Search results for: aluminum metal matrix composites
3363 Balance Transfer of Heavy Metals in Marine Environments Subject to Natural and Anthropogenic Inputs: A Case Study on the Mejerda River Delta
Authors: Mohamed Amine Helali, Walid Oueslati, Ayed Added
Abstract:
Sedimentation rates and total fluxes of heavy metals (Fe, Mn, Pb, Zn and Cu) was measured in three different depths (10m, 20m and 40m) during March and August 2012, offshore of the Mejerda River outlet (Gulf of Tunis, Tunisia). The sedimentation rates are estimated from the fluxes of the suspended particulate matter at 7.32, 5.45 and 4.39 mm y⁻¹ respectively at 10m, 20m and 40m depth. Heavy metals sequestration in sediments was determined by chemical speciation and the total metal contents in each core collected from 10, 20 and 40m depth. Heavy metals intake to the sediment was measured also from the suspended particulate matter, while the fluxes from the sediment to the water column was determined using the benthic chambers technique and from the diffusive fluxes in the pore water. Results shown that iron is the only metal for which the balance transfer between intake/uptake (45 to 117 / 1.8 to 5.8 g m² y⁻¹) and sequestration (277 to 378 g m² y⁻¹) was negative, at the opposite of the Lead which intake fluxes (360 to 480 mg m² y⁻¹) are more than sequestration fluxes (50 to 92 mg m² y⁻¹). The balance transfer is neutral for Mn, Zn, and Cu. These clearly indicate that the contributions of Mejerda have consistently varied over time, probably due to the migration of the River mouth and to the changes in the mining activity in the Mejerda catchment and the recent human activities which affect the delta area.Keywords: delta, fluxes, heavy metals, sediments, sedimentation rates
Procedia PDF Downloads 2013362 The Impact of HKUST-1 Metal-Organic Framework Pretreatment on Dynamic Acetaldehyde Adsorption
Authors: M. François, L. Sigot, C. Vallières
Abstract:
Volatile Organic Compounds (VOCs) are a real health issue, particularly in domestic indoor environments. Among these VOCs, acetaldehyde is frequently monitored in dwellings ‘air, especially due to smoking and spontaneous emissions from the new wall and soil coverings. It is responsible for respiratory complaints and is classified as possibly carcinogenic to humans. Adsorption processes are commonly used to remove VOCs from the air. Metal-Organic Frameworks (MOFs) are a promising type of material for high adsorption performance. These hybrid porous materials composed of metal inorganic clusters and organic ligands are interesting thanks to their high porosity and surface area. The HKUST-1 (also referred to as MOF-199) is a copper-based MOF with the formula [Cu₃(BTC)₂(H₂O)₃]n (BTC = benzene-1,3,5-tricarboxylate) and exhibits unsaturated metal sites that can be attractive sites for adsorption. The objective of this study is to investigate the impact of HKUST-1 pretreatment on acetaldehyde adsorption. Thus, dynamic adsorption experiments were conducted in 1 cm diameter glass column packed with 2 cm MOF bed height. MOF were sieved to 630 µm - 1 mm. The feed gas (Co = 460 ppmv ± 5 ppmv) was obtained by diluting a 1000 ppmv acetaldehyde gas cylinder in air. The gas flow rate was set to 0.7 L/min (to guarantee a suitable linear velocity). Acetaldehyde concentration was monitored online by gas chromatography coupled with a flame ionization detector (GC-FID). Breakthrough curves must allow to understand the interactions between the MOF and the pollutant as well as the impact of the HKUST-1 humidity in the adsorption process. Consequently, different MOF water content conditions were tested, from a dry material with 7 % water content (dark blue color) to water saturated state with approximately 35 % water content (turquoise color). The rough material – without any pretreatment – containing 30 % water serves as a reference. First, conclusions can be drawn from the comparison of the evolution of the ratio of the column outlet concentration (C) on the inlet concentration (Co) as a function of time for different HKUST-1 pretreatments. The shape of the breakthrough curves is significantly different. The saturation of the rough material is slower (20 h to reach saturation) than that of the dried material (2 h). However, the breakthrough time defined for C/Co = 10 % appears earlier in the case of the rough material (0.75 h) compared to the dried HKUST-1 (1.4 h). Another notable difference is the shape of the curve before the breakthrough at 10 %. An abrupt increase of the outlet concentration is observed for the material with the lower humidity in comparison to a smooth increase for the rough material. Thus, the water content plays a significant role on the breakthrough kinetics. This study aims to understand what can explain the shape of the breakthrough curves associated to the pretreatments of HKUST-1 and which mechanisms take place in the adsorption process between the MOF, the pollutant, and the water.Keywords: acetaldehyde, dynamic adsorption, HKUST-1, pretreatment influence
Procedia PDF Downloads 2363361 Effect of Molecular Weight Distribution on Toughening Performance of Polybutadiene in Polystyrene
Authors: Mohamad Mohsen Yavarizadeh
Abstract:
Polystyrene (PS) and related homopolymers are brittle materials that typically fail in tensile tests at very low strains. These polymers can be toughened by the addition of rubbery particles which initiate a large number of crazes that produce substantial plastic strain at relatively low stresses. Considerable energy is dissipated in the formation of these crazes, producing a relatively tough material that shows an impact toughness of more than 5 times of pure PS. While cross linking of rubbery phase is necessary in aforementioned mechanism of toughening, another mechanism of toughening was also introduced in which low molecular weight liquid rubbers can also toughen PS when dispersed in the form of small pools in the glassy matrix without any cross linking. However, this new mechanism which is based on local plasticization, fails to act properly at high strain rate deformations, i.e. impact tests. In this work, the idea of combination of these two mechanisms was tried. To do so, Polybutadiene rubbers (PB) with bimodal distribution of molecular weight were prepared in which, comparable fractions of very high and very low molecular weight rubbers were mixed. Incorporation of these materials in PS matrix in a reactive process resulted in more significant increases in toughness of PS. In other words, although low molecular weight PB is ineffective in high strain rate impact test by itself, it showed a significant synergistic effect when combined with high molecular weight PB. Surprisingly, incorporation of just 10% of low molecular weight PB doubled the impact toughness of regular high impact PS (HIPS). It was observed that most of rubbery particles could initiate crazes. The effectiveness of low molecular weight PB in impact test was attributed to low strain rate deformation of each individual craze as a result of producing a large number of crazes in this material. In other words, high molecular weight PB chains make it possible to have an appropriate dispersion of rubbery phase in order to create a large number of crazes in the PS matrix and consequently decrease the velocity of each craze. Low molecular weight PB, in turn, would have enough time to locally plasticize craze fibrils and enhance the energy dissipation.Keywords: molecular weight distribution, polystyrene, toughness, homopolymer
Procedia PDF Downloads 4413360 Response of Subfossile Diatoms, Cladocera, and Chironomidae in Sediments of Small Ponds to Changes in Wastewater Discharges from a Zn–Pb Mine
Authors: Ewa Szarek-Gwiazda, Agata Z. Wojtal, Agnieszka Pociecha, Andrzej Kownacki, Dariusz Ciszewski
Abstract:
Mining of metal ores is one of the largest sources of heavy metals, which deteriorate aquatic systems. The response of organisms to environmental changes can be well recorded in sediments of the affected water bodies and may be reconstructed based on analyses of organisms' remains. The present study aimed at the response of diatoms (Bacillariophyta), Cladocera, and Chironomidae communities to the impact of Zn-Pb mine water discharge recorded in sediment cores of small subsidence ponds on the Chechło River floodplain (Silesia–Krakow Region, southern Poland). We hypothesize various responses of the above groups to high metal concentrations (Cd, Pb, Zn, and Cu). The investigated ponds were formed either during the peak of the ore exploitation (DOWN) or after mining cessation (UP). Currently, the concentrations of dissolved metals (in µg g⁻¹) in water reached up to 0.53 for Cd, 7.3 for Pb, and up to 47.1 for Zn. All the sediment cores from subsidence ponds were heavily polluted with Cd 6.7–612 μg g⁻¹, Pb 0.1–10.2 mg g⁻¹, and Zn 0.5–23.1 mg g⁻¹. Core sediments varied also in respect to pH 5.8-7.1 and concentrations of organic matter (5.7-39.8%). The impact of high metal concentrations was expressed by the occurrence of metal-tolerant taxa like diatoms – Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii; Cladocera – Chydorus sphaericus (dominated in cores from all ponds), and Chironomidae – Chironomus and Cricotopus especially in the DOWN ponds. Statistical analysis exhibited a negative impact of metals on some taxa of diatoms and Cladocera but only on Polypedilum sp. from Chironomidae. The abundance of such diatoms like Gomphonema utae, Staurosirella pinnata, Eunotia bilunaris, and Cladocera like Alona, Chydorus, Graptoleberis, and Pleuroxus decreased with increasing Pb concentration. However, the occurrence or dominance of more sensitive species of diatoms and Cladocera indicates their adaptation to higher metal loads, which was facilitated by neutral pH and slightly alkaline waters. Diatom assemblages were generally resistant to Zn, Pb, Cu, and Cd pollution, as indicated by their large similarity to populations from non-contaminated waters. Comparison with reference objects clearly indicates the dominance of Achnanthidium minutissimum, Staurosira venter, and Fragilaria gracilis in very diverse assemblages of unpolluted waters. The distribution of the Cladocera and Chironomidae taxa depended on the habitat type. The DOWN ponds with stagnant water and overgrown with macrophytes were more suitable for cladocerans (14 taxa, higher diversity) than the UP ponds with river water flowing through their centre and with a small share of macrophytes (8 taxa). The Chironominae, mainly Chironomus and Microspectra, were abundant in cores from the UP ponds with muddy bottoms. Inversely, the density of Orthocladiinae, especially genus Cricotopus, was related to the organic matter content and dominated in cores from the DOWN ponds. The presence of diatoms like Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii, cladocerans: Bosmina longirostris, Chydorus sphaericus, Alona affinis, and A. rectangularis as well as Chironomidae Chironomus sp. (UP ponds) and Psecrotanypus varius (DOWN ponds) indicate the influence of the water trophy on their distribution.Keywords: Chironomidae, Cladocera, diatoms, metals, Zn-Pb mine, sediment cores, subsidence ponds
Procedia PDF Downloads 753359 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System
Authors: Gak-Gyu Kim, Won Il Jung
Abstract:
According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain
Procedia PDF Downloads 2533358 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System
Authors: Ayad Al-Mahturi, Herman Wahid
Abstract:
This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.Keywords: LQR controller, optimal control, particle swarm optimization (PSO), two rotor aero-dynamical system (TRAS)
Procedia PDF Downloads 3213357 Optimisation of Nitrogen as a Protective Gas via the Alternating Shielding Gas Technique in the Gas Metal Arc Welding Process
Authors: M. P. E. E Silva, A. M. Galloway, A. I. Toumpis
Abstract:
An increasing concern exists in the welding industry in terms of faster joining processes. Methods such as the alternation between shielding gases such Ar, CO₂ and He have been able to provide improved penetration of the joint, reduced heat transfer to the workpiece, and increased travel speeds of the welding torch. Nitrogen as a shielding gas is not desirable due to its reactive behavior within the arc plasma, being absorbed by the molten pool during the welding process. Below certain amounts, nitrogen is not harmful. However, the nitrogen threshold is reduced during the solidification of the joint, and if its subsequent desorption is not completed on time, gas entrapment and blowhole formation may occur. The present study expanded the use of the alternating shielding gas method in the gas metal arc welding (GMAW) process by alternately supplying Ar/5%N₂ and He. Improvements were introduced in terms of joint strength and grain refinement. Microstructural characterization findings showed porosity-free welds with reduced inclusion formation while mechanical tests such as tensile and bend tests confirmed the reinforcement of the joint by the addition of nitrogen. Additionally, significant reductions of the final distortion of the workpiece were found after the welding procedure as well as decreased heat affected zones and temperatures of the weld.Keywords: alternating shielding gas method, GMAW, grain refinement, nitrogen, porosity, mechanical testing
Procedia PDF Downloads 1083356 Chemical Partitioning of Trace Metals in Sub-Surface Sediments of Lake Acigol, Denizli, Turkey
Authors: M. Budakoglu, M. Karaman, D. Kiran, Z. Doner, B. Zeytuncu, B. Tanç, M. Kumral
Abstract:
Lake Acıgöl is one of the large saline lacustrine environment in Turkey. Eleven trace metals (Cr, Mn, Fe, Al, Co, Ni, Cu, Zn, Cd, Pb and As) in 9 surface and subsurface sediment samples from the Lake Acıgöl were analyzed with the bulk and sequential extraction analysis methods by ICP-MS to obtain the metal distribution patterns in this extreme environment. Five stepped sequential extraction technique (1- exchangeable, 2- bond to carbonates, 3- bond to iron and manganese oxides/hydroxides, 4- bond to organic matter and sulphides, and 5- residual fraction incorporated into clay and silicate mineral lattices) was used to characterize the various forms of metals in the <63μ size sediments. The metal contents (ppm) and their percentages for each extraction step were reported and compared with the results obtained from the total digestion. Results indicate that sum of the four fraction are in good agreement with the total digestion results of Ni, Cd, As, Zn, Cu and Fe with the satisfactory recoveries (94.04–109.0%) and the method used is reliable and repeatable for these elements. It was found that there were high correlations between Fe vs. Ni loads in the fraction of F2 and F4 with R2= 0,91 and 0,81, respectively. Comparison of totally 135 chemical analysis results in three sampling location and for 5 fraction between Fe-Co, Co-Ni and Fe-Ni element couples were presented elevated correlations with R2=0,98, 0,92 and 0,91, respectively.Keywords: Lake Acigol, sequancial extraction, recent lake sediment, geochemical speciation of heavy metals
Procedia PDF Downloads 4123355 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents
Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri
Abstract:
The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC
Procedia PDF Downloads 3513354 Research of Concentratibility of Low Quality Bauxite Raw Materials
Authors: Nadezhda Nikolaeva, Tatyana Alexandrova, Alexandr Alexandrov
Abstract:
Processing of high-silicon bauxite on the base of the traditional clinkering method is related to high power consumption and capital investments, which makes production of alumina from those ores non-competitive in terms of basic economic showings. For these reasons, development of technological solutions enabling to process bauxites with various chemical and mineralogical structures efficiently with low level of thermal power consumption is important. Flow sheet of the studies on washability of ores from the Timanskoe and the Severo-Onezhskoe deposits is on the base of the flotation method.Keywords: low-quality bauxite, resource-saving technology, optimization, aluminum, conditioning of composition, separation characteristics
Procedia PDF Downloads 2873353 Coated Chromium Thin Film on Zirconium for Corrosion Resistance of Nuclear Fuel Rods by Plasma Focus Device
Authors: Amir Raeisdana, Davood Sohrabi, Mojtaba Nohekhan, Ameneh Kargarian, Maryam Ghapanvari, Alireza Aslezaeem
Abstract:
Improvement of zirconium properties by chromium coating and nitrogen implantation is ideal to protect the nuclear fuel rods against corrosion and secondary hydrogenation. Metallic chromium (Cr) has attracted attention as a potential coating material on zirconium alloys, to limit external cladding corrosion. In this research, high energy plasma focus device was used to coat the chromium and implant the nitrogen ions in the zirconium substrate. This device emits high-energy nitrogen ions of 10 keV-1 MeV and with a flux of 10^16 ions/cm^2 in each shot toward the target so it is attractive for implantation on the substrate materials at the room temperature. Six zirconium samples in 2cm×2cm dimensions with 1mm thickness were located at a distance of 20cm from the place where the pinch is formed. The experiments are carried out in 0.5 mbar of the nitrogen gas pressure and 15 kV of the charging voltage. Pure Cr disc was installed on the anode head for sputtering of the chromium and deposition on zirconium substrate. When the pinch plasma column decays due to various instabilities, intense and high-energy N2 ions are accelerated towards the zirconium substrate also sputtered Cr is deposited on the zirconium substrate. XRD and XRF analysis were used to study the structural properties of the samples. XRF analysis indicates 77.1% of Zr and 11.1% of Cr in the surface of the sample. XRD spectra shows the formation of ZrN, CrN and CrZr composites after nitrogen implantation and chromium coating. XRD spectra shows the chromium peak height equal to 152.80 a.u. for the major sample (θ=0֯) and 92.99 a.u. for the minor sample (θ=6֯), so implantation and coating along the main axis of the device is significantly more than other directions.Keywords: ZrN and CrN and CrZr composites, angular distribution for Cr deposition rate, zirconium corrosion resistance, nuclear fuel rods, plasma focus device
Procedia PDF Downloads 233352 Kinetics of Acetaminophen Based Oscillatory Chemical Reaction with and without Ferroin as Catalyst: An Inorganic Prototype Model for Paracetamol-Ethanol Syndrome
Authors: Nadeem Bashir, Ghulam Mustafa Peerzada
Abstract:
The present study pertains to the nonlinear behavior of acetaminophen based uncatalyzed Belousov-Zhabotinsky (BZ) oscillator and its dynamics in the presence of Ferroin as the catalyst. The role of free metal ions as catalysts was examined and the results compared with corresponding complexed catalysts. Free metal ions were found to be sluggish with respect to the evolution of the oscillatory regime as compared to complexed ones. Effect of change of the ligand moiety of the catalyst complex on the oscillatory parameters was monitored. Since ethanol potentiates the hepatotoxicity caused by acetaminophen in-vivo, it is thought to understand this interaction by virtue of causing perturbation of the acetaminophen based oscillator with different concentrations of the ethanol with and without ferroin as the catalyst. Another dimension to the ethanol effect was added by perturbation of the system with ethanol at different stages of the reaction so as to get an idea whether it is acetaminophen or some reactive intermediate generated in the reaction system which reacts with ethanol. Further, the ferroin-catalyzed oscillator is taken as a prototype inorganic model of the acetaminophen-ethanol syndrome, as ferroin and HOBr were inorganic replacements to Cyt P450 and NADPH in the alcohol metabolism.Keywords: Belousov-Zhabotinsky reaction, ferroin, Paracetamol-Ethanol syndrome, kinetics
Procedia PDF Downloads 5303351 Biomass Availability Matrix: Methodology to Define High Level Biomass Availability for Bioenergy Purposes, a Quebec Case Study
Authors: Camilo Perez Lee, Mark Lefsrud, Edris Madadian, Yves Roy
Abstract:
Biomass availability is one of the most important aspects to consider when determining the proper location of potential bioenergy plants. Since this aspect has a direct impact on biomass transportation and storage, biomass availability greatly influences the operational cost. Biomass availability is more than the quantity available on a specific region; other elements such as biomass accessibility and potential play an important role. Accessibility establishes if the biomass could be extracted and conveyed easily considering factors such as biomass availability, infrastructure condition and other operational issues. On the other hand, biomass potential is defined as the capacity of a specific region to scale the usage of biomass as an energy source, move from another energy source or to switch the type of biomass to increase their biomass availability in the future. This paper defines methodologies and parameters in order to determine the biomass availability within the administrative regions of the province of Quebec; firstly by defining the forestry, agricultural, municipal solid waste and energy crop biomass availability per administrative region, next its infrastructure accessibility and lastly defining the region potential. Thus, these data are processed to create a biomass availability matrix allowing to define the overall biomass availability per region and to determine the most optional candidates for bioenergy plant location.Keywords: biomass, availability, bioenergy, accessibility, biomass potential
Procedia PDF Downloads 3163350 Use of Vapor Corrosion Inhibitor for Tank Bottom Protection
Authors: Muhammad Arsalan Khan Sherwani
Abstract:
The use of Volatile Corrosion Inhibitors (VCI) to protect Aboveground Storage Tank (AST) bottom plates against soil-side corrosion is one of the emerging corrosion prevention methods, specifically for tanks constructed on oily sand pad. Oily sand pad and the presence of air gaps underneath the bottom plates lead to severe corrosion and high metal thickness loss. In such cases, the cathodic protection cannot be fully considered as effective due to Cathodic Protection (CP) current shielding. These situations sometimes result in serious failures on multiple fronts, such as; containment losses, system shutdowns, extensive repairs, environmental impact and safety concerns in case of flammable fluids. Recently, East West Pipeline Department (EWPD) of Saudi Aramco has deployed this technology to one of the crude oil storage tanks, which showed high metal thickness loss during its out of service inspection. Soil-side corrosion rustled in major repairs of bottom plates and ultimately caused enormous unplanned activities in term of time as well as cost. This paper mainly focuses on the methodology of VCI installation, corrosion monitoring system and the expected results of protection.Keywords: Vapor Corrosion Inhibitor, Soil Side Corrosion, External Corrosion, Above Grade Storage Tank
Procedia PDF Downloads 713349 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)
Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam
Abstract:
Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion
Procedia PDF Downloads 1223348 Wound Healing Dressing and Some Composites Such as Zeolite, TiO2, Chitosan and PLGA as New Alternative for Melanoma Therapy: A Review
Authors: L. B. Naves, L. Almeida
Abstract:
The development of Drugs Delivery System (DDS), has been wildly investigated in the last decades. In this paper, first a general overview of traditional and modern wound dressing is presented. This is followed by a review of what scientist have done in the medical environment, focusing the possibility to develop a new alternative for DDS through transdermal pathway, aiming to treat melanoma skin cancer.Keywords: cancer therapy, dressing polymers, melanoma, wound healing
Procedia PDF Downloads 4123347 Adhesive Bonded Joints Characterization and Crack Propagation in Composite Materials under Cyclic Impact Fatigue and Constant Amplitude Fatigue Loadings
Authors: Andres Bautista, Alicia Porras, Juan P. Casas, Maribel Silva
Abstract:
The Colombian aeronautical industry has stimulated research in the mechanical behavior of materials under different loading conditions aircrafts are generally exposed during its operation. The Calima T-90 is the first military aircraft built in the country, used for primary flight training of Colombian Air Force Pilots, therefore, it may be exposed to adverse operating situations such as hard landings which cause impact loads on the aircraft that might produce the impact fatigue phenomenon. The Calima T-90 structure is mainly manufactured by composites materials generating assemblies and subassemblies of different components of it. The main method of bonding these components is by using adhesive joints. Each type of adhesive bond must be studied on its own since its performance depends on the conditions of the manufacturing process and operating characteristics. This study aims to characterize the typical adhesive joints of the aircraft under usual loads. To this purpose, the evaluation of the effect of adhesive thickness on the mechanical performance of the joint under quasi-static loading conditions, constant amplitude fatigue and cyclic impact fatigue using single lap-joint specimens will be performed. Additionally, using a double cantilever beam specimen, the influence of the thickness of the adhesive on the crack growth rate for mode I delamination failure, as a function of the critical energy release rate will be determined. Finally, an analysis of the fracture surface of the test specimens considering the mechanical interaction between the substrate (composite) and the adhesive, provide insights into the magnitude of the damage, the type of failure mechanism that occurs and its correlation with the way crack propagates under the proposed loading conditions.Keywords: adhesive, composites, crack propagation, fatigue
Procedia PDF Downloads 2033346 Inerting and Upcycling of Foundry Fines
Authors: Chahinez Aissaoui, Cecile Diliberto, Jean-Michel Mechling
Abstract:
The manufacture of metal foundry products requires the use of sand moulds, which are destroyed, and new ones made each time metal is poured. However, recycled sand requires a regeneration process that produces a polluted fine mineral phase. Particularly rich in heavy metals and organic residues, this foundry co-product is disposed of in hazardous waste landfills and requires an expensive stabilisation process. This paper presents the results of research that valorises this fine fraction of foundry sand by inerting it in a cement phase. The fines are taken from the bag filter suction systems of a foundry. The sample is in the form of filler, with a fraction of less than 140µm, the D50 is 43µm. The Blaine fineness is 3120 cm²/g, and the fines are composed mainly of SiO₂, Al₂O₃ and Fe₂O₃. The loss on ignition at 1000°C of this material is 20%. The chosen inerting technique is to manufacture cement pastes which, once hardened, will be crushed for use as artificial aggregates in new concrete formulations. Different percentages of volume substitutions of Portland cement were tested: 30, 50 and 65%. The substitution rates were chosen to obtain the highest possible recycling rate while satisfying the European discharge limits (these values are assessed by leaching). They were also optimised by adding water-reducing admixtures to increase the compressive strengths of the mixes.Keywords: leaching, upcycling, waste, residuals
Procedia PDF Downloads 673345 Heteroatom Doped Binary Metal Oxide Modified Carbon as a Bifunctional Electrocatalysts for all Vanadium Redox Flow Battery
Authors: Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Chen-Hao Wang
Abstract:
As one of the most promising electrochemical energy storage systems, vanadium redox flow batteries (VRFBs) have received increasing attention owing to their attractive features for largescale storage applications. However, their high production cost and relatively low energy efficiency still limit their feasibility. For practical implementation, it is of great interest to improve their efficiency and reduce their cost. One of the key components of VRFBs that can greatly influence the efficiency and final cost is the electrode, which provide the reactions sites for redox couples (VO²⁺/VO₂ + and V²⁺/V³⁺). Carbon-based materials are considered to be the most feasible electrode materials in the VRFB because of their excellent potential in terms of operation range, good permeability, large surface area, and reasonable cost. However, owing to limited electrochemical activity and reversibility and poor wettability due to its hydrophobic properties, the performance of the cell employing carbon-based electrodes remained limited. To address the challenges, we synthesized heteroatom-doped bimetallic oxide grown on the surface of carbon through the one-step approach. When applied to VRFBs, the prepared electrode exhibits significant electrocatalytic effect toward the VO²⁺/VO₂ + and V³⁺/V²⁺ redox reaction compared with that of pristine carbon. It is found that the presence of heteroatom on metal oxide promotes the absorption of vanadium ions. The controlled morphology of bimetallic metal oxide also exposes more active sites for the redox reaction of vanadium ions. Hence, the prepared electrode displays the best electrochemical performance with energy and voltage efficiencies of 74.8% and 78.9%, respectively, which is much higher than those of 59.8% and 63.2% obtained from the pristine carbon at high current density. Moreover, the electrode exhibit durability and stability in an acidic electrolyte during long-term operation for 1000 cycles at the higher current density.Keywords: VRFB, VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples, graphite felt, heteroatom-doping
Procedia PDF Downloads 953344 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 3383343 Advanced Bio-Composite Materials Based on Biopolymer Blends and Cellulose Nanocrystals
Authors: Zineb Kassab, Nassima El Miri, A. Aboulkas, Abdellatif Barakat, Mounir El Achaby
Abstract:
Recently, more attention has been given to biopolymers with a focus on sustainable development and environmental preservation. Following this tendency, the attempt has been made to replace polymers derived from petroleum with superior biodegradable polymers (biopolymers). In this context, biopolymers are considered potential replacements for conventional plastic materials. However, some of their properties must be improved for better competitiveness, especially regarding their mechanical, thermal and barrier properties. Bio-nanocomposite technology using nanofillers has already been proven as an effective way to produce new materials with specific properties and high performances. With the emergence of nanostructured bio-composite materials, incorporating elongated rod-like cellulose nanocrystals (CNC) has attracted more and more attention in the field of nanotechnology. This study is aimed to develop bio-composite films of biopolymer matrices [Carboxymethyle cellulose (CMC), Starch (ST), Chitosan (CS) and Polyvinyl alcohol (PVA)] reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at a nanometric scale from lignocellulosic fibers via sulfuric acid hydrolysis and then characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), confocal microscopy, infrared spectroscopy (IR), atomic force and transmission electron microscopies (AFM and TEM) techniques. The as extracted CNC were used as a reinforcing phase to produce a variety of bio-composite films at different CNC loading (0.5-10 wt %) with specific properties. The rheological properties of film-forming solutions (FFS) of bio-composites were studied, and their relation to the casting process was evaluated. Then, the structural, optical transparency, water vapor permeability, thermal stability and mechanical properties of all prepared bio-composite films were evaluated and studied in this report. The high performances of these bio-composite films are expected to have potential in biomaterials or packaging applications.Keywords: biopolymer composites, cellulose nanocrystals, food packaging, lignocellulosic fibers
Procedia PDF Downloads 2383342 Development of Al Foam by a Low-Cost Salt Replication Method for Industrial Applications
Abstract:
Metal foams of Al find diverse applications in several industrial sectors such as in automotive and sports equipment industry as impact, acoustic and vibration absorbers, the aerospace industry as structural components in turbines and spatial cones, in the naval industry as low frequency vibration absorbers, and in construction industry as sound barriers inside tunnels, as fire proof materials and structure protection systems against explosions and even in heat exchangers, orthopedic components, and decorative items. Here, we report on the development of Al foams by a low cost and convenient technique of salt replication method with efficient control over size, geometry and distribution of the pores. Sodium bicarbonate was used as the foaming agent to form the porous refractory salt pattern. The mixed refractory salt slurry was microwave dried followed by sintering for selected time periods. Molten Al was infiltrated into the salt pattern in an inert atmosphere at a pressure of 2 bars. The final products were obtained by leaching out the refractory salt pattern. Mechanical properties of the derived samples were studied with a universal testing machine. The results were analyzed in correlation with their microstructural features evaluated with a scanning electron microscope (SEM).Keywords: metal foam, Al, salt replication method, mechanical properties, SEM
Procedia PDF Downloads 3513341 Robotics and Embedded Systems Applied to the Buried Pipeline Inspection
Authors: Robson C. Santos, Julio C. P. Ribeiro, Iorran M. de Castro, Luan C. F. Rodrigues, Sandro R. L. Silva, Diego M. Quesada
Abstract:
The work aims to develop a robot in the form of autonomous vehicle to detect, inspection and mapping of underground pipelines through the ATmega328 Arduino platform. Hardware prototyping very similar to C / C ++ language that facilitates its use in robotics open source, resembles PLC used in large industrial processes. The robot will traverse the surface independently of direct human action, in order to automate the process of detecting buried pipes, guided by electromagnetic induction. The induction comes from coils that sends the signal to the Arduino microcontroller contained in that will make the difference in intensity and the treatment of the information, then this determines actions to electrical components such as relays and motors, allowing the prototype to move on the surface and getting the necessary information. The robot was developed by electrical and electronic assemblies that allowed test your application. The assembly is made up of metal detector coils, circuit boards and microprocessor, which interconnected circuits previously developed can determine, process control and mechanical actions for a robot (autonomous car) that will make the detection and mapping of buried pipelines plates.Keywords: robotic, metal detector, embedded system, pipeline inspection
Procedia PDF Downloads 6123340 High-Production Laser and Plasma Welding Technologies for High-Speed Vessels Production
Authors: V. M. Levshakov, N. A. Steshenkova, N. A. Nosyrev
Abstract:
Application of hulls processing technologies, based on high-concentrated energy sources (laser and plasma technologies), allow improve shipbuilding production. It is typical for high-speed vessels construction using steel and aluminum alloys with high precision hulls required. Report describes high-performance technologies for plasma welding (using direct current of reversed polarity), laser, and hybrid laser-arc welding of hulls structures developed by JSC “SSTC”.Keywords: flat sections, hybrid laser-arc welding, plasma welding, plasmatron
Procedia PDF Downloads 4463339 Comparative Study on the Precipitation Behavior in Two Al-Mg Alloys (Al-12 wt. % Mg and Al-8 wt. % Mg)
Abstract:
Aluminum-magnesium alloys are widely used in industry thanks to their mechanical properties and corrosion resistivity. These properties are related to the magnesium content and to the applied heat treatments. Although they are already well studied, questions concerning the microstructural stability and the effect of different heat treatments are still being asked. In this work we have presented a comparative study on the behavior of the precipitation reactions during different heat treatment in two different Al-Mg alloys (Al–8 wt. % Mg and Al–12 wt. % Mg). For this purpose, we have used various experimental techniques as dilatometry, calorimetry, optical microscopy, and microhardness measurements. The obtained results shown that, the precipitation kinetics and the mechanical responses to the applied heat treatments, of the two studied alloys, are different.Keywords: Al-Mg alloys, precipitation, hardness, heat treatments
Procedia PDF Downloads 3853338 Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils
Authors: G. Adelian, A. Mirzaii, S. S. Yasrobi
Abstract:
This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions.Keywords: water permeability, unsaturated soils, hydraulic hysteresis, void ratio, matrix suction, degree of saturation
Procedia PDF Downloads 5253337 Nutritional Quality Assessment and Safety Evaluation of Food Crops
Authors: Olawole Emmanuel Aina, Liziwe Lizbeth Mugivhisa, Joshua Oluwole Olowoyo, Chikwela Lawrence Obi
Abstract:
In sustained and consistent efforts to improve food security, numerous and different methods are proposed and used in the production of food crops, and farm produce to meet the demands of consumers. However, unregulated and indiscriminate methods of production present another problem that may expose consumers of these food crops to potential health risks. Therefore, it is imperative that a thorough assessment of farm produce is carried out due to the growing trend of health-conscious consumers preference for minimally processed or raw farm produce. This study evaluated the safety and nutritional quality of food crops. The objectives were to compare the nutritional quality of organic and inorganic farm produce in one hand and, on the other, evaluate the safety of farm produce with respect to trace metal and pathogenic contamination. We conducted a broad systematic search of peer-reviewed published literatures from databases and search engines such as science direct, web-of-science, Google scholar, and Scopus. This study concluded that there is no conclusive evidence to support the notion of nutritional superiority of organic food crops over their inorganic counterparts and there are documented reports of pathogenic and metal contaminations of food crops.Keywords: food crops, fruits and vegetables, pathogens, nutrition, trace metals
Procedia PDF Downloads 793336 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output
Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin
Abstract:
With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.Keywords: channel estimation, LMMSE, LS, MIMO, MMSE
Procedia PDF Downloads 1903335 Comparative Analysis of Photosynthetic and Antioxidative Responses of Two Species of Anabaena under Ni and As(III) Stress
Authors: Shivam Yadav, Neelam Atri
Abstract:
Cyanobacteria, the photosynthetic prokaryotes are indispensable components of paddy soil contribute substantially to the nitrogen economy however often appended with metal load. They are well known to play crucial roles in maintenance of soil fertility and rice productivity. Nickel is one such metal that plays a vital role in the cellular physiology, however at higher concentrations it exerts adverse effects. Arsenic is another toxic metalloid that negatively affects the cyanobacterial proliferation. However species-specific comparative responses under As and Ni is largely unknown. The present study focuses on the comparative effects of nickel (Ni2+) and arsenite (As(III)) on two diazotrophic cyanobacterial species (Anabaena doliolum and Anabaena sp. PCC7120) in terms of antioxidative aspects. Oxidative damage measured in terms of lipid peroxidation and peroxide content was significantly higher after As(III) than Ni treatment as compared to control. Similarly, all the studied enzymatic and non-enzymatic parameters of antioxidative defense system except glutathione reductase (GR) showed greater induction against As(III) than Ni. Moreover, integrating comparative analysis of all studied parameters also demonstrated interspecies variation in terms of stress adaptive strategies reflected through higher sensitivity of Anabaena doliolum over Anabaena PCC7120.Keywords: antioxidative system, arsenic, cyanobacteria, nickel
Procedia PDF Downloads 1523334 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries
Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi
Abstract:
Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.Keywords: critical raw materials, energy storage, sodium metal halide, battery
Procedia PDF Downloads 108