Search results for: differential predictive coding
1026 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling
Authors: Dong Wu, Michael Grenn
Abstract:
Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction
Procedia PDF Downloads 761025 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients
Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori
Abstract:
Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.Keywords: asthma, datamining, classification, machine learning
Procedia PDF Downloads 4461024 Transcriptional Profiling of Developing Ovules in Litchi chinensis
Authors: Ashish Kumar Pathak, Ritika Sharma, Vishal Nath, Sudhir Pratap Singh, Rakesh Tuli
Abstract:
Litchi is a sub-tropical fruit crop with genotypes bearing delicious juicy fruits with variable seed size (bold to rudimentary size). Small seed size is a desirable trait in litchi, as it increases consumer acceptance and fruit processing. The biochemical activities in mid- stage ovules (e.g. 16, 20, 24 and 28 days after anthesis) determine the fate of seed and fruit development in litchi. Comprehensive ovule-specific transcriptome analysis was performed in two litchi genotypes with contrasting seed size to gain molecular insight on determinants of seed fates in litchi fruits. The transcriptomic data was de-novo assembled in 1,39,608 trinity transcripts, out of which 6,325 trinity transcripts were differentially expressed between the two contrasting genotypes. Differential transcriptional pattern was found among ovule development stages in contrasting litchi genotypes. The putative genes for salicylic acid, jasmonic acid and brassinosteroid pathway were down-regulated in ovules of small-seeded litchi. Embryogenesis, cell expansion, seed size and stress related trinity transcripts exhibited altered expression in small-seeded genotype. The putative regulators of seed maturation and seed storage were down-regulated in small-seed genotype.Keywords: Litchi, seed, transcriptome, defence
Procedia PDF Downloads 2421023 Coupled Flexural-Lateral-Torsional of Shear Deformable Thin-Walled Beams with Asymmetric Cross-Section–Closed Form Exact Solution
Authors: Mohammed Ali Hjaji, Magdi Mohareb
Abstract:
This paper develops the exact solutions for coupled flexural-lateral-torsional static response of thin-walled asymmetric open members subjected to general loading. Using the principle of stationary total potential energy, the governing differential equations of equilibrium are formulated as well as the associated boundary conditions. The formulation is based on a generalized Timoshenko-Vlasov beam theory and accounts for the effects of shear deformation due to bending and warping, and captures the effects of flexural–torsional coupling due to cross-section asymmetry. Closed-form solutions are developed for cantilever and simply supported beams under various forces. In order to demonstrate the validity and the accuracy of this solution, numerical examples are presented and compared with well-established ABAQUS finite element solutions and other numerical results available in the literature. In addition, the results are compared against non-shear deformable beam theories in order to demonstrate the shear deformation effects.Keywords: asymmetric cross-section, flexural-lateral-torsional response, Vlasov-Timoshenko beam theory, closed form solution
Procedia PDF Downloads 4681022 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey
Authors: Mahdiyeh Zafaranchi
Abstract:
With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters
Procedia PDF Downloads 1101021 Data Recording for Remote Monitoring of Autonomous Vehicles
Authors: Rong-Terng Juang
Abstract:
Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar
Procedia PDF Downloads 1621020 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 701019 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents
Authors: Neha Singh, Shristi Singh
Abstract:
Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning
Procedia PDF Downloads 1101018 Identification of Rare Mutations in Genes Involved in Monogenic Forms of Obesity and Diabetes in Obese Guadeloupean Children through Next-Generation Sequencing
Authors: Lydia Foucan, Laurent Larifla, Emmanuelle Durand, Christine Rambhojan, Veronique Dhennin, Jean-Marc Lacorte, Philippe Froguel, Amelie Bonnefond
Abstract:
In the population of Guadeloupe Island (472,124 inhabitants and 80% of subjects of African descent), overweight and obesity were estimated at 23% and 9% respectively among children. High prevalence of diabetes has been reported (~10%) in the adult population. Nevertheless, no study has investigated the contribution of gene mutations to childhood obesity in this population. We aimed to investigate rare genetic mutations in genes involved in monogenic obesity or diabetes in obese Afro-Caribbean children from Guadeloupe Island using next-generation sequencing. The present investigation included unrelated obese children, from a previous study on overweight conducted in Guadeloupe Island in 2013. We sequenced coding regions of 59 genes involved in monogenic obesity or diabetes. A total of 25 obese schoolchildren (with Z-score of body mass index [BMI]: 2.0 to 2.8) were screened for rare mutations (non-synonymous, splice-site, or insertion/deletion) in 59 genes. Mean age of the study population was 12.4 ± 1.1 years. Seventeen children (68%) had insulin-resistance (HOMA-IR > 3.16). A family history of obesity (mother or father) was observed in eight children and three of the accompanying parent presented with type 2 diabetes. None of the children had gonadotrophic abnormality or mental retardation. We detected five rare heterozygous mutations, in four genes involved in monogenic obesity, in five different obese children: MC4R p.Ile301Thr and SIM1 p.Val326Thrfs*43 mutations which were pathogenic; SIM1 p.Ser343Pro and SH2B1 p.Pro90His mutations which were likely pathogenic; and NTRK2 p.Leu140Phe that was of uncertain significance. In parallel, we identified seven carriers of mutation in ABCC8 or KCNJ11 (involved in monogenic diabetes), which were of uncertain significance (KCNJ11 p.Val13Met, KCNJ11 p.Val151Met, ABCC8 p.Lys1521Asn and ABCC8 p.Ala625Val). Rare pathogenic or likely pathogenic mutations, linked to severe obesity were detected in more than 15% of this Afro-Caribbean population at high risk of obesity and type 2 diabetes.Keywords: childhood obesity, MC4R, monogenic obesity, SIM1
Procedia PDF Downloads 1921017 Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings
Authors: Dehong Li, Yuchen Chen, Alireza Kaboorani, Denis Rodrigue, Xiaodong (Alice) Wang
Abstract:
Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, and non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA), and xylitol (X). The differential scanning calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52°C, 20.37°C, and 22.18°C, respectively. The latent heat of phase change of the ternary eutectic PCMs was all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications.Keywords: thermal energy storage, buildings, phase change materials, alcohols
Procedia PDF Downloads 951016 Identification of New Familial Breast Cancer Susceptibility Genes: Are We There Yet?
Authors: Ian Campbell, Gillian Mitchell, Paul James, Na Li, Ella Thompson
Abstract:
The genetic cause of the majority of multiple-case breast cancer families remains unresolved. Next generation sequencing has emerged as an efficient strategy for identifying predisposing mutations in individuals with inherited cancer. We are conducting whole exome sequence analysis of germ line DNA from multiple affected relatives from breast cancer families, with the aim of identifying rare protein truncating and non-synonymous variants that are likely to include novel cancer predisposing mutations. Data from more than 200 exomes show that on average each individual carries 30-50 protein truncating mutations and 300-400 rare non-synonymous variants. Heterogeneity among our exome data strongly suggest that numerous moderate penetrance genes remain to be discovered, with each gene individually accounting for only a small fraction of families (~0.5%). This scenario marks validation of candidate breast cancer predisposing genes in large case-control studies as the rate-limiting step in resolving the missing heritability of breast cancer. The aim of this study is to screen genes that are recurrently mutated among our exome data in a larger cohort of cases and controls to assess the prevalence of inactivating mutations that may be associated with breast cancer risk. We are using the Agilent HaloPlex Target Enrichment System to screen the coding regions of 168 genes in 1,000 BRCA1/2 mutation-negative familial breast cancer cases and 1,000 cancer-naive controls. To date, our interim analysis has identified 21 genes which carry an excess of truncating mutations in multiple breast cancer families versus controls. Established breast cancer susceptibility gene PALB2 is the most frequently mutated gene (13/998 cases versus 0/1009 controls), but other interesting candidates include NPSR1, GSN, POLD2, and TOX3. These and other genes are being validated in a second cohort of 1,000 cases and controls. Our experience demonstrates that beyond PALB2, the prevalence of mutations in the remaining breast cancer predisposition genes is likely to be very low making definitive validation exceptionally challenging.Keywords: predisposition, familial, exome sequencing, breast cancer
Procedia PDF Downloads 4901015 In Vivo Investigation of microRNA Expression and Function at the Mammalian Synapse by AGO-APP
Authors: Surbhi Surbhi, Andrea Erni, Gunter Meister, Harold Cremer, Christophe Beclin
Abstract:
MicroRNAs (miRNAs) are short 20-23 nucleotide long non-coding RNAs; there are 2605 miRNA in humans and 1936 miRNA in mouse in total (miRBase). The nervous system expresses the most abundant miRNA and most diverse. MiRNAs play a role in many steps during neurogenesis, like cell proliferation, differentiation, neural patterning, axon pathfinding, etc. Moreover, in vitro studies suggested a role in the regulation of local translation at the synapse, thus controlling neuronal plasticity. However, due to the specific structure of miRNA molecules, an in-vivo confirmation of the general role of miRNAs in the control of neuronal plasticity is still pending. For example, their small size and their high level of sequence homology make difficult the analysis of their cellular and sub-cellular localization in-vivo by in-situ hybridization. Moreover, it was found that only 40% of the expressed miRNA molecules in a cell are included in RNA-Induced Silencing Complexes (RISC) and, therefore, involved in inhibitory interactions while the rest is silent. Definitively, the development of new tools is needed to have a better understanding of the cellular function of miRNAs, in particular their role in neuronal plasticity. Here we describe a new technique called in-vivo AGO-APP designed to investigate miRNA expression and function in-vivo. This technique is based on the expression of a small peptide derived from the human RISC-complex protein TNRC6B, called T6B, which binds all known Argonaute (Ago) proteins with high affinity allowing the efficient immunoprecipitation of AGO-bound miRNAs. We have generated two transgenic mouse lines conditionally expressing T6B either ubiquitously in the cell or targeted at the synapse. A comparison of the repertoire of miRNAs immuno-precipitated from mature neurons of both mouse lines will provide us with a list of miRNAs showing a specific activity at the synapse. The physiological role of these miRNAs will be subsequently addressed through gain and loss of function experiments.Keywords: RNA-induced silencing complexes, TNRC6B, miRNA, argonaute, synapse, neuronal plasticity, neurogenesis
Procedia PDF Downloads 1291014 Finite Element Modeling of Aortic Intramural Haematoma Shows Size Matters
Authors: Aihong Zhao, Priya Sastry, Mark L Field, Mohamad Bashir, Arvind Singh, David Richens
Abstract:
Objectives: Intramural haematoma (IMH) is one of the pathologies, along with acute aortic dissection, that present as Acute Aortic Syndrome (AAS). Evidence suggests that unlike aortic dissection, some intramural haematomas may regress with medical management. However, intramural haematomas have been traditionally managed like acute aortic dissections. Given that some of these pathologies may regress with conservative management, it would be useful to be able to identify which of these may not need high risk emergency intervention. A computational aortic model was used in this study to try and identify intramural haematomas with risk of progression to aortic dissection. Methods: We created a computational model of the aorta with luminal blood flow. Reports in the literature have identified 11 mm as the radial clot thickness that is associated with heightened risk of progression of intramural haematoma. Accordingly, haematomas of varying sizes were implanted in the modeled aortic wall to test this hypothesis. The model was exposed to physiological blood flows and the stresses and strains in each layer of the aortic wall were recorded. Results: Size and shape of clot were seen to affect the magnitude of aortic stresses. The greatest stresses and strains were recorded in the intima of the model. When the haematoma exceeded 10 mm in all dimensions, the stress on the intima reached breaking point. Conclusion: Intramural clot size appears to be a contributory factor affecting aortic wall stress. Our computer simulation corroborates clinical evidence in the literature proposing that IMH diameter greater than 11 mm may be predictive of progression. This preliminary report suggests finite element modelling of the aortic wall may be a useful process by which to examine putative variables important in predicting progression or regression of intramural haematoma.Keywords: intramural haematoma, acute aortic syndrome, finite element analysis,
Procedia PDF Downloads 4301013 AI-Driven Solutions for Optimizing Master Data Management
Authors: Srinivas Vangari
Abstract:
In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.Keywords: artificial intelligence, master data management, data governance, data quality
Procedia PDF Downloads 161012 Role of Energy Storage in Renewable Electricity Systems in The Gird of Ethiopia
Authors: Dawit Abay Tesfamariam
Abstract:
Ethiopia’s Climate- Resilient Green Economy (ECRGE) strategy focuses mainly on generating and proper utilization of renewable energy (RE). Nonetheless, the current electricity generation of the country is dominated by hydropower. The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources from solar and wind energy were only 8 %. On the other hand, the EEP electricity generation plan in 2030 indicates that 36.1 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the EnergyPLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EnergyPLAN (EP) analysis for two predictive scenarios. The EP simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EP simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was in the three rainy months of the year (June, July, and August). The outcome of the model also showed that in the dry seasons of the year, there would be excess power production in the country. Consequently, based on the validated outcomes of EP indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that if the excess power is utilized with a storage system, it can stabilize the grid system and be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming storage system to synchronize with potentials that can be generated from renewable energy.Keywords: renewable energy, power, storage, wind, energy plan
Procedia PDF Downloads 771011 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks
Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar
Abstract:
DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)
Procedia PDF Downloads 3161010 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries
Authors: Gaurav Kumar Sinha
Abstract:
In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency
Procedia PDF Downloads 631009 Geosynthetic Tubes in Coastal Structures a Better Substitute for Shorter Planning Horizon: A Case Study
Authors: A. Pietro Rimoldi, B. Anilkumar Gopinath, C. Minimol Korulla
Abstract:
Coastal engineering structure is conventionally designed for a shorter planning horizon usually 20 years. These structures are subjected to different offshore climatic externalities like waves, tides, tsunamis etc. during the design life period. The probability of occurrence of these different offshore climatic externalities varies. The impact frequently caused by these externalities on the structures is of concern because it has a significant bearing on the capital /operating cost of the project. There can also be repeated short time occurrence of these externalities in the assumed planning horizon which can cause heavy damage to the conventional coastal structure which are mainly made of rock. A replacement of the damaged portion to prevent complete collapse is time consuming and expensive when dealing with hard rock structures. But if coastal structures are made of Geo-synthetic containment systems such replacement is quickly possible in the time period between two successive occurrences. In order to have a better knowledge and to enhance the predictive capacity of these occurrences, this study estimates risk of encounter within the design life period of various externalities based on the concept of exponential distribution. This gives an idea of the frequency of occurrences which in turn gives an indication of whether replacement is necessary and if so at what time interval such replacements have to be effected. To validate this theoretical finding, a pilot project has been taken up in the field so that the impact of the externalities can be studied both for a hard rock and a Geosynthetic tube structure. The paper brings out the salient feature of a case study which pertains to a project in which Geosynthetic tubes have been used for reformation of a seawall adjacent to a conventional rock structure in Alappuzha coast, Kerala, India. The effectiveness of the Geosystem in combatting the impact of the short-term externalities has been brought out.Keywords: climatic externalities, exponential distribution, geosystems, planning horizon
Procedia PDF Downloads 2251008 A Profile of an Exercise Addict: The Relationship between Exercise Addiction and Personality
Authors: Klary Geisler, Dalit Lev-Arey, Yael Hacohen
Abstract:
It is a well-known fact that exercise has favorable effects on people's physical health, as well as mental well-being. However, as for as excessive exercise, it may likely elevate negative consequences (e.g., physical injuries, negligence of everyday responsibilities such as work, family life). Lately, there is a growing interest in exercise addiction, sometimes referred to as exercise dependence, which is defined as a craving for physical activity that results in extreme work-out sessions and generates negative physiological and psychological symptoms (e.g., withdrawal symptoms, tolerance, social conflict). Exercise addiction is considered a behavioral addiction, yet it was not included in the latest editions of the diagnostic and statistical manual of mental disorders (DSM-IV), due to lack of significant research. Specifically, there is scarce research on the relationship between exercise addiction and personality dimensions. The purpose of the current research was to examine the relationship between primary exercise addiction symptoms and the big five dimensions, perfectionism (high performance expectations and self-critical performance evaluations) and subjective affect. participants were 152 trainees on a variety of aerobic sports activities (running, cycling, swimming) that were recruited through sports groups and trainers. 88% of participants trained for at least 5 hours per week, 24% of the participants trained above 10 hours per week. To test the predictive ability of the IVs a hierarchical linear regression with forced block entry was performed. It was found that Neuroticism significantly predicted exercise addiction symptoms (20% of the variance, p<0.001), while consciousness was negatively correlated with exercise addiction symptoms (14% of variance p<0.05); both had a unique contribution. Other dimensions of the big five (agreeableness, openness and extraversion) did not have any contribution to the dependent. Moreover, maladaptive perfectionism (self-critical performance evaluations) significantly predicted exercise addiction symptoms as well (10% of the variance P < 0.05). The overall regression model explained 54% of variance.Keywords: big five, consciousness, excessive exercise, exercise addiction, neuroticism, perfectionism, personality
Procedia PDF Downloads 2271007 A One-Dimensional Modeling Analysis of the Influence of Swirl and Tumble Coefficient in a Single-Cylinder Research Engine
Authors: Mateus Silva Mendonça, Wender Pereira de Oliveira, Gabriel Heleno de Paula Araújo, Hiago Tenório Teixeira Santana Rocha, Augusto César Teixeira Malaquias, José Guilherme Coelho Baeta
Abstract:
The stricter legislation and the greater demand of the population regard to gas emissions and their effects on the environment as well as on human health make the automotive industry reinforce research focused on reducing levels of contamination. This reduction can be achieved through the implementation of improvements in internal combustion engines in such a way that they promote the reduction of both specific fuel consumption and air pollutant emissions. These improvements can be obtained through numerical simulation, which is a technique that works together with experimental tests. The aim of this paper is to build, with support of the GT-Suite software, a one-dimensional model of a single-cylinder research engine to analyze the impact of the variation of swirl and tumble coefficients on the performance and on the air pollutant emissions of an engine. Initially, the discharge coefficient is calculated through the software Converge CFD 3D, given that it is an input parameter in GT-Power. Mesh sensitivity tests are made in 3D geometry built for this purpose, using the mass flow rate in the valve as a reference. In the one-dimensional simulation is adopted the non-predictive combustion model called Three Pressure Analysis (TPA) is, and then data such as mass trapped in cylinder, heat release rate, and accumulated released energy are calculated, aiming that the validation can be performed by comparing these data with those obtained experimentally. Finally, the swirl and tumble coefficients are introduced in their corresponding objects so that their influences can be observed when compared to the results obtained previously.Keywords: 1D simulation, single-cylinder research engine, swirl coefficient, three pressure analysis, tumble coefficient
Procedia PDF Downloads 1051006 The Predictive Implication of Executive Function and Language in Theory of Mind Development in Preschool Age Children
Authors: Michael Luc Andre, Célia Maintenant
Abstract:
Theory of mind is a milestone in child development which allows children to understand that others could have different mental states than theirs. Understanding the developmental stages of theory of mind in children leaded researchers on two Connected research problems. In one hand, the link between executive function and theory of mind, and on the other hand, the relationship of theory of mind and syntax processing. These two lines of research involved a great literature, full of important results, despite certain level of disagreement between researchers. For a long time, these two research perspectives continue to grow up separately despite research conclusion suggesting that the three variables should implicate same developmental period. Indeed, our goal was to study the relation between theory of mind, executive function, and language via a unique research question. It supposed that between executive function and language, one of the two variables could play a critical role in the relationship between theory of mind and the other variable. Thus, 112 children aged between three and six years old were recruited for completing a receptive and an expressive vocabulary task, a syntax understanding task, a theory of mind task, and three executive function tasks (inhibition, cognitive flexibility and working memory). The results showed significant correlations between performance on theory of mind task and performance on executive function domain tasks, except for cognitive flexibility task. We also found significant correlations between success on theory of mind task and performance in all language tasks. Multiple regression analysis justified only syntax and general abilities of language as possible predictors of theory of mind performance in our preschool age children sample. The results were discussed in the perspective of a great role of language abilities in theory of mind development. We also discussed possible reasons that could explain the non-significance of executive domains in predicting theory of mind performance, and the meaning of our results for the literature.Keywords: child development, executive function, general language, syntax, theory of mind
Procedia PDF Downloads 621005 Solubility Enhancement of Poorly Soluble Anticancer Drug, Docetaxel Using a Novel Polymer, Soluplus via Solid Dispersion Technique
Authors: Adinarayana Gorajana, Venkata Srikanth Meka, Sanjay Garg, Lim Sue May
Abstract:
This study was designed to evaluate and enhance the solubility of poorly soluble drug, docetaxel through solid dispersion (SD) technique prepared using freeze drying method. Docetaxel solid dispersions were formulated with Soluplus in different weight ratios. Freeze drying method was used to prepare the solid dispersions. Solubility of the solid dispersions were evaluated respectively and the optimized of drug-solubilizers ratio systems were characterized with different analytical methods like Differential scanning calorimeter (DSC), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to confirm the formation of complexes between drug and solubilizers. The solubility data revealed an overall improvement in solubility for all SD formulations. The ternary combination 1:5:2 gave the highest increase in solubility that is approximately 3 folds from the pure drug, suggesting the optimum drug-solubilizers ratio system. This data corresponds with the DSC and SEM analyses, which demonstrates presence of drug in amorphous state and the dispersion in the solubilizers in molecular level. The solubility of the poorly soluble drug, docetaxel was enhanced through preparation of solid dispersion formulations employing freeze drying method. Solid dispersion with multiple carrier system shows better solubility compared to single carrier system.Keywords: docetaxel, freeze drying, soluplus, solid dispersion technique
Procedia PDF Downloads 5011004 Developing Index of Democratic Institutions' Vulnerability
Authors: Kamil Jonski
Abstract:
Last year vividly demonstrated, that populism and political instability can endanger democratic institutions in countries regarded as democratic transition champions (Poland) or cornerstones of liberal order (UK, US). So called ‘illiberal democracy’ is winning hearts and minds of voters, keen to believe that rule of strongman is a viable alternative to perceived decay of western values and institutions. These developments pose a serious threat to the democratic institutions (including rule of law), proven critical for both personal freedom and economic development. Although scholars proposed some structural explanations of the illiberal wave (notably focusing on inequality, stagnant incomes and drawbacks of globalization), they seem to have little predictive value. Indeed, events like Trump’s victory, Brexit or Polish shift towards populist nationalism always came as a surprise. Intriguingly, in the case of US election, simple rules like ‘Bread and Peace model’ gauged prospects of Trump’s victory better than pundits and pollsters. This paper attempts to compile set of indicators, in order to gauge various democracies’ vulnerability to populism, instability and pursuance of ‘illiberal’ projects. Among them, it identifies the gap between consensus assessment of institutional performance (as measured by WGI indicators) and citizens’ subjective assessment (survey based confidence in institutions). Plotting these variables against each other, reveals three clusters of countries – ‘predictable’ (good institutions and high confidence, poor institutions and low confidence), ‘blind’ (poor institutions, high confidence e.g. Uzbekistan or Azerbaijan) and ‘disillusioned’ (good institutions, low confidence e.g. Spain, Chile, Poland and US). It seems that this clustering – carried out separately for various institutions (like legislature, executive and courts) and blended with economic indicators like inequality and living standards (using PCA) – offers reasonably good watchlist of countries, that should ‘expect the unexpected’.Keywords: illiberal democracy, populism, political instability, political risk measurement
Procedia PDF Downloads 2011003 Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds
Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto
Abstract:
Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas
Procedia PDF Downloads 4051002 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure
Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser
Abstract:
Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model
Procedia PDF Downloads 4441001 Investigation of an Alkanethiol Modified Au Electrode as Sensor for the Antioxidant Activity of Plant Compounds
Authors: Dana A. Thal, Heike Kahlert, Fritz Scholz
Abstract:
Thiol molecules are known to easily form self-assembled monolayers (SAM) on Au surfaces. Depending on the thiol’s structure, surface modifications via SAM can be used for electrode sensor development. In the presented work, 1-decanethiol coated polycrystalline Au electrodes were applied to indirectly assess the radical scavenging potential of plant compounds and extracts. Different plant compounds with reported antioxidant properties as well as an extract from the plant Gynostemma pentaphyllum were tested for their effectiveness to prevent SAM degradation on the sensor electrodes via photolytically generated radicals in aqueous media. The SAM degradation was monitored over time by differential pulse voltammetry (DPV) measurements. The results were compared to established antioxidant assays. The obtained data showed an exposure time and concentration dependent degradation process of the SAM at the electrode’s surfaces. The tested substances differed in their capacity to prevent SAM degradation. Calculated radical scavenging activities of the tested plant compounds were different for different assays. The presented method poses a simple system for radical scavenging evaluation and, considering the importance of the test system in antioxidant activity evaluation, might be taken as a bridging tool between in-vivo and in-vitro antioxidant assay in order to obtain more biologically relevant results in antioxidant research.Keywords: alkanethiol SAM, plant antioxidant, polycrystalline Au, radical scavenger
Procedia PDF Downloads 2971000 A Qualitative Study Exploring Factors Influencing the Uptake of and Engagement with Health and Wellbeing Smartphone Apps
Authors: D. Szinay, O. Perski, A. Jones, T. Chadborn, J. Brown, F. Naughton
Abstract:
Background: The uptake of health and wellbeing smartphone apps is largely influenced by popularity indicators (e.g., rankings), rather than evidence-based content. Rapid disengagement is common. This study aims to explore how and why potential users 1) select and 2) engage with such apps, and 3) how increased engagement could be promoted. Methods: Semi-structured interviews and a think-aloud approach were used to allow participants to verbalise their thoughts whilst searching for a health or wellbeing app online, followed by a guided search in the UK National Health Service (NHS) 'Apps Library' and Public Health England’s (PHE) 'One You' website. Recruitment took place between June and August 2019. Adults interested in using an app for behaviour change were recruited through social media. Data were analysed using the framework approach. The analysis is both inductive and deductive, with the coding framework being informed by the Theoretical Domains Framework. The results are further mapped onto the COM-B (Capability, Opportunity, Motivation - Behaviour) model. The study protocol is registered on the Open Science Framework (https://osf.io/jrkd3/). Results: The following targets were identified as playing a key role in increasing the uptake of and engagement with health and wellbeing apps: 1) psychological capability (e.g., reduced cognitive load); 2) physical opportunity (e.g., low financial cost); 3) social opportunity (e.g., embedded social media); 4) automatic motivation (e.g., positive feedback). Participants believed that the promotion of evidence-based apps on NHS-related websites could be enhanced through active promotion on social media, adverts on the internet, and in general practitioner practices. Future Implications: These results can inform the development of interventions aiming to promote the uptake of and engagement with evidence-based health and wellbeing apps, a priority within the UK NHS Long Term Plan ('digital first'). The targets identified across the COM-B domains could help organisations that provide platforms for such apps to increase impact through better selection of apps.Keywords: behaviour change, COM-B model, digital health, mhealth
Procedia PDF Downloads 165999 The Role of Car Dealerships in Promoting Electric Vehicles: Covert Participatory Observations of Car Dealerships in Sweden
Authors: Anne Y. Faxer, Ellen Olausson, Jens Hagman, Ana Magazinius, Jenny J. Stier, Tommy Fransson, Oscar Enerback
Abstract:
While electric vehicles (both battery electric vehicles and plug-in hybrids) have been on the market for around 6 years, they are still far from mainstream and the knowledge of them is still low among the public. This is likely one of the reasons that Sweden, having one of the highest penetrations of electric vehicles in Europe, still has a long way to go in reaching a fossil free vehicle fleet. Car dealerships are an important medium that connects consumers to vehicles, but somehow, their role in introducing electric vehicles has not yet been thoroughly studied. Research from other domains shows that salespeople can affect customer decisions in their choice of products. The aim of this study is to explore the role of car dealerships when it comes to promoting electric vehicles. The long-term goal is to understand how they could be a key in the effort of achieving a mass introduction of electric vehicles in Sweden. By emulating the customer’s experience, this study investigates the interaction between car salespeople and customers, particularly examining whether they present electric vehicles as viable options. Covert participatory observations were conducted for data collection from four different brands at in total twelve car dealers. The observers worked in pairs and played the role of a customer with needs that could be matched by an electric vehicle. The data was summarized in observation protocols and analyzed using thematic coding. The result shows that only one of twelve salespeople offered an electric vehicle as the first option. When environmental factors were brought up by the observers, the salespeople followed up with lower fuel consumption internal combustion engine vehicles rather than suggesting an electric vehicle. All salespeople possessed at least basic knowledge about electric vehicles but their interest of selling them were low in most cases. One of the reasons could be that the price of electric vehicles is usually higher. This could be inferred from the finding that salespeople tend to have a strong focus on price and economy in their dialogues with customers, regardless which type of car they were selling. In conclusion, the study suggests that car salespeople have the potential to help the market to achieve mass introduction of electric vehicles; however, their potential needs to be exploited further. To encourage salespeople to prioritize electric vehicles in the sales process, right incentives need to be in place.Keywords: car dealerships, covert participatory observation, customer perspective , electric vehicle, market penetration
Procedia PDF Downloads 195998 Natural Frequency Analysis of Spinning Functionally Graded Cylindrical Shells Subjected to Thermal Loads
Authors: Esmaeil Bahmyari
Abstract:
The natural frequency analysis of the functionally graded (FG) rotating cylindrical shells subjected to thermal loads is studied based on the three-dimensional elasticity theory. The temperature-dependent assumption of the material properties is graded in the thickness direction, which varies based on the simple power law distribution. The governing equations and the appropriate boundary conditions, which include the effects of initial thermal stresses, are derived employing Hamilton’s principle. The initial thermo-mechanical stresses are obtained by the thermo-elastic equilibrium equation’s solution. As an efficient and accurate numerical tool, the differential quadrature method (DQM) is adopted to solve the thermo-elastic equilibrium equations, free vibration equations and natural frequencies are obtained. The high accuracy of the method is demonstrated by comparison studies with those existing solutions in the literature. Ultimately, the parametric studies are performed to demonstrate the effects of boundary conditions, temperature rise, material graded index, the thickness-to-length and the aspect ratios for the rotating cylindrical shells on the natural frequency.Keywords: free vibration, DQM, elasticity theory, FG shell, rotating cylindrical shell
Procedia PDF Downloads 84997 Determinants of Success of University Industry Collaboration in the Science Academic Units at Makerere University
Authors: Mukisa Simon Peter Turker, Etomaru Irene
Abstract:
This study examined factors determining the success of University-Industry Collaboration (UIC) in the science academic units (SAUs) at Makerere University. This was prompted by concerns about weak linkages between industry and the academic units at Makerere University. The study examined institutional, relational, output, and framework factors determining the success of UIC in the science academic units at Makerere University. The study adopted a predictive cross-sectional survey design. Data was collected using a questionnaire survey from 172 academic staff from the six SAUs at Makerere University. Stratified, proportionate, and simple random sampling techniques were used to select the samples. The study used descriptive statistics and linear multiple regression analysis to analyze data. The study findings reveal a coefficient of determination (R-square) of 0.403 at a significance level of 0.000, suggesting that UIC success was 40.3% at a standardized error of estimate of 0.60188. The strength of association between Institutional factors, Relational factors, Output factors, and Framework factors, taking into consideration all interactions among the study variables, was at 64% (R= 0.635). Institutional, Relational, Output and Framework factors accounted for 34% of the variance in the level of UIC success (adjusted R2 = 0.338). The remaining variance of 66% is explained by factors other than Institutional, Relational, Output, and Framework factors. The standardized coefficient statistics revealed that Relational factors (β = 0.454, t = 5.247, p = 0.000) and Framework factors (β = 0.311, t = 3.770, p = 0.000) are the only statistically significant determinants of the success of UIC in the SAU in Makerere University. Output factors (β = 0.082, t =1.096, p = 0.275) and Institutional factors β = 0.023, t = 0.292, p = 0.771) turned out to be statistically insignificant determinants of the success of UIC in the science academic units at Makerere University. The study concludes that Relational Factors and Framework Factors positively and significantly determine the success of UIC, but output factors and institutional factors are not statistically significant determinants of UIC in the SAUs at Makerere University. The study recommends strategies to consolidate Relational and Framework Factors to enhance UIC at Makerere University and further research on the effects of Institutional and Output factors on the success of UIC in universities.Keywords: university-industry collaboration, output factors, relational factors, framework factors, institutional factors
Procedia PDF Downloads 59