Search results for: intelligent labor saving
93 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage
Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara
Abstract:
Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy
Procedia PDF Downloads 14292 Dissocial Personality in Adolescents
Authors: Tsirekidze M., Aprasidze T.
Abstract:
Introduction: The problem of dissocial behavior is at the heart of the social sciences and psychiatry; however, it should be noted that its psychiatric aspect is little studied, and some issues of the problem are still controversial. This is complicated by the diversity of terminological concepts in defining “dissocial behavior”, “behavioral disorder”, “abnormal behavior”, “deviant behavior”, “delinquent behavior”, etc. In literature, there is no comprehensive definition of the essence of dissociative behavior. Numerous attempts to systematize dissociative disorders should also be considered unsatisfactory, which is primarily related to the lack of solid criteria for defining this group of disorders. According to the clinical classification, dissocial behavior is divided into psychotic and non-psychotic forms. Such differentiation is conditional in nature since it is not always possible to draw precise, clear distinctions between these forms, and in addition, there is a transition of a behavior disorder or so-called intermediate forms. One group of authors distinguishes two main forms of deviant behavior in terms of both theoretical and practical significance - non-pathological and pathological. In recent years, especially, the non-pathological form of behavior disorder has become topical. It refers to a large group of forms of deviant behavior, the emergence of which is associated with psychologically full-fledged reactions of children and adolescents to stressful situations and extreme conditions. According to the authors, its concept is understandable-it is difficult to draw a line between psychologically understandable reactions and psychogenically induced reactive states. In addition, the concept of "normal" child and adolescent is, to some extent, a vague concept, as in medicine, any definition of the norm. From a practical (more precisely, pragmatic) point of view, the term "abnormal behavioral disorder" undoubtedly makes sense, especially for the purpose of forensic psychiatric examination. Non-pathological deviation mainly includes transient situational reactions, microsocial-pedagogical backwardness, and character accentuation.Deviant behavior was predominantly manifested in a non-pathological form, which, in our opinion, is due to the difficult socio-economic situation of the country, moral-ethical deprivation, and expressed frustration. By itself, society is an indicator of deviation. Add to this situation complicated factors such as micro-social-pedagogical leave, unfavorable family environment, and parenting defects. Consideration is also given to the connection of acceptable deviation with the personal structural features of the adolescent. Aim: The topic of our discussion is the dissocial behavior of the non-psychotic register. Methods: We surveyed 120 adolescents with deviant behaviors. 61% of them were diagnosed with various neuropsychiatric disorders. Results: Abnormal forms of deviant behavior were observed in 13%, and non-pathological forms in -69%. A combination of non-pathological and pathological forms was present in 10% of cases. In the case of non-pathological deviation, microsocial-pedagogical acceptance was revealed in 62%, character accentuation in 22%; during the pathological forms, pathological reactions were observed in 21%, and abnormal formation of the person -21%. Conclusion: It should be emphasized that in case of any of the above defects, if the so-called family psychosis, and medical and pedagogical habilitation measures for the adolescent, it is quite possible to prevent the abnormal development of the child's personality, correct his character, regulate behavior and develop positive labor-social relations.Keywords: dissocial personality, deviant behavior, dissocial, delinquent behavior
Procedia PDF Downloads 22491 Integration of Rapid Generation Technology in Pulse Crop Breeding
Authors: Saeid H. Mobini, Monika Lulsdorf, Thomas D. Warkentin
Abstract:
The length of the breeding cycle from seed to seed is a limiting factor in the development of improved homozygous lines for breeding or recombinant inbred lines (RILs) for genetic analysis. The objective of this research was to accelerate the production of field pea RILs through application of rapid generation technology (RGT). RGT is based on the principle of growing miniature plants in an artificial medium under controlled conditions, and allowing them to produce a few flowers which develop seeds that are harvested prior to normal seed maturity. We aimed to maintain population size and genetic diversity in regeneration cycles. The effects of flurprimidol (a gibberellin synthesis inhibitor), plant density, hydroponic system, scheduled fertilizer applications, artificial light spectrum, photoperiod, and light/dark temperature were evaluated in the development of RILs from a cross between cultivars CDC Dakota and CDC Amarillo. The main goal was to accelerate flowering while reducing maintenance and space costs. In addition, embryo rescue of immature seeds was tested for shortening the seed fill period. Data collected over seven generations included plant height, the percentage of plant survival, flowering rate, seed setting rate, the number of seeds per plant, and time from seed to seed. Applying 0.6 µM flurprimidol reduced the internode length. Plant height was decreased to approximately 32 cm allowing for higher plant density without a delay in flowering and seed setting rate. The three light systems (T5 fluorescent bulbs, LEDs, and High Pressure Sodium +Metal-halide lamp) evaluated did not differ significantly in terms of flowering time in field pea. Collectively, the combination of 0.6 µM flurprimidol, 217 plant. m-2, 20 h photoperiod, 21/16 oC light/dark temperature in a hydroponic system with vermiculite substrate, applying scheduled fertilizer application based on growth stage, and 500 µmole.m-2.s-1 light intensity using T5 bulbs resulted in 100% of plants flowering within 34 ± 3 days and 96.5% of plants completed seed setting in 68.2 ± 3.6 days, i.e., 30-45 days/generation faster than conventional single seed descent (SSD) methods. These regeneration cycles were reproducible consistently. Hence, RGT could double (5.3) generations per year, using 3% occupying space, compared to SSD (2-3 generation/year). Embryo rescue of immature seeds at 7-8 mm stage, using commercial fertilizer solutions (Holland’s Secret™) showed seed setting rate of 95%, while younger embryos had lower germination rate. Mature embryos had a seed setting rate of 96.5% without either hormones or sugar added. So, considering the higher cost of embryo rescue using a procedure which requires skill, additional materials, and expenses, it could be removed from RGT with a further cost saving, and the process could be stopped between generations if required.Keywords: field pea, flowering, rapid regeneration, recombinant inbred lines, single seed descent
Procedia PDF Downloads 36390 Cultivating Concentration and Flow: Evaluation of a Strategy for Mitigating Digital Distractions in University Education
Authors: Vera G. Dianova, Lori P. Montross, Charles M. Burke
Abstract:
In the digital age, the widespread and frequently excessive use of mobile phones amongst university students is recognized as a significant distractor which interferes with their ability to enter a deep state of concentration during studies and diminishes their prospects of experiencing the enjoyable and instrumental state of flow, as defined and described by psychologist M. Csikszentmihalyi. This study has targeted 50 university students with the aim of teaching them to cultivate their ability to engage in deep work and to attain the state of flow, fostering more effective and enjoyable learning experiences. Prior to the start of the intervention, all participating students completed a comprehensive survey based on a variety of validated scales assessing their inclination toward lifelong learning, frequency of flow experiences during study, frustration tolerance, sense of agency, as well as their love of learning and daily time devoted to non-academic mobile phone activities. Several days after this initial assessment, students received a 90-minute lecture on the principles of flow and deep work, accompanied by a critical discourse on the detrimental effects of excessive mobile phone usage. They were encouraged to practice deep work and strive for frequent flow states throughout the semester. Subsequently, students submitted weekly surveys, including the 10-item CORE Dispositional Flow Scale, a 3-item agency scale and furthermore disclosed their average daily hours spent on non-academic mobile phone usage. As a final step, at the end of the semester students engaged in reflective report writing, sharing their experiences and evaluating the intervention's effectiveness. They considered alterations in their love of learning, reflected on the implications of their mobile phone usage, contemplated improvements in their tolerance for boredom and perseverance in complex tasks, and pondered the concept of lifelong learning. Additionally, students assessed whether they actively took steps towards managing their recreational phone usage and towards improving their commitment to becoming lifelong learners. Employing a mixed-methods approach our study offers insights into the dynamics of concentration, flow, mobile phone usage and attitudes towards learning among undergraduate and graduate university students. The findings of this study aim to promote profound contemplation, on the part of both students and instructors, on the rapidly evolving digital-age higher education environment. In an era defined by digital and AI advancements, the ability to concentrate, to experience the state of flow, and to love learning has never been more crucial. This study underscores the significance of addressing mobile phone distractions and providing strategies for cultivating deep concentration. The insights gained can guide educators in shaping effective learning strategies for the digital age. By nurturing a love for learning and encouraging lifelong learning, educational institutions can better prepare students for a rapidly changing labor market, where adaptability and continuous learning are paramount for success in a dynamic career landscape.Keywords: deep work, flow, higher education, lifelong learning, love of learning
Procedia PDF Downloads 6889 Genetically Engineered Crops: Solution for Biotic and Abiotic Stresses in Crop Production
Authors: Deepak Loura
Abstract:
Production and productivity of several crops in the country continue to be adversely affected by biotic (e.g., Insect-pests and diseases) and abiotic (e.g., water temperature and salinity) stresses. Over-dependence on pesticides and other chemicals is economically non-viable for the resource-poor farmers of our country. Further, pesticides can potentially affect human and environmental safety. While traditional breeding techniques and proper- management strategies continue to play a vital role in crop improvement, we need to judiciously use biotechnology approaches for the development of genetically modified crops addressing critical problems in the improvement of crop plants for sustainable agriculture. Modern biotechnology can help to increase crop production, reduce farming costs, and improve food quality and the safety of the environment. Genetic engineering is a new technology which allows plant breeders to produce plants with new gene combinations by genetic transformation of crop plants for improvement of agronomic traits. Advances in recombinant DNA technology have made it possible to have genes between widely divergent species to develop genetically modified or genetically engineered plants. Plant genetic engineering provides the strength to harness useful genes and alleles from indigenous microorganisms to enrich the gene pool for developing genetically modified (GM) crops that will have inbuilt (inherent) resistance to insect pests, diseases, and abiotic stresses. Plant biotechnology has made significant contributions in the past 20 years in the development of genetically engineered or genetically modified crops with multiple benefits. A variety of traits have been introduced in genetically engineered crops which include (i) herbicide resistance. (ii) pest resistance, (iii) viral resistance, (iv) slow ripening of fruits and vegetables, (v) fungal and bacterial resistance, (vi) abiotic stress tolerance (drought, salinity, temperature, flooding, etc.). (vii) quality improvement (starch, protein, and oil), (viii) value addition (vitamins, micro, and macro elements), (ix) pharmaceutical and therapeutic proteins, and (x) edible vaccines, etc. Multiple genes in transgenic crops can be useful in developing durable disease resistance and a broad insect-control spectrum and could lead to potential cost-saving advantages for farmers. The development of transgenic to produce high-value pharmaceuticals and the edible vaccine is also under progress, which requires much more research and development work before commercially viable products will be available. In addition, molecular-aided selection (MAS) is now routinely used to enhance the speed and precision of plant breeding. Newer technologies need to be developed and deployed for enhancing and sustaining agricultural productivity. There is a need to optimize the use of biotechnology in conjunction with conventional technologies to achieve higher productivity with fewer resources. Therefore, genetic modification/ engineering of crop plants assumes greater importance, which demands the development and adoption of newer technology for the genetic improvement of crops for increasing crop productivity.Keywords: biotechnology, plant genetic engineering, genetically modified, biotic, abiotic, disease resistance
Procedia PDF Downloads 7188 Adapting Cyber Physical Production Systems to Small and Mid-Size Manufacturing Companies
Authors: Yohannes Haile, Dipo Onipede, Jr., Omar Ashour
Abstract:
The main thrust of our research is to determine Industry 4.0 readiness of small and mid-size manufacturing companies in our region and assist them to implement Cyber Physical Production System (CPPS) capabilities. Adopting CPPS capabilities will help organizations realize improved quality, order delivery, throughput, new value creation, and reduced idle time of machines and work centers of their manufacturing operations. The key metrics for the assessment include the level of intelligence, internal and external connections, responsiveness to internal and external environmental changes, capabilities for customization of products with reference to cost, level of additive manufacturing, automation, and robotics integration, and capabilities to manufacture hybrid products in the near term, where near term is defined as 0 to 18 months. In our initial evaluation of several manufacturing firms which are profitable and successful in what they do, we found low level of Physical-Digital-Physical (PDP) loop in their manufacturing operations, whereas 100% of the firms included in this research have specialized manufacturing core competencies that have differentiated them from their competitors. The level of automation and robotics integration is low to medium range, where low is defined as less than 30%, and medium is defined as 30 to 70% of manufacturing operation to include automation and robotics. However, there is a significant drive to include these capabilities at the present time. As it pertains to intelligence and connection of manufacturing systems, it is observed to be low with significant variance in tying manufacturing operations management to Enterprise Resource Planning (ERP). Furthermore, it is observed that the integration of additive manufacturing in general, 3D printing, in particular, to be low, but with significant upside of integrating it in their manufacturing operations in the near future. To hasten the readiness of the local and regional manufacturing companies to Industry 4.0 and transitions towards CPPS capabilities, our working group (ADMAR Working Group) in partnership with our university have been engaged with the local and regional manufacturing companies. The goal is to increase awareness, share know-how and capabilities, initiate joint projects, and investigate the possibility of establishing the Center for Cyber Physical Production Systems Innovation (C2P2SI). The center is intended to support the local and regional university-industry research of implementing intelligent factories, enhance new value creation through disruptive innovations, the development of hybrid and data enhanced products, and the creation of digital manufacturing enterprises. All these efforts will enhance local and regional economic development and educate students that have well developed knowledge and applications of cyber physical manufacturing systems and Industry 4.0.Keywords: automation, cyber-physical production system, digital manufacturing enterprises, disruptive innovation, new value creation, physical-digital-physical loop
Procedia PDF Downloads 14187 Fully Autonomous Vertical Farm to Increase Crop Production
Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek
Abstract:
New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.Keywords: automation, vertical farming, robot, artificial intelligence, vision, control
Procedia PDF Downloads 4286 The Impact of Emotional Intelligence on Organizational Performance
Authors: El Ghazi Safae, Cherkaoui Mounia
Abstract:
Within companies, emotions have been forgotten as key elements of successful management systems. Seen as factors which disturb judgment, make reckless acts or affect negatively decision-making. Since management systems were influenced by the Taylorist worker image, that made the work regular and plain, and considered employees as executing machines. However, recently, in globalized economy characterized by a variety of uncertainties, emotions are proved as useful elements, even necessary, to attend high-level management. The work of Elton Mayo and Kurt Lewin reveals the importance of emotions. Since then emotions start to attract considerable attention. These studies have shown that emotions influence, directly or indirectly, many organization processes. For example, the quality of interpersonal relationships, job satisfaction, absenteeism, stress, leadership, performance and team commitment. Emotions became fundamental and indispensable to individual yield and so on to management efficiency. The idea that a person potential is associated to Intellectual Intelligence, measured by the IQ as the main factor of social, professional and even sentimental success, was the main problematic that need to be questioned. The literature on emotional intelligence has made clear that success at work does not only depend on intellectual intelligence but also other factors. Several researches investigating emotional intelligence impact on performance showed that emotionally intelligent managers perform more, attain remarkable results, able to achieve organizational objectives, impact the mood of their subordinates and create a friendly work environment. An improvement in the emotional intelligence of managers is therefore linked to the professional development of the organization and not only to the personal development of the manager. In this context, it would be interesting to question the importance of emotional intelligence. Does it impact organizational performance? What is the importance of emotional intelligence and how it impacts organizational performance? The literature highlighted that measurement and conceptualization of emotional intelligence are difficult to define. Efforts to measure emotional intelligence have identified three models that are more prominent: the mixed model, the ability model, and the trait model. The first is considered as cognitive skill, the second relates to the mixing of emotional skills with personality-related aspects and the latter is intertwined with personality traits. But, despite strong claims about the importance of emotional intelligence in the workplace, few studies have empirically examined the impact of emotional intelligence on organizational performance, because even though the concept of performance is at the heart of all evaluation processes of companies and organizations, we observe that performance remains a multidimensional concept and many authors insist about the vagueness that surrounds the concept. Given the above, this article provides an overview of the researches related to emotional intelligence, particularly focusing on studies that investigated the impact of emotional intelligence on organizational performance to contribute to the emotional intelligence literature and highlight its importance and show how it impacts companies’ performance.Keywords: emotions, performance, intelligence, firms
Procedia PDF Downloads 10885 Hardware Implementation on Field Programmable Gate Array of Two-Stage Algorithm for Rough Set Reduct Generation
Authors: Tomasz Grzes, Maciej Kopczynski, Jaroslaw Stepaniuk
Abstract:
The rough sets theory developed by Prof. Z. Pawlak is one of the tools that can be used in the intelligent systems for data analysis and processing. Banking, medicine, image recognition and security are among the possible fields of utilization. In all these fields, the amount of the collected data is increasing quickly, but with the increase of the data, the computation speed becomes the critical factor. Data reduction is one of the solutions to this problem. Removing the redundancy in the rough sets can be achieved with the reduct. A lot of algorithms of generating the reduct were developed, but most of them are only software implementations, therefore have many limitations. Microprocessor uses the fixed word length, consumes a lot of time for either fetching as well as processing of the instruction and data; consequently, the software based implementations are relatively slow. Hardware systems don’t have these limitations and can process the data faster than a software. Reduct is the subset of the decision attributes that provides the discernibility of the objects. For the given decision table there can be more than one reduct. Core is the set of all indispensable condition attributes. None of its elements can be removed without affecting the classification power of all condition attributes. Moreover, every reduct consists of all the attributes from the core. In this paper, the hardware implementation of the two-stage greedy algorithm to find the one reduct is presented. The decision table is used as an input. Output of the algorithm is the superreduct which is the reduct with some additional removable attributes. First stage of the algorithm is calculating the core using the discernibility matrix. Second stage is generating the superreduct by enriching the core with the most common attributes, i.e., attributes that are more frequent in the decision table. Described above algorithm has two disadvantages: i) generating the superreduct instead of reduct, ii) additional first stage may be unnecessary if the core is empty. But for the systems focused on the fast computation of the reduct the first disadvantage is not the key problem. The core calculation can be achieved with a combinational logic block, and thus add respectively little time to the whole process. Algorithm presented in this paper was implemented in Field Programmable Gate Array (FPGA) as a digital device consisting of blocks that process the data in a single step. Calculating the core is done by the comparators connected to the block called 'singleton detector', which detects if the input word contains only single 'one'. Calculating the number of occurrences of the attribute is performed in the combinational block made up of the cascade of the adders. The superreduct generation process is iterative and thus needs the sequential circuit for controlling the calculations. For the research purpose, the algorithm was also implemented in C language and run on a PC. The times of execution of the reduct calculation in a hardware and software were considered. Results show increase in the speed of data processing.Keywords: data reduction, digital systems design, field programmable gate array (FPGA), reduct, rough set
Procedia PDF Downloads 22084 Analysis of Digital Transformation in Banking: The Hungarian Case
Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi
Abstract:
The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.Keywords: big data, digital transformation, dynamic capabilities, mobile banking
Procedia PDF Downloads 6683 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective
Authors: Pardis Moslemzadeh Tehrani
Abstract:
Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.Keywords: blockchain, supply chain, IoT, smart contract
Procedia PDF Downloads 13082 Ethical Decision-Making in AI and Robotics Research: A Proposed Model
Authors: Sylvie Michel, Emmanuelle Gagnou, Joanne Hamet
Abstract:
Researchers in the fields of AI and Robotics frequently encounter ethical dilemmas throughout their research endeavors. Various ethical challenges have been pinpointed in the existing literature, including biases and discriminatory outcomes, diffusion of responsibility, and a deficit in transparency within AI operations. This research aims to pinpoint these ethical quandaries faced by researchers and shed light on the mechanisms behind ethical decision-making in the research process. By synthesizing insights from existing literature and acknowledging prevalent shortcomings, such as overlooking the heterogeneous nature of decision-making, non-accumulative results, and a lack of consensus on numerous factors due to limited empirical research, the objective is to conceptualize and validate a model. This model will incorporate influences from individual perspectives and situational contexts, considering potential moderating factors in the ethical decision-making process. Qualitative analyses were conducted based on direct observation of an AI/Robotics research team focusing on collaborative robotics for several months. Subsequently, semi-structured interviews with 16 team members were conducted. The entire process took place during the first semester of 2023. Observations were analyzed using an analysis grid, and the interviews underwent thematic analysis using Nvivo software. An initial finding involves identifying the ethical challenges that AI/robotics researchers confront, underlining a disparity between practical applications and theoretical considerations regarding ethical dilemmas in the realm of AI. Notably, researchers in AI prioritize the publication and recognition of their work, sparking the genesis of these ethical inquiries. Furthermore, this article illustrated that researchers tend to embrace a consequentialist ethical framework concerning safety (for humans engaging with robots/AI), worker autonomy in relation to robots, and the societal implications of labor (can robots displace jobs?). A second significant contribution entails proposing a model for ethical decision-making within the AI/Robotics research sphere. The model proposed adopts a process-oriented approach, delineating various research stages (topic proposal, hypothesis formulation, experimentation, conclusion, and valorization). Across these stages and the ethical queries, they entail, a comprehensive four-point comprehension of ethical decision-making is presented: recognition of the moral quandary; moral judgment, signifying the decision-maker's aptitude to discern the morally righteous course of action; moral intention, reflecting the ability to prioritize moral values above others; and moral behavior, denoting the application of moral intention to the situation. Variables such as political inclinations ((anti)-capitalism, environmentalism, veganism) seem to wield significant influence. Moreover, age emerges as a noteworthy moderating factor. AI and robotics researchers are continually confronted with ethical dilemmas during their research endeavors, necessitating thoughtful decision-making. The contribution involves introducing a contextually tailored model, derived from meticulous observations and insightful interviews, enabling the identification of factors that shape ethical decision-making at different stages of the research process.Keywords: ethical decision making, artificial intelligence, robotics, research
Procedia PDF Downloads 7981 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission
Authors: Alex B. Cusick
Abstract:
The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions
Procedia PDF Downloads 17280 Developing Offshore Energy Grids in Norway as Capability Platforms
Authors: Vidar Hepsø
Abstract:
The energy and oil companies on the Norwegian Continental shelf come from a situation where each asset control and manage their energy supply (island mode) and move towards a situation where the assets need to collaborate and coordinate energy use with others due to increased cost and scarcity of electric energy sharing the energy that is provided. Currently, several areas are electrified either with an onshore grid cable or are receiving intermittent energy from offshore wind-parks. While the onshore grid in Norway is well regulated, the offshore grid is still in the making, with several oil and gas electrification projects and offshore wind development just started. The paper will describe the shift in the mindset that comes with operating this new offshore grid. This transition process heralds an increase in collaboration across boundaries and integration of energy management across companies, businesses, technical disciplines, and engagement with stakeholders in the larger society. This transition will be described as a function of the new challenges with increased complexity of the energy mix (wind, oil/gas, hydrogen and others) coupled with increased technical and organization complexity in energy management. Organizational complexity denotes an increasing integration across boundaries, whether these boundaries are company, vendors, professional disciplines, regulatory regimes/bodies, businesses, and across numerous societal stakeholders. New practices must be developed, made legitimate and institutionalized across these boundaries. Only parts of this complexity can be mitigated technically, e.g.: by use of batteries, mixing energy systems and simulation/ forecasting tools. Many challenges must be mitigated with legitimated societal and institutionalized governance practices on many levels. Offshore electrification supports Norway’s 2030 climate targets but is also controversial since it is exploiting the larger society’s energy resources. This means that new systems and practices must also be transparent, not only for the industry and the authorities, but must also be acceptable and just for the larger society. The paper report from ongoing work in Norway, participant observation and interviews in projects and people working with offshore grid development in Norway. One case presented is the development of an offshore floating windfarm connected to two offshore installations and the second case is an offshore grid development initiative providing six installations electric energy via an onshore cable. The development of the offshore grid is analyzed using a capability platform framework, that describes the technical, competence, work process and governance capabilities that are under development in Norway. A capability platform is a ‘stack’ with the following layers: intelligent infrastructure, information and collaboration, knowledge sharing & analytics and finally business operations. The need for better collaboration and energy forecasting tools/capabilities in this stack will be given a special attention in the two use cases that are presented.Keywords: capability platform, electrification, carbon footprint, control rooms, energy forecsting, operational model
Procedia PDF Downloads 6879 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing
Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska
Abstract:
Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.Keywords: color developer, leuco dye, thin film, thermochromism
Procedia PDF Downloads 10178 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 14077 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 25376 Guests’ Satisfaction and Intention to Revisit Smart Hotels: Qualitative Interviews Approach
Authors: Raymond Chi Fai Si Tou, Jacey Ja Young Choe, Amy Siu Ian So
Abstract:
Smart hotels can be defined as the hotel which has an intelligent system, through digitalization and networking which achieve hotel management and service information. In addition, smart hotels include high-end designs that integrate information and communication technology with hotel management fulfilling the guests’ needs and improving the quality, efficiency and satisfaction of hotel management. The purpose of this study is to identify appropriate factors that may influence guests’ satisfaction and intention to revisit Smart Hotels based on service quality measurement of lodging quality index and extended UTAUT theory. Unified Theory of Acceptance and Use of Technology (UTAUT) is adopted as a framework to explain technology acceptance and use. Since smart hotels are technology-based infrastructure hotels, UTATU theory could be as the theoretical background to examine the guests’ acceptance and use after staying in smart hotels. The UTAUT identifies four key drivers of the adoption of information systems: performance expectancy, effort expectancy, social influence, and facilitating conditions. The extended UTAUT modifies the definitions of the seven constructs for consideration; the four previously cited constructs of the UTAUT model together with three new additional constructs, which including hedonic motivation, price value and habit. Thus, the seven constructs from the extended UTAUT theory could be adopted to understand their intention to revisit smart hotels. The service quality model will also be adopted and integrated into the framework to understand the guests’ intention of smart hotels. There are rare studies to examine the service quality on guests’ satisfaction and intention to revisit in smart hotels. In this study, Lodging Quality Index (LQI) will be adopted to measure the service quality in smart hotels. Using integrated UTAUT theory and service quality model because technological applications and services require using more than one model to understand the complicated situation for customers’ acceptance of new technology. Moreover, an integrated model could provide more perspective insights to explain the relationships of the constructs that could not be obtained from only one model. For this research, ten in-depth interviews are planned to recruit this study. In order to confirm the applicability of the proposed framework and gain an overview of the guest experience of smart hotels from the hospitality industry, in-depth interviews with the hotel guests and industry practitioners will be accomplished. In terms of the theoretical contribution, it predicts that the integrated models from the UTAUT theory and the service quality will provide new insights to understand factors that influence the guests’ satisfaction and intention to revisit smart hotels. After this study identifies influential factors, smart hotel practitioners could understand which factors may significantly influence smart hotel guests’ satisfaction and intention to revisit. In addition, smart hotel practitioners could also provide outstanding guests experience by improving their service quality based on the identified dimensions from the service quality measurement. Thus, it will be beneficial to the sustainability of the smart hotels business.Keywords: intention to revisit, guest satisfaction, qualitative interviews, smart hotels
Procedia PDF Downloads 20875 Pre-conditioning and Hot Water Sanitization of Reverse Osmosis Membrane for Medical Water Production
Authors: Supriyo Das, Elbir Jove, Ajay Singh, Sophie Corbet, Noel Carr, Martin Deetz
Abstract:
Water is a critical commodity in the healthcare and medical field. The utility of medical-grade water spans from washing surgical equipment, drug preparation to the key element of life-saving therapy such as hydrotherapy and hemodialysis for patients. A properly treated medical water reduces the bioburden load and mitigates the risk of infection, ensuring patient safety. However, any compromised condition during the production of medical-grade water can create a favorable environment for microbial growth putting patient safety at high risk. Therefore, proper upstream treatment of the medical water is essential before its application in healthcare, pharma and medical space. Reverse Osmosis (RO) is one of the most preferred treatments within healthcare industries and is recommended by all International Pharmacopeias to achieve the quality level demanded by global regulatory bodies. The RO process can remove up to 99.5% of constituents from feed water sources, eliminating bacteria, proteins and particles sizes of 100 Dalton and above. The combination of RO with other downstream water treatment technologies such as Electrodeionization and Ultrafiltration meet the quality requirements of various pharmacopeia monographs to produce highly purified water or water for injection for medical use. In the reverse osmosis process, the water from a liquid with a high concentration of dissolved solids is forced to flow through an especially engineered semi-permeable membrane to the low concentration side, resulting in high-quality grade water. However, these specially engineered RO membranes need to be sanitized either chemically or at high temperatures at regular intervals to keep the bio-burden at the minimum required level. In this paper, we talk about Dupont´s FilmTec Heat Sanitizable Reverse Osmosis membrane (HSRO) for the production of medical-grade water. An HSRO element must be pre-conditioned prior to initial use by exposure to hot water (80°C-85°C) for its stable performance and to meet the manufacturer’s specifications. Without pre-conditioning, the membrane will show variations in feed pressure operations and salt rejection. The paper will discuss the critical variables of pre-conditioning steps that can affect the overall performance of the HSRO membrane and demonstrate the data to support the need for pre-conditioning of HSRO elements. Our preliminary data suggests that there can be up to 35 % reduction in flow due to initial heat treatment, which also positively affects the increase in salt rejection. The paper will go into detail about the fundamental understanding of the performance change of HSRO after the pre-conditioning step and its effect on the quality of medical water produced. The paper will also discuss another critical point, “regular hot water sanitization” of these HSRO membranes. Regular hot water sanitization (at 80°C-85°C) is necessary to keep the membrane bioburden free; however, it can negatively impact the performance of the membrane over time. We will demonstrate several data points on hot water sanitization using FilmTec HSRO elements and challenge its robustness to produce quality medical water. The last part of this paper will discuss the construction details of the FilmTec HSRO membrane and features that make it suitable to pre-condition and sanitize at high temperatures.Keywords: heat sanitizable reverse osmosis, HSRO, medical water, hemodialysis water, water for Injection, pre-conditioning, heat sanitization
Procedia PDF Downloads 21374 Wood as a Climate Buffer in a Supermarket
Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø
Abstract:
Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast
Procedia PDF Downloads 21873 Stroke Prevention in Patients with Atrial Fibrillation and Co-Morbid Physical and Mental Health Problems
Authors: Dina Farran, Mark Ashworth, Fiona Gaughran
Abstract:
Atrial fibrillation (AF), the most prevalent cardiac arrhythmia, is associated with an increased risk of stroke, contributing to heart failure and death. In this project, we aim to improve patient safety by screening for stroke risk among people with AF and co-morbid mental illness. To do so, we started by conducting a systematic review and meta-analysis on prevalence, management, and outcomes of AF in people with Serious Mental Illness (SMI) versus the general population. We then evaluated oral anticoagulation (OAC) prescription trends in people with AF and co-morbid SMI in King’s College Hospital. We also evaluated the association between mental illness severity and OAC prescription in eligible patients in South London and Maudsley (SLaM) NHS Foundation Trust. Next, we implemented an electronic clinical decision support system (eCDSS) consisting of a visual prompt on patient electronic Personal Health Records to screen for AF-related stroke risk in three Mental Health of Older Adults wards at SLaM. Finally, we assessed the feasibility and acceptability of the eCDSS by qualitatively investigating clinicians’ perspectives of the potential usefulness of the eCDSS (pre-intervention) and their experiences and their views regarding its impact on clinicians and patients (post-intervention). The systematic review showed that people with SMI had low reported rates of AF. AF patients with SMI were less likely to receive OAC than the general population. When receiving warfarin, people with SMI, particularly bipolar disorder, experienced poor anticoagulation control compared to the general population. Meta-analysis showed that SMI was not significantly associated with an increased risk of stroke or major bleeding when adjusting for underlying risk factors. The main findings of the first observational study were that among AF patients having a high stroke risk, those with co-morbid SMI were less likely than non-SMI to be prescribed any OAC, particularly warfarin. After 2019, there was no significant difference between the two groups. In the second observational study, patients with AF and co-morbid SMI were less likely to be prescribed any OAC compared to those with dementia, substance use disorders, or common mental disorders, adjusting for age, sex, stroke, and bleeding risk scores. Among AF patients with co-morbid SMI, warfarin was less likely to be prescribed to those having alcohol or substance dependency, serious self-injury, hallucinations or delusions, and activities of daily living impairment. In the intervention, clinicians were asked to confirm the presence of AF, clinically assess stroke and bleeding risks, record risk scores in clinical notes, and refer patients at high risk of stroke to OAC clinics. Clinicians reported many potential benefits for the eCDSS, including improving clinical effectiveness, better identification of patients at risk, safer and more comprehensive care, consistency in decision making and saving time. Identified potential risks included rigidity in decision-making, overreliance, reduced critical thinking, false positive recommendations, annoyance, and increased workload. This study presents a unique opportunity to quantify AF patients with mental illness who are at high risk of severe outcomes using electronic health records. This has the potential to improve health outcomes and, therefore patients' quality of life.Keywords: atrial fibrillation, stroke, mental health conditions, electronic clinical decision support systems
Procedia PDF Downloads 5072 Reuse of Historic Buildings for Tourism: Policy Gaps
Authors: Joseph Falzon, Margaret Nelson
Abstract:
Background: Regeneration and re-use of abandoned historic buildings present a continuous challenge for policy makers and stakeholders in the tourism and leisure industry. Obsolete historic buildings provide great potential for tourism and leisure accommodation, presenting unique heritage experiences to travellers and host communities. Contemporary demands in the hospitality industry continuously require higher standards, some of which are in conflict with heritage conservation principles. Objective: The aim of this research paper is to critically discuss regeneration policies with stakeholders of the tourism and leisure industry and to examine current practices in policy development and the resultant impact of policies on the Maltese tourism and leisure industry. Research Design: Six semi-structured interviews with stakeholders involved in the tourism and leisure industry participated in the research. A number of measures were taken to reduce bias and thus improve trustworthiness. Clear statements of the purpose of the research study were provided at the start of each interview to reduce expectancy bias. The interviews were semi-structured to minimise interviewer bias. Interviewees were allowed to expand and elaborate as necessary, with only necessary probing questions, to allow free expression of opinion and practices. Interview guide was submitted to participants at least two weeks before the interview to allow participants to prepare for the interview and prevent recall bias during the interview as much as possible. Interview questions and probes contained both positive and negative aspects to prevent interviewer bias. Policy documents were available during the interview to prevent recall bias. Interview recordings were transcribed ‘intelligent’ verbatim. Analysis was carried out using thematic analysis with the coding frame developed independently by two researchers. All phases of the study were governed by research ethics. Findings: Findings were grouped in main themes: financing of regeneration, governance, legislation and policies. Other key issues included value of historic buildings and approaches for regeneration. Whist regeneration of historic buildings was noted, participants discussed a number of barriers that hindered regeneration. Stakeholders identified gaps in policies and gaps at policy implementation stages. European Union funding policies facilitated regeneration initiatives but funding criteria based on economic deliverables presented the intangible heritage gap. Stakeholders identified niche markets for heritage tourism accommodation. Lack of research-based policies was also identified. Conclusion: Potential of regeneration is hindered by inadequate legal framework that supports contemporary needs of the tourism industry. Policies should be developed by active stakeholder participation. Adequate funding schemes have to support the tangible and intangible components of the built heritage.Keywords: governance, historic buildings, policy, tourism
Procedia PDF Downloads 23771 Foreseen the Future: Human Factors Integration in European Horizon Projects
Authors: José Manuel Palma, Paula Pereira, Margarida Tomás
Abstract:
Foreseen the future: Human factors integration in European Horizon Projects The development of new technology as artificial intelligence, smart sensing, robotics, cobotics or intelligent machinery must integrate human factors to address the need to optimize systems and processes, thereby contributing to the creation of a safe and accident-free work environment. Human Factors Integration (HFI) consistently pose a challenge for organizations when applied to daily operations. AGILEHAND and FORTIS projects are grounded in the development of cutting-edge technology - industry 4.0 and 5.0. AGILEHAND aims to create advanced technologies for autonomously sort, handle, and package soft and deformable products, whereas FORTIS focuses on developing a comprehensive Human-Robot Interaction (HRI) solution. Both projects employ different approaches to explore HFI. AGILEHAND is mainly empirical, involving a comparison between the current and future work conditions reality, coupled with an understanding of best practices and the enhancement of safety aspects, primarily through management. FORTIS applies HFI throughout the project, developing a human-centric approach that includes understanding human behavior, perceiving activities, and facilitating contextual human-robot information exchange. it intervention is holistic, merging technology with the physical and social contexts, based on a total safety culture model. In AGILEHAND we will identify safety emergent risks, challenges, their causes and how to overcome them by resorting to interviews, questionnaires, literature review and case studies. Findings and results will be presented in “Strategies for Workers’ Skills Development, Health and Safety, Communication and Engagement” Handbook. The FORTIS project will implement continuous monitoring and guidance of activities, with a critical focus on early detection and elimination (or mitigation) of risks associated with the new technology, as well as guidance to adhere correctly with European Union safety and privacy regulations, ensuring HFI, thereby contributing to an optimized safe work environment. To achieve this, we will embed safety by design, and apply questionnaires, perform site visits, provide risk assessments, and closely track progress while suggesting and recommending best practices. The outcomes of these measures will be compiled in the project deliverable titled “Human Safety and Privacy Measures”. These projects received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND) and No 101135707 (FORTIS).Keywords: human factors integration, automation, digitalization, human robot interaction, industry 4.0 and 5.0
Procedia PDF Downloads 6570 Common Space Production as a Solution to the Affordable Housing Problem: Its Relationship with the Squating Process in Turkey
Authors: Gözde Arzu Sarıcan
Abstract:
Contemporary urbanization processes and spatial transformations are intensely debated across various fields of social sciences. One prominent concept in these discussions is "common spaces." Common spaces offer a critical theoretical framework, particularly for addressing the social and economic inequalities brought about by urbanization. This study examines the processes of commoning and their impacts through the lens of squatter neighborhoods in Turkey, emphasizing the importance of affordable housing. It focuses on the role and significance of these neighborhoods in the formation of common spaces, analyzing the collective actions and resistance strategies of residents. This process, which began with the construction of shelters to meet the shelter needs of low-income households migrating from rural to urban areas, has turned into low-quality squatter settlements over time. For low-income households lacking the economic power to rent or buy homes in the city, these areas provided an affordable housing solution. Squatter neighborhoods reflect the efforts of local communities to protect and develop their communal living spaces through collective actions and resistance strategies. This collective creation process involves the appropriation of occupied land as a common resource through the rules established by the commons. Organized occupations subdivide these lands, shaped through collective creation processes. For the squatter communities striving for economic and social adaptation, these areas serve as buffer zones for urban integration. In squatter neighborhoods, bonds of friendship, kinship, and compatriotism are strong, playing a significant role in the creation and dissemination of collective knowledge. Squatter areas can be described as common spaces that emerge out of necessity for low-income and marginalized groups. The design and construction of housing in squatter neighborhoods are shaped by the collective participation and skills of the residents. Streets are formed through collective decision-making and labor. Over time, the demands for housing are communicated to local authorities, enhancing the potential for commoning. Common spaces are shaped by collective needs and demands, appropriated, and transformed into potential new spaces. Common spaces are continually redefined and recreated. In this context, affordable housing becomes an essential aspect of these common spaces, providing a foundation for social and economic stability. This study evaluates the processes of commoning and their effects through the lens of squatter neighborhoods in Turkey. Communities living in squatter neighborhoods have managed to create and protect communal living spaces, especially in situations where official authorities have been inadequate. Common spaces are built on values such as solidarity, cooperation, and collective resistance. In urban planning and policy development processes, it is crucial to consider the concept of common spaces. Policies that support the collective efforts and resistance strategies of communities can contribute to more just and sustainable living conditions in urban areas. In this context, the concept of common spaces is considered an important tool in the fight against urban inequalities and in the expression and defense mechanisms of communities. By emphasizing the importance of affordable housing within these spaces, this study highlights the critical role of common spaces in addressing urban social and economic challenges.Keywords: affordable housing, common space, squating process, turkey
Procedia PDF Downloads 3569 The Hybridization of Muslim Spaces in Germany: A Historical Perspective on the Perception of Muslims
Authors: Alex Konrad
Abstract:
In 2017, about 4.5 million Muslims live in Germany. They can practice their faith openly, mostly in well-equipped community centers. At the same time, right-wing politicians and media allege that all Muslims tend to be radical and undemocratic. Both perspectives are rooted in an interacting development since the 1970s. German authorities closed the 'King Fahd Academy' international school in Bonn in summer 2017 because they accused the school administration of attracting Islamists. Only 30 years ago, German authorities and labor unions directed their requests for pastoral care of the Muslim communities in Germany to the Turkish and Saudi administrations. This study shows the leading and misleading tracks of Muslim life and its perception in Germany from a historical point of view. Most of the Muslims came as so-called 'Gastarbeiter' (migrant workers) from Turkey and Morocco to West Germany in the 1960s and 1970s. Until the late 1970s, German society recognized them as workforce solely and ignored their religious needs broadly. The Iranian Revolution of 1979 caused widespread hysteria about Islamic radicalization. Likewise, it shifted the German perception of migrant workers in Germany. For the first time, the majority society saw them as religious people. Media and self-proclaimed 'experts' on Islam suspected Muslims in Germany of subversive and undemocratic belief. On the upside, they obtained the opportunity to be heard by German society and authorities. In the ensuing decades, Muslims and Islamophiles fought a discursive struggle against right-wing politicians, 'experts' and media with monolithic views. In the 1990s, Muslims achieved to establish a solid infrastructure of Islamic community center throughout Germany. Their religious life became present and contributed to diversifying the common monolithic images of Muslims as insane fundamentalists in Germany. However, the media and many 'experts' promoted the fundamentalist narrative, which gained more and more acceptance in German society at the same time. This study uses archival sources from German authorities, Islamic communities, together with local and national media to get a close approach to the contemporary historical debates. In addition, contributions by Muslims and Islamophiles in Germany, for example in magazines, event reports, and internal communication, revealing their quotidian struggle for more acceptance are being used as sources. The inclusion of widely publicized books, documentaries and newspaper articles about Islam as a menace to Europe conduces to a balanced analysis of the contemporary debates and views. Theoretically, the study applies the Third Space approach. Muslims in Germany fight the othering by the German majority society. It was their chief purpose not to be marginalized in both spatial meanings, discursively and physically. Therefore, they established realities of life as hybrids in Germany. This study reconstructs the development of the perception of Muslims in Germany. It claims that self-proclaimed experts and politicians with monolithic views maintained the hegemonic discursive positions and coined the German images of Muslims. Nevertheless, Muslims in Germany accomplished that Muslim presence in Germany’s everyday life became an integral part of society and the public sphere. This is how Muslims hybridized religious spaces in Germany.Keywords: experts, fundamentalism, Germany, hybridization, Islamophobia, migrant workers
Procedia PDF Downloads 22768 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column
Authors: G. Rajapakse, S. Jayasinghe, A. Fleming
Abstract:
This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter
Procedia PDF Downloads 11467 Impact of Chess Intervention on Cognitive Functioning of Children
Authors: Ebenezer Joseph
Abstract:
Chess is a useful tool to enhance general and specific cognitive functioning in children. The present study aims to assess the impact of chess on cognitive in children and to measure the differential impact of socio-demographic factors like age and gender of the child on the effectiveness of the chess intervention.This research study used an experimental design to study the impact of the Training in Chess on the intelligence of children. The Pre-test Post-test Control Group Design was utilized. The research design involved two groups of children: an experimental group and a control group. The experimental group consisted of children who participated in the one-year Chess Training Intervention, while the control group participated in extra-curricular activities in school. The main independent variable was training in chess. Other independent variables were gender and age of the child. The dependent variable was the cognitive functioning of the child (as measured by IQ, working memory index, processing speed index, perceptual reasoning index, verbal comprehension index, numerical reasoning, verbal reasoning, non-verbal reasoning, social intelligence, language, conceptual thinking, memory, visual motor and creativity). The sample consisted of 200 children studying in Government and Private schools. Random sampling was utilized. The sample included both boys and girls falling in the age range 6 to 16 years. The experimental group consisted of 100 children (50 from Government schools and 50 from Private schools) with an equal representation of boys and girls. The control group similarly consisted of 100 children. The dependent variables were assessed using Binet-Kamat Test of Intelligence, Wechsler Intelligence Scale for Children - IV (India) and Wallach Kogan Creativity Test. The training methodology comprised Winning Moves Chess Learning Program - Episodes 1–22, lectures with the demonstration board, on-the-board playing and training, chess exercise through workbooks (Chess school 1A, Chess school 2, and tactics) and working with chess software. Further students games were mapped using chess software and the brain patterns of the child were understood. They were taught the ideas behind chess openings and exposure to classical games were also given. The children participated in mock as well as regular tournaments. Preliminary analysis carried out using independent t tests with 50 children indicates that chess training has led to significant increases in the intelligent quotient. Children in the experimental group have shown significant increases in composite scores like working memory and perceptual reasoning. Chess training has significantly enhanced the total creativity scores, line drawing and pattern meaning subscale scores. Systematically learning chess as part of school activities appears to have a broad spectrum of positive outcomes.Keywords: chess, intelligence, creativity, children
Procedia PDF Downloads 25866 Impact of the 2015 Drought on Rural Livelihood – a Case Study of Masurdi Village in Latur District of Maharashtra, India
Authors: Nitin Bhagat
Abstract:
Drought is a global phenomenon. It has a huge impact on agriculture and allied sector activities. Agriculture plays a substantial role in the economy of developing countries, which mainly depends on rainfall. The present study illustrates the drought conditions in Masurdi village of Latur district in the Marathwada region, Maharashtra. This paper is based on both primary as well as secondary data sources. The multistage sample method was used for primary data collection. The 100 households sample survey data has been collected from the village through a semi-structured questionnaire. The crop production data is collected from the Department of Agriculture, Government of Maharashtra. The rainfall data is obtained from the Department of Revenue, Office of Divisional Commissioner, Aurangabad for the period from 1988 to 2018. This paper examines the severity of drought consequences of the 2015 drought on domestic water supply, crop production, and the effect on children's schooling, livestock assets, bank credit, and migration. The study also analyzed climate variables' impact on the Latur district's total food grain production for 19 years from 2000 to 2018. This study applied multiple regression analysis to check the relationship between climatic variables and the Latur district's total food grain production. The climate variables are annual rainfall, maximum temperature and minimum temperature. The study considered that climatic variables are independent variables and total food grain as the dependent variable. It shows there is a significant relationship between rainfall and maximum temperature. The study also calculated rainfall deviations to find out the drought and normal years. According to drought manual 2016, the rainfall deviation calculated using the following formula. RF dev = {(RFi – RFn) / RFn}*100.Approximately 27.43 % of the workforce migrated from rural to urban areas for searching jobs, and crop production decreased tremendously due to inadequate rainfall in the drought year 2015. Many farm and non-farm labor, some marginal and small cultivators, migrated from rural to urban areas (like Pune, Mumbai, and Western Maharashtra).About 48 % of the households' children faced education difficulties; in the drought period, children were not going to school. They left their school and joined to bring water with their mother and fathers, sometimes they fetched water on their head or using a bicycle, near about 2 km from the village. In their school-going days, drinking water was not available in their schools, so the government declared holidays early in the academic education year 2015-16 compared to another academic year. Some college and 10th class students left their education due to financial problems. Many households benefited from state government schemes, like drought subsidies, crop insurance, and bank loans. Out of 100 households, about 50 (50 %) have obtained financial support from the state government’s subsidy scheme, 58 ( 58 %) have got crop insurance, and 41(41 %) irrigated households have got bank loans from national banks; besides that, only two families have obtained loans from their relatives and moneylenders.Keywords: agriculture, drought, household, rainfall
Procedia PDF Downloads 17665 Economic Impacts of Sanctuary and Immigration and Customs Enforcement Policies Inclusive and Exclusive Institutions
Authors: Alexander David Natanson
Abstract:
This paper focuses on the effect of Sanctuary and Immigration and Customs Enforcement (ICE) policies on local economies. "Sanctuary cities" refers to municipal jurisdictions that limit their cooperation with the federal government's efforts to enforce immigration. Using county-level data from the American Community Survey and ICE data on economic indicators from 2006 to 2018, this study isolates the effects of local immigration policies on U.S. counties. The investigation is accomplished by simultaneously studying the policies' effects in counties where immigrants' families are persecuted via collaboration with Immigration and Customs Enforcement (ICE), in contrast to counties that provide protections. The analysis includes a difference-in-difference & two-way fixed effect model. Results are robust to nearest-neighbor matching, after the random assignment of treatment, after running estimations using different cutoffs for immigration policies, and with a regression discontinuity model comparing bordering counties with opposite policies. Results are also robust after restricting the data to a single-year policy adoption, using the Sun and Abraham estimator, and with event-study estimation to deal with the staggered treatment issue. In addition, the study reverses the estimation to understand what drives the decision to choose policies to detect the presence of reverse causality biases in the estimated policy impact on economic factors. The evidence demonstrates that providing protections to undocumented immigrants increases economic activity. The estimates show gains in per capita income ranging from 3.1 to 7.2, median wages between 1.7 to 2.6, and GDP between 2.4 to 4.1 percent. Regarding labor, sanctuary counties saw increases in total employment between 2.3 to 4 percent, and the unemployment rate declined from 12 to 17 percent. The data further shows that ICE policies have no statistically significant effects on income, median wages, or GDP but adverse effects on total employment, with declines from 1 to 2 percent, mostly in rural counties, and an increase in unemployment of around 7 percent in urban counties. In addition, results show a decline in the foreign-born population in ICE counties but no changes in sanctuary counties. The study also finds similar results for sanctuary counties when separating the data between urban, rural, educational attainment, gender, ethnic groups, economic quintiles, and the number of business establishments. The takeaway from this study is that institutional inclusion creates the dynamic nature of an economy, as inclusion allows for economic expansion due to the extension of fundamental freedoms to newcomers. Inclusive policies show positive effects on economic outcomes with no evident increase in population. To make sense of these results, the hypothesis and theoretical model propose that inclusive immigration policies play an essential role in conditioning the effect of immigration by decreasing uncertainties and constraints for immigrants' interaction in their communities, decreasing the cost from fear of deportation or the constant fear of criminalization and optimize their human capital.Keywords: inclusive and exclusive institutions, post matching, fixed effect, time trend, regression discontinuity, difference-in-difference, randomization inference and sun, Abraham estimator
Procedia PDF Downloads 8864 Azolla Pinnata as Promising Source for Animal Feed in India: An Experimental Study to Evaluate the Nutrient Enhancement Result of Feed
Authors: Roshni Raha, Karthikeyan S.
Abstract:
The world's largest livestock population resides in India. Existing strategies must be modified to increase the production of livestock and their by-products in order to meet the demands of the growing human population. Even though India leads the world in both milk production and the number of cows, average production is not very healthy and productive. This may be due to the animals' poor nutrition caused by a chronic under-availability of high-quality fodder and feed. This article explores Azolla pinnata to be a promising source to produce high-quality unconventional feed and fodder for effective livestock production and good quality breeding in India. This article is an exploratory study using a literature survey and experimentation analysis. In the realm of agri-biotechnology, azolla sp gained attention for helping farmers achieve sustainability, having minimal land requirements, and serving as a feed element that doesn't compete with human food sources. It has high methionine content, which is a good source of protein. It can be easily digested as the lignin content is low. It has high antioxidants and vitamins like beta carotene, vitamin A, and vitamin B12. Using this concept, the paper aims to investigate and develop a model of using azolla plants as a novel, high-potential feed source to combat the problems of low production and poor quality of animals in India. A representative sample of animal feed is collected where azolla is added. The sample is ground into a fine powder using mortar. PITC (phenylisothiocyanate) is added to derivatize the amino acids. The sample is analyzed using HPLC (High-Performance Liquid Chromatography) to measure the amino acids and monitor the protein content of the sample feed. The amino acid measurements from HPLC are converted to milligrams per gram of protein using the method of amino acid profiling via a set of calculations. The amino acid profile data is then obtained to validate the proximate results of nutrient enhancement of the composition of azolla in the sample. Based on the proximate composition of azolla meal, the enhancement results shown were higher compared to the standard values of normal fodder supplements indicating the feed to be much richer and denser in nutrient supply. Thus azolla fed sample proved to be a promising source for animal fodder. This would in turn lead to higher production and a good breed of animals that would help to meet the economic demands of the growing Indian population. Azolla plants have no side effects and can be considered as safe and effective to be immersed in the animal feed. One area of future research could begin with the upstream scaling strategy of azolla plants in India. This could involve introducing several bioreactor types for its commercial production. Since azolla sp has been proved in this paper as a promising source for high quality animal feed and fodder, large scale production of azolla plants will help to make the process much quicker, more efficient and easily accessible. Labor expenses will also be reduced by employing bioreactors for large-scale manufacturing.Keywords: azolla, fodder, nutrient, protein
Procedia PDF Downloads 55