofibrate bioavailability. DSC and XRD study exhibit loss of crystallinity of drug in microcapsule form. FTIR study exhibit chemical stability of fenofibrate. SEM and optical microscopy study exhibit spherical structure of globule coated with solid particles.

Keywords: captex 300, fenofibrate, pickering dry emulsion, silica, span20, stability, surfactant

Procedia PDF Downloads 475
136 Physical Model Testing of Storm-Driven Wave Impact Loads and Scour at a Beach Seawall

Authors: Sylvain Perrin, Thomas Saillour

Abstract:

The Grande-Motte port and seafront development project on the French Mediterranean coastline entailed evaluating wave impact loads (pressures and forces) on the new beach seawall and comparing the resulting scour potential at the base of the existing and new seawall. A physical model was built at ARTELIA’s hydraulics laboratory in Grenoble (France) to provide insight into the evolution of scouring overtime at the front of the wall, quasi-static and impulsive wave force intensity and distribution on the wall, and water and sand overtopping discharges over the wall. The beach was constituted of fine sand and approximately 50 m wide above mean sea level (MSL). Seabed slopes were in the range of 0.5% offshore to 1.5% closer to the beach. A smooth concrete structure will replace the existing concrete seawall with an elevated curved crown wall. Prior the start of breaking (at -7 m MSL contour), storm-driven maximum spectral significant wave heights of 2.8 m and 3.2 m were estimated for the benchmark historical storm event dated of 1997 and the 50-year return period storms respectively, resulting in 1 m high waves at the beach. For the wave load assessment, a tensor scale measured wave forces and moments and five piezo / piezo-resistive pressure sensors were placed on the wall. Light-weight sediment physical model and pressure and force measurements were performed with scale 1:18. The polyvinyl chloride light-weight particles used to model the prototype silty sand had a density of approximately 1 400 kg/m3 and a median diameter (d50) of 0.3 mm. Quantitative assessments of the seabed evolution were made using a measuring rod and also a laser scan survey. Testing demonstrated the occurrence of numerous impulsive wave impacts on the reflector (22%), induced not by direct wave breaking but mostly by wave run-up slamming on the top curved part of the wall. Wave forces of up to 264 kilonewtons and impulsive pressure spikes of up to 127 kilonewtons were measured. Maximum scour of -0.9 m was measured for the new seawall versus -0.6 m for the existing seawall, which is imputable to increased wave reflection (coefficient was 25.7 - 30.4% vs 23.4 - 28.6%). This paper presents a methodology for the setup and operation of a physical model in order to assess the hydrodynamic and morphodynamic processes at a beach seawall during storms events. It discusses the pros and cons of such methodology versus others, notably regarding structures peculiarities and model effects.

Keywords: beach, impacts, scour, seawall, waves

Procedia PDF Downloads 129
135 Time to Retire Rubber Crumb: How Soft Fall Playgrounds are Threatening Australia’s Great Barrier Reef

Authors: Michelle Blewitt, Scott P. Wilson, Heidi Tait, Juniper Riordan

Abstract:

Rubber crumb is a physical and chemical pollutant of concern for the environment and human health, warranting immediate investigations into its pathways to the environment and potential impacts. This emerging microplastic is created by shredding end-of-life tyres into ‘rubber crumb’ particles between 1-5mm used on synthetic turf fields and soft-fall playgrounds as a solution to intensifying tyre waste worldwide. Despite having known toxic and carcinogenic properties, studies into the transportation pathways and movement patterns of rubber crumbs from these surfaces remain in their infancy. To address this deficit, AUSMAP, the Australian Microplastic Assessment Project, in partnership with the Tangaroa Blue Foundation, conducted a study to quantify crumb loss from soft-fall surfaces. To our best knowledge, this is the first of its kind, with funding for the audits being provided by the Australian Government’s Reef Trust. Sampling occurred at 12 soft-fall playgrounds within the Great Barrier Reef Catchment Area on Australia’s North-East coast, in close proximity to the United Nations World Heritage Listed Reef. Samples were collected over a 12-month period using randomized sediment cores at 0, 2 and 4 meters away from the playground edge along a 20-meter transect. This approach facilitated two objectives pertaining to particle movement: to establish that crumb loss is occurring and that it decreases with distance from the soft-fall surface. Rubber crumb abundance was expressed as a total value and used to determine an expected average of rubber crumb loss per m2. An Analysis of Variance (ANOVA) was used to compare the differences in crumb abundance at each interval from the playground. Site characteristics, including surrounding sediment type, playground age, degree of ultra-violet exposure and amount of foot traffic, were additionally recorded for the comparison. Preliminary findings indicate that crumb is being lost at considerable rates from soft-fall playgrounds in the region, emphasizing an urgent need to further examine it as a potential source of aquatic pollution, soil contamination and threat to individuals who regularly utilize these surfaces. Additional implications for the future of rubber crumbs as a fit-for-purpose recycling initiative will be discussed with regard to industry, governments and the economic burden of surface maintenance and/ or replacement.

Keywords: microplastics, toxic rubber crumb, litter pathways, marine environment

Procedia PDF Downloads 62
134 Comparison of the Toxicity of Silver and Gold Nanoparticles in Murine Fibroblasts

Authors: Šárka Hradilová, Aleš Panáček, Radek Zbořil

Abstract:

Nanotechnologies are considered the most promising fields with high added value, brings new possibilities in various sectors from industry to medicine. With the growing of interest in nanomaterials and their applications, increasing nanoparticle production leads to increased exposure of people and environment with ‘human made’ nanoparticles. Nanoparticles (NPs) are clusters of atoms in the size range of 1–100 nm. Metal nanoparticles represent one of the most important and frequently used types of NPs due to their unique physical, chemical and biological properties, which significantly differ from those of bulk material. Biological properties including toxicity of metal nanoparticles are generally determined by their size, size distribution, shape, surface area, surface charge, surface chemistry, stability in the environment and ability to release metal ions. Therefore, the biological behavior of NPs and their possible adverse effect cannot be derived from the bulk form of material because nanoparticles show unique properties and interactions with biological systems just due to their nanodimensions. Silver and gold NPs are intensively studied and used. Both can be used for instance in surface enhanced Raman spectroscopy, a considerable number of applications of silver NPs is associated with antibacterial effects, while gold NPs are associated with cancer treatment and bio imaging. Antibacterial effects of silver ions are known for centuries. Silver ions and silver-based compounds are highly toxic to microorganisms. Toxic properties of silver NPs are intensively studied, but the mechanism of cytoxicity is not fully understood. While silver NPs are considered toxic, gold NPs are referred to as toxic but also innocuous for eukaryotic cells. Therefore, gold NPs are used in various biological applications without a risk of cell damaging, even when we want to suppress the growth of cancer cells. Thus, gold NPs are toxic or harmless. Because most studies comparing particles of various sizes prepared in various ways, and testing is performed on different cell lines, it is very difficult to generalize. The novelty and significance of our research is focused to the complex biological effects of silver and gold NPs prepared by the same method, have the same parameters and the same stabilizer. That is why we can compare the biological effects of pure nanometals themselves based on their chemical nature without the influence of other variable. Aim of our study therefore is to compare the cytotoxic effect of two types of noble metal NPs focusing on the mechanisms that contribute to cytotoxicity. The study was conducted on murine fibroblasts by selected common used tests. Each of these tests monitors the selected area related to toxicity and together provides a comprehensive view on the issue of interactions of nanoparticles and living cells.

Keywords: cytotoxicity, gold nanoparticles, mechanism of cytotoxicity, silver nanoparticles

Procedia PDF Downloads 226
133 Enhancing Air Quality: Investigating Filter Lifespan and Byproducts in Air Purification Solutions

Authors: Freja Rydahl Rasmussen, Naja Villadsen, Stig Koust

Abstract:

Air purifiers have become widely implemented in a wide range of settings, including households, schools, institutions, and hospitals, as they tackle the pressing issue of indoor air pollution. With their ability to enhance indoor air quality and create healthier environments, air purifiers are particularly vital when ventilation options are limited. These devices incorporate a diverse array of technologies, including HEPA filters, active carbon filters, UV-C light, photocatalytic oxidation, and ionizers, each designed to combat specific pollutants and improve air quality within enclosed spaces. However, the safety of air purifiers has not been investigated thoroughly, and many questions still arise when applying them. Certain air purification technologies, such as UV-C light or ionization, can unintentionally generate undesirable byproducts that can negatively affect indoor air quality and health. It is well-established that these technologies can inadvertently generate nanoparticles or convert common gaseous compounds into harmful ones, thus exacerbating air pollution. However, the formation of byproducts can vary across products, necessitating further investigation. There is a particular concern about the formation of the carcinogenic substance formaldehyde from common gases like acetone. Many air purifiers use mechanical filtration to remove particles, dust, and pollen from the air. Filters need to be replaced periodically for optimal efficiency, resulting in an additional cost for end-users. Currently, there are no guidelines for filter lifespan, and replacement recommendations solely rely on manufacturers. A market screening revealed that manufacturers' recommended lifespans vary greatly (from 1 month to 10 years), and there is a need for general recommendations to guide consumers. Activated carbon filters are used to adsorb various types of chemicals that can pose health risks or cause unwanted odors. These filters have a certain capacity before becoming saturated. If not replaced in a timely manner, the adsorbed substances are likely to be released from the filter through off-gassing or losing adsorption efficiency. The goal of this study is to investigate the lifespan of filters as well as investigate the potentially harmful effects of air purifiers. Understanding the lifespan of filters used in air purifiers and the potential formation of harmful byproducts is essential for ensuring their optimal performance, guiding consumers in their purchasing decisions, and establishing industry standards for safer and more effective air purification solutions. At this time, a selection of air purifiers has been chosen, and test methods have been established. In the following 3 months, the tests will be conducted, and the results will be ready for presentation later.

Keywords: air purifiers, activated carbon filters, byproducts, clean air, indoor air quality

Procedia PDF Downloads 43
132 Extrudable Foamed Concrete: General Benefits in Prefabrication and Comparison in Terms of Fresh Properties and Compressive Strength with Classic Foamed Concrete

Authors: D. Falliano, G. Ricciardi, E. Gugliandolo

Abstract:

Foamed concrete belongs to the category of lightweight concrete. It is characterized by a density which is generally ranging from 200 to 2000 kg/m³ and typically comprises cement, water, preformed foam, fine sand and eventually fine particles such as fly ash or silica fume. The foam component mixed with the cement paste give rise to the development of a system of air-voids in the cementitious matrix. The peculiar characteristics of foamed concrete elements are summarized in the following aspects: 1) lightness which allows reducing the dimensions of the resisting frame structure and is advantageous in the scope of refurbishment or seismic retrofitting in seismically vulnerable areas; 2) thermal insulating properties, especially in the case of low densities; 3) the good resistance against fire as compared to ordinary concrete; 4) the improved workability; 5) cost-effectiveness due to the usage of rather simple constituting elements that are easily available locally. Classic foamed concrete cannot be extruded, as the dimensional stability is not permitted in the green state and this severely limits the possibility of industrializing them through a simple and cost-effective process, characterized by flexibility and high production capacity. In fact, viscosity enhancing agents (VEA) used to extrude traditional concrete, in the case of foamed concrete cause the collapsing of air bubbles, so that it is impossible to extrude a lightweight product. These requirements have suggested the study of a particular additive that modifies the rheology of foamed concrete fresh paste by increasing cohesion and viscosity and, at the same time, stabilizes the bubbles into the cementitious matrix, in order to allow the dimensional stability in the green state and, consequently, the extrusion of a lightweight product. There are plans to submit the additive’s formulation to patent. In addition to the general benefits of using the extrusion process, extrudable foamed concrete allow other limits to be exceeded: elimination of formworks, expanded application spectrum, due to the possibility of extrusion in a range varying between 200 and 2000 kg/m³, which allows the prefabrication of both structural and non-structural constructive elements. Besides, this contribution aims to present the significant differences regarding extrudable and classic foamed concrete fresh properties in terms of slump. Plastic air content, plastic density, hardened density and compressive strength have been also evaluated. The outcomes show that there are no substantial differences between extrudable and classic foamed concrete compression resistances.

Keywords: compressive strength, extrusion, foamed concrete, fresh properties, plastic air content, slump.

Procedia PDF Downloads 151
131 Inertial Particle Focusing Dynamics in Trapezoid Straight Microchannels: Application to Continuous Particle Filtration

Authors: Reza Moloudi, Steve Oh, Charles Chun Yang, Majid Ebrahimi Warkiani, May Win Naing

Abstract:

Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of the channel and its impacts not only on the shear field but also the wall-effect lift force near the wall region. Despite comprehensive experiments and numerical analysis of the lift forces for rectangular and non-rectangular microchannels (half-circular and triangular cross-section), which all possess planes of symmetry, less effort has been made on the 'flow field structure' of trapezoidal straight microchannels and its effects on inertial focusing. On the other hand, a rectilinear channel with trapezoidal cross-sections breaks down all planes of symmetry. In this study, particle focusing dynamics inside trapezoid straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-laterally movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the main lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio (K=a/Hmin, a is particle size), channel aspect ratio (AR=W/Hmin, W is channel width, and Hmin is smaller channel height), and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Increasing the channel aspect ratio (AR) from 2 to 4 and the slope of slanted wall up to Tan(α)≈0.4 (Tan(α)=(Hlonger-sidewall-Hshorter-sidewall)/W) enhanced the off-center lateral focusing position from the middle of channel cross-section, up to ~20 percent of the channel width. It was found that the focusing point was spoiled near the slanted wall due to the dissymmetry; it mainly focused near the bottom wall or fluctuated between the channel center and the bottom wall, depending on the slanted wall and Re (Re < 100, channel aspect ratio 4:1). Eventually, as a proof of principle, a trapezoidal straight microchannel along with a bifurcation was designed and utilized for continuous filtration of a broader range of particle clogging ratio (0.3 < K < 1) exiting through the longer wall outlet with ~99% efficiency (Re < 100) in comparison to the rectangular straight microchannels (W > H, 0.3 ≤ K < 0.5).

Keywords: cell/particle sorting, filtration, inertial microfluidics, straight microchannel, trapezoid

Procedia PDF Downloads 190
130 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism

Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman

Abstract:

Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.

Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator

Procedia PDF Downloads 349
129 Understanding Evidence Dispersal Caused by the Effects of Using Unmanned Aerial Vehicles in Active Indoor Crime Scenes

Authors: Elizabeth Parrott, Harry Pointon, Frederic Bezombes, Heather Panter

Abstract:

Unmanned aerial vehicles (UAV’s) are making a profound effect within policing, forensic and fire service procedures worldwide. These intelligent devices have already proven useful in photographing and recording large-scale outdoor and indoor sites using orthomosaic and three-dimensional (3D) modelling techniques, for the purpose of capturing and recording sites during and post-incident. UAV’s are becoming an established tool as they are extending the reach of the photographer and offering new perspectives without the expense and restrictions of deploying full-scale aircraft. 3D reconstruction quality is directly linked to the resolution of captured images; therefore, close proximity flights are required for more detailed models. As technology advances deployment of UAVs in confined spaces is becoming more common. With this in mind, this study investigates the effects of UAV operation within active crimes scenes with regard to the dispersal of particulate evidence. To date, there has been little consideration given to the potential effects of using UAV’s within active crime scenes aside from a legislation point of view. Although potentially the technology can reduce the likelihood of contamination by replacing some of the roles of investigating practitioners. There is the risk of evidence dispersal caused by the effect of the strong airflow beneath the UAV, from the downwash of the propellers. The initial results of this study are therefore presented to determine the height of least effect at which to fly, and the commercial propeller type to choose to generate the smallest amount of disturbance from the dataset tested. In this study, a range of commercially available 4-inch propellers were chosen as a starting point due to the common availability and their small size makes them well suited for operation within confined spaces. To perform the testing, a rig was configured to support a single motor and propeller powered with a standalone mains power supply and controlled via a microcontroller. This was to mimic a complete throttle cycle and control the device to ensure repeatability. By removing the variances of battery packs and complex UAV structures to allow for a more robust setup. Therefore, the only changing factors were the propeller and operating height. The results were calculated via computer vision analysis of the recorded dispersal of the sample particles placed below the arm-mounted propeller. The aim of this initial study is to give practitioners an insight into the technology to use when operating within confined spaces as well as recognizing some of the issues caused by UAV’s within active crime scenes.

Keywords: dispersal, evidence, propeller, UAV

Procedia PDF Downloads 141
128 A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking

Authors: Reyhan Özdoğan, Mithat Çelebi, Özgür Ceylan, Mehmet Arif Kaya

Abstract:

Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved.

Keywords: inverse suspension polymerization, polyacrylic acid, super absorbent polymers (SAPs), surface crosslinking, sodium polyacrylate

Procedia PDF Downloads 300
127 Grain Size Statistics and Depositional Pattern of the Ecca Group Sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa

Authors: Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava

Abstract:

Grain size analysis is a vital sedimentological tool used to unravel the hydrodynamic conditions, mode of transportation and deposition of detrital sediments. In this study, detailed grain-size analysis was carried out on thirty-five sandstone samples from the Ecca Group in the Eastern Cape Province of South Africa. Grain-size statistical parameters, bivariate analysis, linear discriminate functions, Passega diagrams and log-probability curves were used to reveal the depositional processes, sedimentation mechanisms, hydrodynamic energy conditions and to discriminate different depositional environments. The grain-size parameters show that most of the sandstones are very fine to fine grained, moderately well sorted, mostly near-symmetrical and mesokurtic in nature. The abundance of very fine to fine grained sandstones indicates the dominance of low energy environment. The bivariate plots that the samples are mostly grouped, except for the Prince Albert samples that show scattered trend, which is due to the either mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function (LDF) analysis is dominantly indicative of turbidity current deposits under shallow marine environments for samples from the Prince Albert, Collingham and Ripon Formations, while those samples from the Fort Brown Formation are fluvial (deltaic) deposits. The graphic mean value shows the dominance of fine sand-size particles, which point to relatively low energy conditions of deposition. In addition, the LDF results point to low energy conditions during the deposition of the Prince Albert, Collingham and part of the Ripon Formation (Pluto Vale and Wonderfontein Shale Members), whereas the Trumpeters Member of the Ripon Formation and the overlying Fort Brown Formation accumulated under high energy conditions. The CM pattern shows a clustered distribution of sediments in the PQ and QR segments, indicating that the sediments were deposited mostly by suspension and rolling/saltation, and graded suspension. Furthermore, the plots also show that the sediments are mainly deposited by turbidity currents. Visher diagrams show the variability of hydraulic depositional conditions for the Permian Ecca Group sandstones. Saltation is the major process of transportation, although suspension and traction also played some role during deposition of the sediments. The sediments were mainly in saltation and suspension before being deposited.

Keywords: grain size analysis, hydrodynamic condition, depositional environment, Ecca Group, South Africa

Procedia PDF Downloads 455
126 The Physiological Effect of Cold Atmospheric Pressure Plasma on Cancer Cells, Cancer Stem Cells, and Adult Stem Cells

Authors: Jeongyeon Park, Yeo Jun Yoon, Jiyoung Seo, In Seok Moon, Hae Jun Lee, Kiwon Song

Abstract:

Cold Atmospheric Pressure Plasma (CAPP) is defined as a partially ionized gas with electrically charged particles at room temperature and atmospheric pressure. CAPP generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has potential as a new apoptosis-promoting cancer therapy. With an annular type dielectric barrier discharge (DBD) CAPP-generating device combined with a helium (He) gas feeding system, we showed that CAPP selectively induced apoptosis in various cancer cells while it promoted proliferation of the adipose tissue-derived stem cell (ASC). The apoptotic effect of CAPP was highly selective toward p53-mutated cancer cells. The intracellular ROS was mainly responsible for apoptotic cell death in CAPP-treated cancer cells. CAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of CAPP as a potent cancer therapy. With the same device and exposure conditions to cancer cells, CAPP stimulated proliferation of the ASC, a kind of mesenchymal stem cell that is capable of self-renewing and differentiating into adipocytes, chondrocytes, osteoblasts and neurons. CAPP-treated ASCs expressed the stem cell markers and differentiated into adipocytes as untreated ASCs. The increase of proliferation by CAPP in ASCs was offset by a NO scavenger but was not affected by ROS scavengers, suggesting that NO generated by CAPP is responsible for the activated proliferation in ASCs. Usually, cancer stem cells are reported to be resistant to known cancer therapies. When we applied CAPP of the same device and exposure conditions to cancer cells to liver cancer stem cells (CSCs) that express CD133 and epithelial cell adhesion molecule (EpCAM) cancer stem cell markers, apoptotic cell death was not examined. Apoptotic cell death of liver CSCs was induced by the CAPP generated from a device with an air-based flatten type DBD. An exposure of liver CSCs to CAPP decreased the viability of liver CSCs to a great extent, suggesting plasma be used as a promising anti-cancer treatment. To validate whether CAPP can be a promising anti-cancer treatment or an adjuvant modality to eliminate remnant tumor in cancer surgery of vestibular schwannoma, we applied CAPP to mouse schwannoma cell line SC4 Nf2 ‑/‑ and human schwannoma cell line HEI-193. A CAPP treatment leads to anti-proliferative effect in both cell lines. We are currently studying the molecular mechanisms of differential physiological effect of CAPP; the proliferation of ASCs and apoptosis of various cancer cells and CSCs.

Keywords: cold atmospheric pressure plasma, apoptosis, proliferation, cancer cells, adult stem cells

Procedia PDF Downloads 256
125 Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards

Authors: Soad Abubakr Abdelgalil, Gaber Attia Abo-Zaid, Mohamed Mohamed Yousri Kaddah

Abstract:

Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.

Keywords: chicken eggshells waste, bioremediation, statistical experimental design, batch fermentation

Procedia PDF Downloads 344
124 Nanomechanical Characterization of Healthy and Tumor Lung Tissues at Cell and Extracellular Matrix Level

Authors: Valeria Panzetta, Ida Musella, Sabato Fusco, Paolo Antonio Netti

Abstract:

The study of the biophysics of living cells drew attention to the pivotal role of the cytoskeleton in many cell functions, such as mechanics, adhesion, proliferation, migration, differentiation and neoplastic transformation. In particular, during the complex process of malignant transformation and invasion cell cytoskeleton devolves from a rigid and organized structure to a more compliant state, which confers to the cancer cells a great ability to migrate and adapt to the extracellular environment. In order to better understand the malignant transformation process from a mechanical point of view, it is necessary to evaluate the direct crosstalk between the cells and their surrounding extracellular matrix (ECM) in a context which is close to in vivo conditions. In this study, human biopsy tissues of lung adenocarcinoma were analyzed in order to define their mechanical phenotype at cell and ECM level, by using particle tracking microrheology (PTM) technique. Polystyrene beads (500 nm) were introduced into the sample slice. The motion of beads was obtained by tracking their displacements across cell cytoskeleton and ECM structures and mean squared displacements (MSDs) were calculated from bead trajectories. It has been already demonstrated that the amplitude of MSD is inversely related to the mechanical properties of intracellular and extracellular microenvironment. For this reason, MSDs of particles introduced in cytoplasm and ECM of healthy and tumor tissues were compared. PTM analyses showed that cancerous transformation compromises mechanical integrity of cells and extracellular matrix. In particular, the MSD amplitudes in cells of adenocarcinoma were greater as compared to cells of normal tissues. The increased motion is probably associated to a less structured cytoskeleton and consequently to an increase of deformability of cells. Further, cancer transformation is also accompanied by extracellular matrix stiffening, as confirmed by the decrease of MSDs of matrix in tumor tissue, a process that promotes tumor proliferation and invasiveness, by activating typical oncogenic signaling pathways. In addition, a clear correlation between MSDs of cells and tumor grade was found. MSDs increase when tumor grade passes from 2 to 3, indicating that cells undergo to a trans-differentiation process during tumor progression. ECM stiffening is not dependent on tumor grade, but the tumor stage resulted to be strictly correlated with both cells and ECM mechanical properties. In fact, a greater stage is assigned to tumor spread to regional lymph nodes and characterized by an up-regulation of different ECM proteins, such as collagen I fibers. These results indicate that PTM can be used to get nanomechanical characterization at different scale levels in an interpretative and diagnostic context.

Keywords: cytoskeleton, extracellular matrix, mechanical properties, particle tracking microrheology, tumor

Procedia PDF Downloads 250
123 Ex-vivo Bio-distribution Studies of a Potential Lung Perfusion Agent

Authors: Shabnam Sarwar, Franck Lacoeuille, Nadia Withofs, Roland Hustinx

Abstract:

After the development of a potential surrogate of MAA, and its successful application for the diagnosis of pulmonary embolism in artificially embolized rats’ lungs, this microparticulate system were radiolabelled with gallium-68 to synthesize 68Ga-SBMP with high radiochemical purity >99%. As a prerequisite step of clinical trials, 68Ga- labelled starch based microparticles (SBMP) were analysed for their in-vivo behavior in small animals. The purpose of the presented work includes the ex-vivo biodistribution studies of 68Ga-SBMP in order to assess the activity uptake in target organs with respect to time, excretion pathways of the radiopharmaceutical, %ID/g in major organs, T/NT ratios, in-vivo stability of the radiotracer and subsequently the microparticles in the target organs. Radiolabelling of starch based microparticles was performed by incubating it with 68Ga generator eluate (430±26 MBq) at room temperature and pressure without using any harsh reaction condition. For Ex-vivo biodistribution studies healthy White Wistar rats weighing between 345-460 g were injected intravenously 68Ga-SBMP 20±8 MBq, containing about 2,00,000-6,00,000 SBMP particles in a volume of 700µL. The rats were euthanized at predefined time intervals (5min, 30min, 60min and 120min) and their organ parts were cut, washed, and put in the pre-weighed tubes and measured for radioactivity counts through automatic Gamma counter. The 68Ga-SBMP produced >99% RCP just after 10-20 min incubation through a simple and robust procedure. Biodistribution of 68Ga-SBMP showed that initially just after 5 min post injection major uptake was observed in the lungs following by blood, heart, liver, kidneys, bladder, urine, spleen, stomach, small intestine, colon, skin and skeleton, thymus and at last the smallest activity was found in brain. Radioactivity counts stayed stable in lungs with gradual decrease with the passage of time, and after 2h post injection, almost half of the activity were seen in lungs. This is a sufficient time to perform PET/CT lungs scanning in humans while activity in the liver, spleen, gut and urinary system decreased with time. The results showed that urinary system is the excretion pathways instead of hepatobiliary excretion. There was a high value of T/NT ratios which suggest fine tune images for PET/CT lung perfusion studies henceforth further pre-clinical studies and then clinical trials should be planned in order to utilize this potential lung perfusion agent.

Keywords: starch based microparticles, gallium-68, biodistribution, target organs, excretion pathways

Procedia PDF Downloads 147
122 Gold Nano Particle as a Colorimetric Sensor of HbA0 Glycation Products

Authors: Ranjita Ghoshmoulick, Aswathi Madhavan, Subhavna Juneja, Prasenjit Sen, Jaydeep Bhattacharya

Abstract:

Type 2 diabetes mellitus (T2DM) is a very complex and multifactorial metabolic disease where the blood sugar level goes up. One of the major consequence of this elevated blood sugar is the formation of AGE (Advance Glycation Endproducts), from a series of chemical or biochemical reactions. AGE are detrimental because it leads to severe pathogenic complications. They are a group of structurally diverse chemical compounds formed from nonenzymatic reactions between the free amino groups (-NH2) of proteins and carbonyl groups (>C=O) of reducing sugars. The reaction is known as Maillard Reaction. It starts with the formation of reversible schiff’s base linkage which after sometime rearranges itself to form Amadori Product along with dicarbonyl compounds. Amadori products are very unstable hence rearrangement goes on until stable products are formed. During the course of the reaction a lot of chemically unknown intermediates and reactive byproducts are formed that can be termed as Early Glycation Products. And when the reaction completes, structurally stable chemical compounds are formed which is termed as Advanced Glycation Endproducts. Though all glycation products have not been characterized well, some fluorescence compounds e.g pentosidine, Malondialdehyde (MDA) or carboxymethyllysine (CML) etc as AGE and α-dicarbonyls or oxoaldehydes such as 3-deoxyglucosone (3-DG) etc as the intermediates have been identified. In this work Gold NanoParticle (GNP) was used as an optical indicator of glycation products. To achieve faster glycation kinetics and high AGE accumulation, fructose was used instead of glucose. Hemoglobin A0 (HbA0) was fructosylated by in-vitro method. AGE formation was measured fluorimetrically by recording emission at 450nm upon excitation at 350nm. Thereafter this fructosylated HbA0 was fractionated by column chromatography. Fractionation separated the proteinaceous substance from the AGEs. Presence of protein part in the fractions was confirmed by measuring the intrinsic protein fluorescence and Bradford reaction. GNPs were synthesized using the templates of chromatographically separated fractions of fructosylated HbA0. Each fractions gave rise to GNPs of varying color, indicating the presence of distinct set of glycation products differing structurally and chemically. Clear solution appeared due to settling down of particles in some vials. The reactive groups of the intermediates kept the GNP formation mechanism on and did not lead to a stable particle formation till Day 10. Whereas SPR of GNP showed monotonous colour for the fractions collected in case of non fructosylated HbA0. Our findings accentuate the use of GNPs as a simple colorimetric sensing platform for the identification of intermediates of glycation reaction which could be implicated in the prognosis of the associated health risk due to T2DM and others.

Keywords: advance glycation endproducts, glycation, gold nano particle, sensor

Procedia PDF Downloads 283
121 Possibility of Membrane Filtration to Treatment of Effluent from Digestate

Authors: Marcin Debowski, Marcin Zielinski, Magdalena Zielinska, Paulina Rusanowska

Abstract:

The problem with digestate management is one of the most important factors influencing on the development and operation of biogas plant. Turbidity and bacterial contamination negatively affect the growth of algae, which can limit the use of the effluent in the production of algae biomass on a large scale. These problems can be overcome by cultivating of algae species resistant to environmental factors, such as Chlorella sp., Scenedesmus sp., or reducing load of organic compounds to prevent bacterial contamination. The effluent requires dilution and/or purification. One of the methods of effluent treatment is the use of a membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), depending on the membrane pore size and the cut off point. Membranes are a physical barrier to solids and particles larger than the size of the pores. MF membranes have the largest pores and are used to remove turbidity, suspensions, bacteria and some viruses. UF membranes remove also color, odor and organic compounds with high molecular weight. In treatment of wastewater or other waste streams, MF and UF can provide a sufficient degree of purification. NF membranes are used to remove natural organic matter from waters, water disinfection products and sulfates. RO membranes are applied to remove monovalent ions such as Na⁺ or K⁺. The effluent was used in UF for medium to cultivation of two microalgae: Chlorella sp. and Phaeodactylum tricornutum. Growth rates of Chlorella sp. and P. tricornutum were similar: 0.216 d⁻¹ and 0.200 d⁻¹ (Chlorella sp.); 0.128 d⁻¹ and 0.126 d⁻¹ (P. tricornutum), on synthetic medium and permeate from UF, respectively. The final biomass composition was also similar, regardless of the medium. Removal of nitrogen was 92% and 71% by Chlorella sp. and P. tricornutum, respectively. The fermentation effluents after UF and dilution were also used for cultivation of algae Scenedesmus sp. that is resistant to environmental conditions. The authors recommended the development of biorafinery based on the production of algae for the biogas production. There are examples of using a multi-stage membrane system to purify the liquid fraction from digestate. After the initial UF, RO is used to remove ammonium nitrogen and COD. To obtain a permeate with a concentration of ammonium nitrogen allowing to discharge it into the environment, it was necessary to apply three-stage RO. The composition of the permeate after two-stage RO was: COD 50–60 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 300–320 mg/dm³, total nitrogen 320–340 mg/dm³, total phosphorus 53 mg/dm³. However compostion of permeate after three-stage RO was: COD < 5 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 0 mg/dm³, total nitrogen 3.5 mg/dm³, total phosphorus < 0,05 mg/dm³. Last stage of RO might be replaced by ion exchange process. The negative aspect of membrane filtration systems is the fact that the permeate is about 50% of the introduced volume, the remainder is the retentate. The management of a retentate might involve recirculation to a biogas plant.

Keywords: digestate, membrane filtration, microalgae cultivation, Chlorella sp.

Procedia PDF Downloads 328
120 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 246
119 Oxidation Behavior of Ferritic Stainless Steel Interconnects Modified Using Nanoparticles of Rare-Earth Elements under Operating Conditions Specific to Solid Oxide Electrolyzer Cells

Authors: Łukasz Mazur, Kamil Domaradzki, Bartosz Kamecki, Justyna Ignaczak, Sebastian Molin, Aleksander Gil, Tomasz Brylewski

Abstract:

The rising global power consumption necessitates the development of new energy storage solutions. Prospective technologies include solid oxide electrolyzer cells (SOECs), which convert surplus electrical energy into hydrogen. An electrolyzer cell consists of a porous anode, and cathode, and a dense electrolyte. Power output is increased by connecting cells into stacks using interconnects. Interconnects are currently made from high-chromium ferritic steels – for example, Crofer 22 APU – which exhibit high oxidation resistance and a thermal expansion coefficient that is similar to that of electrode materials. These materials have one disadvantage – their area-specific resistance (ASR) gradually increases due to the formation of a Cr₂O₃ scale on their surface as a result of oxidation. The chromia in the scale also reacts with the water vapor present in the reaction media, forming volatile chromium oxyhydroxides, which in turn react with electrode materials and cause their deterioration. The electrochemical efficiency of SOECs thus decreases. To mitigate this, the interconnect surface can be modified with protective-conducting coatings of spinel or other materials. The high prices of SOEC components -especially the Crofer 22 APU- have prevented their widespread adoption. More inexpensive counterparts, therefore, need to be found, and their properties need to be enhanced to make them viable. Candidates include the Nirosta 4016/1,4016 low-chromium ferritic steel with a chromium content of just 16.3 wt%. This steel's resistance to high-temperature oxidation was improved by depositing Gd₂O₃ nanoparticles on its surface via either dip coating or electrolysis. Modification with CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles deposited by means of spray pyrolysis was also tested. These methods were selected because of their low cost and simplicity of application. The aim of this study was to investigate the oxidation kinetics of Nirosta 4016/1,4016 modified using the afore-mentioned methods and to subsequently measure the obtained samples' ASR. The samples were oxidized for 100 h in the air as well as air/H₂O and Ar/H₂/H₂O mixtures at 1073 K. Such conditions reflect those found in the anode and cathode operating space during real-life use of SOECs. Phase and chemical composition and the microstructure of oxidation products were determined using XRD and SEM-EDS. ASR was measured over the range of 623-1073 K using a four-point, two-probe DC technique. The results indicate that the applied nanoparticles improve the oxidation resistance and electrical properties of the studied layered systems. The properties of individual systems varied significantly depending on the applied reaction medium. Gd₂O₃ nanoparticles improved oxidation resistance to a greater degree than either CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles. On the other hand, the cerium-containing nanoparticles improved electrical properties regardless of the reaction medium. The ASR values of all surface-modified steel samples were below the 0.1 Ω.cm² threshold set for interconnect materials, which was exceeded in the case of the unmodified reference sample. It can be concluded that the applied modifications increased the oxidation resistance of Nirosta 4016/1.4016 to a level that allows its use as SOEC interconnect material. Acknowledgments: Funding of Research project supported by program "Excellence initiative – research university" for the AGH University of Krakow" is gratefully acknowledged (TB).

Keywords: cerium oxide, ferritic stainless steel, gadolinium oxide, interconnect, SOEC

Procedia PDF Downloads 54
118 Evaluation of Tensile Strength of Natural Fibres Reinforced Epoxy Composites Using Fly Ash as Filler Material

Authors: Balwinder Singh, Veerpaul Kaur Mann

Abstract:

A composite material is formed by the combination of two or more phases or materials. Natural minerals-derived Basalt fiber is a kind of fiber being introduced in the polymer composite industry due to its good mechanical properties similar to synthetic fibers and low cost, environment friendly. Also, there is a rising trend towards the use of industrial wastes as fillers in polymer composites with the aim of improving the properties of the composites. The mechanical properties of the fiber-reinforced polymer composites are influenced by various factors like fiber length, fiber weight %, filler weight %, filler size, etc. Thus, a detailed study has been done on the characterization of short-chopped Basalt fiber-reinforced polymer matrix composites using fly ash as filler. Taguchi’s L9 orthogonal array has been used to develop the composites by considering fiber length (6, 9 and 12 mm), fiber weight % (25, 30 and 35 %) and filler weight % (0, 5 and 10%) as input parameters with their respective levels and a thorough analysis on the mechanical characteristics (tensile strength and impact strength) has been done using ANOVA analysis with the help of MINITAB14 software. The investigation revealed that fiber weight is the most significant parameter affecting tensile strength, followed by fiber length and fiber weight %, respectively, while impact characterization showed that fiber length is the most significant factor, followed by fly ash weight, respectively. Introduction of fly ash proved to be beneficial in both the characterization with enhanced values upto 5% fly ash weight. The present study on the natural fibres reinforced epoxy composites using fly ash as filler material to study the effect of input parameters on the tensile strength in order to maximize tensile strength of the composites. Fabrication of composites based on Taguchi L9 orthogonal array design of experiments by using three factors fibre type, fibre weight % and fly ash % with three levels of each factor. The Optimization of composition of natural fibre reinforces composites using ANOVA for obtaining maximum tensile strength on fabricated composites revealed that the natural fibres along with fly ash can be successfully used with epoxy resin to prepare polymer matrix composites with good mechanical properties. Paddy- Paddy fibre gives high elasticity to the fibre composite due to presence of approximately hexagonal structure of cellulose present in paddy fibre. Coir- Coir fibre gives less tensile strength than paddy fibre as Coir fibre is brittle in nature when it pulls breakage occurs showing less tensile strength. Banana- Banana fibre has the least tensile strength in comparison to the paddy & coir fibre due to less cellulose content. Higher fibre weight leads to reduction in tensile strength due to increased nuclei of air pockets. Increasing fly ash content reduces tensile strength due to nonbonding of fly ash particles with natural fibre. Fly ash is also not very strong as compared to the epoxy resin leading to reduction in tensile strength.

Keywords: tensile strength and epoxy resin. basalt Fiber, taguchi, polymer matrix, natural fiber

Procedia PDF Downloads 26