Search results for: waste conditioning
937 High Dissolution of ATC by pH Control and Its Enzymatic Conversion to L-Cysteine
Authors: Deokyeong Choe, Sung Hun Youn, Younggon Kim, Chul Soo Shin
Abstract:
L-Cysteine is extensively used as a supplement of pharmaceuticals, cosmetics, food and feed additives. It has obtained industrially by hydrolysis of human hair and poultry feathers. However, there are some problems such as the restriction of using materials from animals and the intractable waste pollution. The enzymatic conversion has been regarded as an environmental-friendly method. Currently, the biggest bottle-neck of enzymatic conversion is the low yield of L-cysteine due to the low substrate solubility. In this study, the method of enhancing the solubility of the substrate D,L-2-amino-Δ2-thiazoline-4-carboxylicacid (ATC) was developed and the enzymatic reaction at high concentration levels was performed. A large amount of substrate in aqueous solutions was dissolved by pH control using salts. As the pH of the solution increased, the solubility of ATC increased. It was thought that a shift of ATC from acid form (-COOH) to dissociated carboxylic group (-COO-) would improve its hydrophilicity leading to solubility increase. The highest solubility of ATC was 610 mM at pH 10.5, whereas the maximum reaction rate was obtained at pH 8.3. As a result, a high L-cysteine yield of 250 mM was achieved at pH 9.1, which was obtained from a combination of optimum pH conditions for ATC solubility and enzymatic conversion. This yield corresponds to approximately 18 times of that in previous reports.Keywords: D, L-2-amino-Δ2-thiazoline-4-carboxylicacid, enzymatic conversion, high-substrate solubilization, L-Cysteine
Procedia PDF Downloads 435936 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots
Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi
Abstract:
The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.Keywords: biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter
Procedia PDF Downloads 311935 Dry Matter, Moisture, Ash and Crude Fibre Content in Distinct Segments of ‘Durian Kampung’ Husk
Authors: Norhanim Nordin, Rosnah Shamsudin, Azrina Azlan, Mohammad Effendy Ya’acob
Abstract:
An environmental friendly approach for disposal of voluminous durian husk waste could be implemented by substituting them into various valuable commodities, such as healthcare and biofuel products. Thus, the study of composition value in each segment of durian husk was very crucial to determine the suitable proportions of nutrients that need to be added and mixed in the product. A total of 12 ‘Durian Kampung’ fruits from Sg Ruan, Pahang were selected and each fruit husk was divided into four segments and labelled as P-L (thin neck area of white inner husk), P-B (thick bottom area of white inner husk), H (green and thorny outer husk) and W (whole combination of P-B and H). Four experiments have been carried out to determine the dry matter, moisture, ash and crude fibre content. The results show that the H segment has the highest dry matter content (30.47%), while the P-B segment has the highest percentage in moisture (81.83%) and ash (6.95%) content. It was calculated that the ash content of the P-B segment has a higher rate of moisture level which causes the ash content to increase about 2.89% from the P-L segment. These data have proven that each segment of durian husk has a significant difference in terms of composition value, which might be useful information to fully utilize every part of the durian husk in the future.Keywords: durian husk, crude fibre content, dry matter content, moisture content
Procedia PDF Downloads 304934 The Use of Seashell by-Products in Pervious Concrete Pavers
Authors: Dang Hanh Nguyen, Nassim Sebaibi, Mohamed Boutouil, Lydia Leleyter, Fabienne Baraud
Abstract:
Pervious concrete is a green alternative to conventional pavements with minimal fine aggregate and a high void content. Pervious concrete allows water to infiltrate through the pavement, thereby reducing the runoff and the requirement for stormwater management systems. Seashell By-Products (SBP) are produced in an important quantity in France and are considered as waste. This work investigated to use SBP in pervious concrete and produce an even more environmentally friendly product, Pervious Concrete Pavers. The research methodology involved substituting the coarse aggregate in the previous concrete mix design with 20%, 40% and 60% SBP. The testing showed that pervious concrete containing less than 40% SBP had strengths, permeability and void content which are comparable to the pervious concrete containing with only natural aggregate. The samples that contained 40% SBP or higher had a significant loss in strength and an increase in permeability and a void content from the control mix pervious concrete. On the basis of the results in this research, it was found that the natural aggregate can be substituted by SBP without affecting the delicate balance of a pervious concrete mix. Additional, it is recommended that the optimum replacement percentage for SBP in pervious concrete is 40 % direct replacement of natural coarse aggregate while maintaining the structural performance and drainage capabilities of the pervious concrete.Keywords: seashell by-products, pervious concrete pavers, permeability, mechanical strength
Procedia PDF Downloads 487933 Comparative Analysis of Ranunculus muricatus and Typha latifolia as Wetland Plants Applied for Domestic Wastewater Treatment in a Mesocosm Scale Study
Authors: Sadia Aziz, Mahwish Ali, Safia Ahmed
Abstract:
Comparing other methods of waste water treatment, constructed wetlands are one of the most fascinating practices because being a natural process they are eco-friendly have low construction and maintenance cost and have considerable capability of wastewater treatment. The current research was focused mainly on comparison of Ranunculus muricatus and Typha latifolia as wetland plants for domestic wastewater treatment by designing and constructing efficient pilot scale HSSF mesocosms. Parameters like COD, BOD5, PO4, SO4, NO3, NO2, and pathogenic indicator microbes were studied continuously with successive treatments. Treatment efficiency of the system increases with passage of time and with increase in temperature. Efficiency of T. latifolia planted setups in open environment was fairly good for parameters like COD and BOD5 which was showing up to 82.5% for COD and 82.6% for BOD5 while DO was increased up to 125%. Efficiency of R. muricatus vegetated setup was also good but lowers than that of T. latifolia planted showing 80.95% removal of COD and BOD5. Ranunculus muricatus was found effective in reducing bacterial count in wastewater. Both macrophytes were found promising in wastewater treatment.Keywords: wastewater treatment, wetland, mesocosms study, wetland plants
Procedia PDF Downloads 313932 Food Traceability for Small and Medium Enterprises Using Blockchain Technology
Authors: Amit Kohli, Pooja Lekhi, Gihan Adel Amin Hafez
Abstract:
Blockchain is a distributor ledger technology trend that extended to different fields and proved a remarkable success. Blockchain technology is a vital proliferation technique that recuperates the food supply chain traceability process. While tracing is the core of the food supply chain; still, a complex system mitigates the exceptional risk of food contamination, foodborne, food waste, and food fraud. In addition, the upsurge of food supply chain data variance and variety in the traceability system requires complete transparency, a secure, steadfast, sustainable, and efficient approach to face the food supply chain challenges. On the other hand, blockchain technical aspects merged with a detailed implementation plan, the advantages and challenges in food traceability have not been much elucidated for small and medium enterprises (SMEs.) This paper demonstrated the advantages and challenges of applying blockchain in SMEs combined with the success stories of firms implementing blockchain to cover the gap. Moreover, blockchain architecture in SMEs and how technology, organization, and environment frameworks can guarantee the success of blockchain implementation have been revealed.Keywords: blockchain technology, small and medium enterprises, food traceability, blockchain architecture
Procedia PDF Downloads 194931 Semiconducting Nanostructures Based Organic Pollutant Degradation Using Natural Sunlight for Water Remediation
Authors: Ankur Gupta, Jayant Raj Saurav, Shantanu Bhattacharya
Abstract:
In this work we report an effective water filtration system based on the photo catalytic performance of semiconducting dense nano-brushes under natural sunlight. During thin-film photocatalysis usually performed by a deposited layer of photocatalyst, a stagnant boundary layer is created near the catalyst which adversely affects the rate of adsorption because of diffusional restrictions. One strategy that may be used is to disrupt this laminar boundary layer by creating a super dense nanostructure near the surface of the catalyst. Further it is adequate to fabricate a structured filter element for a through pass of the water with as grown nanostructures coming out of the surface of such an element. So, the dye remediation is performed through solar means. This remediation was initially limited to lower efficiency because of diffusional restrictions but has now turned around as a fast process owing to the development of the filter materials with standing out dense nanostructures. The effect of increased surface area due to microholes on fraction adsorbed is also investigated and found that there is an optimum value of hole diameter for maximum adsorption.Keywords: nano materials, photocatalysis, waste water treatment, water remediation
Procedia PDF Downloads 340930 Innovation in Lean Thinking to Achieve Rapid Construction
Authors: Muhamad Azani Yahya, Vikneswaran Munikanan, Mohammed Alias Yusof
Abstract:
Lean thinking holds the potential for improving the construction sector, and therefore, it is a concept that should be adopted by construction sector players and academicians in the real industry. Bridging from that, a learning process for construction sector players regarding this matter should be the agenda in gaining the knowledge in preparation for their career. Lean principles offer opportunities for reducing lead times, eliminating non-value adding activities, reducing variability, and are facilitated by methods such as pull scheduling, simplified operations and buffer reduction. Thus, the drive for rapid construction, which is a systematic approach in enhancing efficiency to deliver a project using time reduction, while lean is the continuous process of eliminating waste, meeting or exceeding all customer requirements, focusing on the entire value stream and pursuing perfection in the execution of a constructed project. The methodology presented is shown to be valid through literature, interviews and questionnaire. The results show that the majority of construction sector players unfamiliar with lean thinking and they agreed that it can improve the construction process flow. With this background knowledge established and identified, best practices and recommended action are drawn.Keywords: construction improvement, rapid construction, time reduction, lean construction
Procedia PDF Downloads 374929 Chitosan Magnetic Nanoparticles and Its Analytical Applications
Authors: Eman Alzahrani
Abstract:
Efficient extraction of proteins by removing interfering materials is necessary in proteomics, since most instruments cannot handle such contaminated sample matrices directly. In this study, chitosan-coated magnetic nanoparticles (CS-MNPs) for purification of myoglobin were successfully fabricated. First, chitosan (CS) was prepared by a deacetylation reaction during its extraction from shrimp-shell waste. Second, magnetic nanoparticles (MNPs) were synthesised, using the coprecipitation method, from aqueous Fe2+ and Fe3+ salt solutions by the addition of a base under an inert atmosphere, followed by modification of the surface of MNPs with chitosan. The morphology of the formed nanoparticles, which were about 23 nm in average diameter, was observed by transmission electron microscopy (TEM). In addition, nanoparticles were characterised using X-ray diffraction patterns (XRD), which showed the naked magnetic nanoparticles have a spinel structure and the surface modification did not result in phase change of the Fe3O4. The coating of MNPs was also demonstrated by scanning electron microscopy (SEM) analysis, energy dispersive analysis of X-ray spectroscopy (EDAX), and Fourier transform infrared (FT-IR) spectroscopy. The adsorption behaviour of MNPs and CS-MNPs towards myoglobin was investigated. It was found that the difference in adsorption capacity between MNPs and CS-MNPs was larger for CS-MNPs. This result makes CS-MNPs good adsorbents and attractive for using in protein extraction from biological samples.Keywords: chitosan, magnetic nanoparticles, coprecipitation, adsorption
Procedia PDF Downloads 420928 Water Hyacinth (Eichhornia crassipes) in Nigeria Coastal Waters; lmpacts, Challenges and Prospects
Authors: Efe Ogidiaka-Obende, Gabriel C. C. Ndinwa, John Atadiose, Ewoma O. Oduma
Abstract:
Water hyacinth (Eichhornia crassipes), which is a native of South America, is believed to have found its way into Nigeria waters through Pot-Novo creek, Benin Republic, in September 1984. This study attempts to review the impacts, challenges, and prospects of water hyacinths in Nigeria's coastal waters. Water hyacinth possesses a very high proliferation rate, and its infestation in Nigeria's coastal waters poses severe problems to the fishing, recreational, transportation, and health sector, amongst other activities. The weed has been reported to disrupt aquatic ecosystems, clog waterways, and create associated problems with water supply, irrigation, and drainage. To curb this menace, a huge amount of money is used yearly for its management, which is not sustainable. There is, however, a positive twist to this plant as it has the potential to be used as fertilizers, feed for fish, craft materials, biogas, and many more. Due to its high population and related economic importance and implications in Nigeria's coastal waters, it is highly recommended that more research works be carried out on the of making optimal use of this plant.Keywords: waste to wealth, environmental pollution, water hyacinth, biogas, sustainable development goals
Procedia PDF Downloads 92927 Effect of Lime and Leaf Ash on Engineering Properties of Red Mud
Authors: Pawandeep Kaur, Prashant Garg
Abstract:
Red mud is a byproduct of aluminum extraction from Bauxite industry. It is dumped in a pond which not only uses thousands of acres of land but having very high pH, it pollutes the ground water and the soil also. Leaves are yet another big waste especially during autumn when they contribute immensely to the blockage of drains and can easily catch fire, among other risks hence also needs to be utilized effectively. The use of leaf ash and red mud in highway construction as a filling material may be an efficient way to dispose of leaf ash and red mud. In this study, leaf ash and lime were used as admixtures to improve the geotechnical engineering properties of red mud. The red mud was taken from National Aluminum Company Limited, Odisha, and leaf ash was locally collected. The aim of present study is to investigate the effect of lime and leaf ash on compaction characteristics and strength characteristics of red mud. California Bearing Ratio and Unconfined Compression Strength tests were performed on red mud by varying different percentages of lime and leaf ash. Leaf ash was added in proportion 2%,4%,6%,8% and 10% whereas lime was added in proportions of 5% to 15%. Optimized value of lime was decided with respect to maximum CBR (California Bearing Ratio) of red mud mixed with different proportions of lime. An increase of 300% in California Bearing ratio of red mud and an increase of 125% in Unconfined Compression Strength values were observed. It may, therefore, be concluded that red mud may be effectively utilized in the highway industry as a filler material.Keywords: stabilization, lime, red mud, leaf ash
Procedia PDF Downloads 246926 Combinated Effect of Cadmium and Municipal Solid Waste Compost Addition on Physicochemical and Biochemical Proprieties of Soil and Lolium Perenne Production
Authors: Sonia Mbarki Marian Brestic, Artemio Cerda Naceur Jedidi, Jose Antonnio Pascual Chedly Abdelly
Abstract:
Monitoring the effect addition bio-amendment as compost to an agricultural soil for growing plant lolium perenne irrigated with a CdCl2 solution at 50 µM on physicochemical soils characteristics and plant production in laboratory condition. Even microbial activity indexes (acid phosphatase, β-glucosidase, urease, and dehydrogenase) was determined. Basal respiration was the most affected index, while enzymatic activities and microbial biomass showed a decrease due to the cadmium treatments. We noticed that this clay soil with higher pH showed inhibition of basal respiration. Our results provide evidence for the importance of ameliorating effect compost on plant growth even when soil was added with cadmium solution at 50 µmoml.l-1. Soil heavy metal concentrations depended on heavy metals types, increased substantially with cadmium increase and with compost addition, but the recorded values were below the toxicity limits in soils and plants except for cadmium.Keywords: compost, enzymatic activity, lolium perenne, bioremediation
Procedia PDF Downloads 382925 Optimization of the Flexural Strength of Biocomposites Samples Reinforced with Resin for Engineering Applications
Authors: Stephen Akong Takim
Abstract:
This study focused on the optimization of the flexural strength of bio-composite samples of palm kernel, whelks, clams, periwinkles shells and bamboo fiber reinforced with resin for engineering applications. The aim of the study was to formulate different samples of bio-composite reinforced with resin for engineering applications and to evaluate the flexural strength of the fabricated composite. The hand lay-up technique was used for the composites produced by incorporating different percentage compositions of the shells/fiber (10%, 15%, 20%, 25% and 30%) into varied proportions of epoxy resin and catalyst. The cured samples, after 24 hours, were subjected to tensile, impact, flexural and water absorption tests. The experiments were conducted using the Taguchi optimization method L25 (5x5) with five design parameters and five level combinations in Minitab 18 statistical software. The results showed that the average value of flexural was 114.87MPa when compared to the unreinforced 72.33MPa bio-composite. The study recommended that agricultural waste, like palm kernel shells, whelk shells, clams, periwinkle shells and bamboo fiber, should be converted into important engineering applications.Keywords: bio-composite, resin, palm kernel shells, welk shells, periwinkle shells, bamboo fiber, Taguchi techniques and engineering application
Procedia PDF Downloads 80924 Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions
Authors: Paula Marín, Mohammad Saffari, Alvaro de Gracia, Luisa F. Cabeza, Svetlana Ushak
Abstract:
Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future.Keywords: energy saving, lightweight construction, PCM, simulation
Procedia PDF Downloads 289923 A Dynamical Approach for Relating Energy Consumption to Hybrid Inventory Level in the Supply Chain
Authors: Benga Ebouele, Thomas Tengen
Abstract:
Due to long lead time, work in process (WIP) inventory can manifest within the supply chain of most manufacturing system. It implies that there are lesser finished good on hand and more in the process because the work remains in the factory too long and cannot be sold to either customers The supply chain of most manufacturing system is then considered as inefficient as it take so much time to produce the finished good. Time consumed in each operation of the supply chain has an associated energy costs. Such phenomena can be harmful for a hybrid inventory system because a lot of space to store these semi-finished goods may be needed and one is not sure about the final energy cost of producing, holding and delivering the good to customers. The principle that reduces waste of energy within the supply chain of most manufacturing firms should therefore be available to all inventory managers in pursuit of profitability. Decision making by inventory managers in this condition is a modeling process, whereby a dynamical approach is used to depict, examine, specify and even operationalize the relationship between energy consumption and hybrid inventory level. The relationship between energy consumption and inventory level is established, which indicates a poor level of control and hence a potential for energy savings.Keywords: dynamic modelling, energy used, hybrid inventory, supply chain
Procedia PDF Downloads 270922 Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources
Authors: K. Nasir, S. Ahmad, A. Khan, H. Benkreira
Abstract:
The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%.Keywords: fire resistant, vibration damping, acoustic material, vibro-acoustic, thermal insulation, sustainable material, low cost materials, recycled materials, construction material
Procedia PDF Downloads 139921 Modelling and Simulation of a Commercial Thermophilic Biogas Plant
Authors: Jeremiah L. Chukwuneke, Obiora E. Anisiji, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This paper developed a mathematical model of a commercial biogas plant for urban area clean energy requirement. It identified biodegradable waste materials like domestic/city refuse as economically viable alternative source of energy. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analyses were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500 m3 power gas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of bio gas production is essentially a function of the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: energy and mass conservation, specific growth rate, thermophilic bacteria, temperature, rate of bio gas production
Procedia PDF Downloads 445920 Implementing Building Information Modelling to Attain Lean and Green Benefits
Authors: Ritu Ahuja
Abstract:
Globally the built environment sector is striving to be highly efficient, quality-centred and socially-responsible. Built environment sector is an integral part of the economy and plays an important role in urbanization, industrialization and improved quality of living. The inherent challenges such as excessive material and process waste, over reliance on resources, energy usage, and carbon footprint need to be addressed in order to meet the needs of the economy. It is envisioned that these challenges can be resolved by integration of Lean-Green-Building Information Modelling (BIM) paradigms. Ipso facto, with BIM as a catalyst, this research identifies the operational and tactical connections of lean and green philosophies by providing a conceptual integration framework and underpinning theories. The research has developed a framework for BIM-based organizational capabilities for enhanced adoption and effective use of BIM within architectural organizations. The study was conducted through a sequential mixed method approach focusing on collecting and analyzing both qualitative and quantitative data. The framework developed as part of this study will enable architectural organizations to successfully embrace BIM on projects and gain lean and green benefits.Keywords: BIM, lean, green, AEC organizations
Procedia PDF Downloads 191919 Assigning Moral Positions Caused by Environmental Degradation in San Buenaventura Public Housing Complex in Ixtapaluca, State of Mexico, Mexico
Authors: Ángel O. Aldape, José M. Bustos, José G. Guízar
Abstract:
Building companies providing public housing in Mexico, such as INFONAVIT, Casas GEO, Casas ARA, among others, provide low-interest home loans for thousands of Mexican families and individuals to buy a home. However, once this goal is achieved, these companies are not responsible for the care and maintenance of green areas and waste collection services because, technically, it is the local municipalities’ responsibility to provide these services to the community. However, this does not always occur with local municipalities. To study this problem, the San Buenaventura public housing complex was selected. This housing complex is located in the municipality of Ixtapaluca, State of Mexico (Estado de Mexico), Mexico. To our best knowledge, there are currently no formal studies about San Buenaventura that can offer effective options and/or better ways of sorting and disposing households’ wastes, as well as improving local green areas (community gardens and parks). Only a few web-blogs and periodical reports have addressed these serious problems that directly affect the social and psychological well-being of residents. The main goal of this research project aims to improve our understanding towards the existing ontological elements that emerge from residents’ discourses (in the form of informal talks and gossip) and discover the socio-physical elements that they use to assign moral positions onto others or onto themselves. The theoretical framework used in this study is based on two constructionist theories: positioning theory and site ontology. The first theory offered the opportunity to explore the rights, duties, and obligations assigned to a social role (or moral position) of the participants. The second theory provided a constructionist philosophical base that includes various socio-physical elements that are considered to assign personal or community meanings to particular contexts. Both theories contributed to defining personal dispositions and/or attitudes to carry out concrete social action or practice. The theoretical framework was guided by a relativistic ontology that allowed the researcher to better interpret the reality of the participants of this study. A descriptive-interpretative methodology was used, and two qualitative methods were arranged based on the theoretical framework proposed as follows: a semi-structured focus group interview, and direct observations. The semi-structured focus group was carried out with four residents of San Buenaventura and covert observations of public spaces and houses were carried out. These were analysed and interpreted by the researcher and assisted by NVivo software. The results suggest that the participants assigned moral traits of responsibility to other residents regarding the problem of the neglect of the green areas and waste pollution. The results suggest that all participants agreed to assign moral traits to other residents making them liable for the environmental degradation and the decay of green areas. They neither assigned any moral duty nor responsible moral traits onto themselves towards environmental protection or destruction. Overall, the participants in this study pointed out that external ontological elements such as the local government, infrastructure or cleaning services were not main cause of these environmental problems but rather the general lack of moral duty and disposition of other residents.Keywords: conversation, environment, housing, moral, ontology, position, public, site, talks
Procedia PDF Downloads 208918 Statistical Manufacturing Cell/Process Qualification Sample Size Optimization
Authors: Angad Arora
Abstract:
In production operations/manufacturing, a cell or line is typically a bunch of similar machines (computer numerical control (CNCs), advanced cutting, 3D printing or special purpose machines. For qualifying a typical manufacturing line /cell / new process, Ideally, we need a sample of parts that can be flown through the process and then we make a judgment on the health of the line/cell. However, with huge volumes and mass production scope, such as in the mobile phone industry, for example, the actual cells or lines can go in thousands and to qualify each one of them with statistical confidence means utilizing samples that are very large and eventually add to product /manufacturing cost + huge waste if the parts are not intended to be customer shipped. To solve this, we come up with 2 steps statistical approach. We start with a small sample size and then objectively evaluate whether the process needs additional samples or not. For example, if a process is producing bad parts and we saw those samples early, then there is a high chance that the process will not meet the desired yield and there is no point in keeping adding more samples. We used this hypothesis and came up with 2 steps binomial testing approach. Further, we also prove through results that we can achieve an 18-25% reduction in samples while keeping the same statistical confidence.Keywords: statistics, data science, manufacturing process qualification, production planning
Procedia PDF Downloads 102917 Enhancing the Performance of Bug Reporting System by Handling Duplicate Reporting Reports: Artificial Intelligence Based Mantis
Authors: Afshan Saad, Muhammad Saad, Shah Muhammad Emaduddin
Abstract:
Bug reporting systems are most important tool that guides regarding different maintenance activities in software engineering. Duplicate bug reports which describe the bugs and issues in bug reporting system repository increases processing time of bug triage that monitors all such activities and software programmers who are working and spending time on reports which were assigned by triage. These reports can reveal imperfections and degrade software quality. As there is a number of the potential duplicate bug reports increases, the number of bug reports in bug repository increases. Identifying duplicate bug reports help in decreasing development work load in fixing defects. However, it is difficult to manually identify all possible duplicates because of the huge number of already reported bug reports. In this paper, an artificial intelligence based system using Mantis is proposed to automatically detect duplicate bug reports. When new bugs are submitted to repository triages will mark it with a tag. It will investigate that whether it is a duplicate of an existing bug report by matching or not. Reports with duplicate tags will be eliminated from the repository which not only will improve the performance of the system but can also save cost and effort waste on bug triage and finding the duplicate bug.Keywords: bug tracking, triager, tool, quality assurance
Procedia PDF Downloads 198916 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks
Authors: Riyadh Alsultani, Ali Majdi
Abstract:
It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design
Procedia PDF Downloads 99915 How to Capitalize on BioCNG at a Wastewater Plant
Authors: William G. "Gus" Simmons
Abstract:
Municipal and industrial wastewater plants across our country utilize anaerobic digestion as either primary treatment or as a means of waste sludge treatment and reduction. The emphasis on renewable energy and clean energy over the past several years, coupled with increasing electricity costs and increasing consumer demands for efficient utility operations has led to closer examination of the potential for harvesting the energy value of the biogas produced by anaerobic digestion. Although some facilities may have already come to the belief that harvesting this energy value is not practical or a top priority as compared to other capital needs and initiatives at the wastewater plant, we see that many are seeing biogas, and an opportunity for additional revenues, go up in flames as they continue to flare. Conversely, few wastewater plants under progressive and visionary leadership have demonstrated that harvesting the energy value from anaerobic digestion is more than “smoke and hot air”. From providing thermal energy to adjacent or on-campus operations to generating electricity and/or transportation fuels, these facilities are proving that energy harvesting can not only be profitable, but sustainable. This paper explores ways in which wastewater treatment plants can increase their value and import to the communities they serve through the generation of clean, renewable energy; also presented the processes in which these facilities moved from energy and cost sinks to sparks of innovation and pride in the communities in which they operate.Keywords: anaerobic digestion, harvesting energy, biogas, renewable energy, sustainability
Procedia PDF Downloads 322914 Study of the Influence of the Different Treatments in Almond Shell-Based Masterbatches
Authors: A. Ibáñez, A. Martínez, A. Sánchez, M. A. León
Abstract:
This article is focused on the development of a series of biodegradable and eco-friendly masterbatches based on polylactic acid (PLA) filled with almond shell to study the influence of almond shell in the properties of injected biodegradable parts. These innovative masterbatches have 20 wt % of the almond shell. Different treatments were carried out with sodium hydroxide (NaOH) and maleic anhydride (MA) to obtain better interfacial bonding between fibre and matrix. The masterbatches were produced by varying the fibre treatments (type of treatment, concentration and temperature). The masterbatches have been injected to obtain standardised test samples in order to study mechanical properties. The results show that, the some of the treated fibres present slightly higher flexural modulus and impact strength than untreated fibres. This study is part of a LIFE project (MASTALMOND) aimed to create and test at preindustrial level new coloured masterbatches based on biodegradable polymers and containing in its formulation a high percentage of almond shell, a natural waste material, which firstly will permit to cover technical requirements of two traditional industrial sectors: toy and furniture, although the results achieved could be extended to other industrial sectors.Keywords: additivation, almond shell, biodegradable, masterbatch, PLA, injection moulding
Procedia PDF Downloads 431913 Scanning Electron Microscopy of Cement Clinkers Produced Using Alternative Fuels
Authors: Sorour Semsari Parapari, Mehmet Ali Gülgün, Melih Papila
Abstract:
Cement production is one of the most energy-intensive processes consuming a high amount of thermal energy. Nowadays, alternative fuels are being used in cement manufacturing in a large scale as a help to provide the necessary energy. The alternative fuels could consist of any disposal like waste plastics, used tires and biomass. It has been suggested that the clinker properties might be affected by using these fuels because of foreign elements incorporation to the composition. Studying the distribution of clinker phases and their chemical composition is possible with scanning electron microscopy (SEM). In this study, clinker samples were produced using different alternative fuels in cement firing kilns. The microstructural observations by back-scattered electrons (BSE) mode in SEM (JEOL JSM-6010LV) showed that the clinker phase distribution was dissimilar in samples prepared with different alternative fuels. The alite to belite (a/b) phase content of samples was quantified by image analysis. The results showed that the a/b varied between 5.2 and 1.5 among samples as the average value for six clinker nodules. The elemental analysis by energy-dispersive x-ray spectroscopy (EDS) mounted on SEM indicated the variation in chemical composition among samples. Higher amounts of sulfur and alkalis seemed to reduce the alite phase formation in clinkers.Keywords: alternative fuels, cement clinker, microstructure, SEM
Procedia PDF Downloads 368912 Designing Sustainable Building Based on Iranian's Windmills
Authors: Negar Sartipzadeh
Abstract:
Energy-conscious design, which coordinates with the Earth ecological systems during its life cycle, has the least negative impact on the environment with the least waste of resources. Due to the increasing in world population as well as the consumption of fossil fuels that cause the production of greenhouse gasses and environmental pollution, mankind is looking for renewable and also sustainable energies. The Iranian native construction is a clear evidence of energy-aware designing. Our predecessors were forced to rely on the natural resources and sustainable energies as well as environmental issues which have been being considered in the recent world. One of these endless energies is wind energy. Iranian traditional architecture foundations is a appropriate model in solving the environmental crisis and the contemporary energy. What will come in this paper is an effort to recognition and introduction of the unique characteristics of the Iranian architecture in the application of aerodynamic and hydraulic energies derived from the wind, which are the most common and major type of using sustainable energies in the traditional architecture of Iran. Therefore, the recent research attempts to offer a hybrid system suggestions for application in new constructions designing in a region such as Nashtifan, which has potential through reviewing windmills and how they deal with sustainable energy sources, as a model of Iranian native construction.Keywords: renewable energy, sustainable building, windmill, Iranian architecture
Procedia PDF Downloads 426911 Study of Strontium Sorption onto Indian Bentonite
Authors: Pankaj Pathak, Susmita Sharma
Abstract:
Incessant industrial growth fulfill the energy demand of present day society, at the same time it produces huge amount of waste which could be hazardous or non-hazardous in nature. These wastes are coming out from different sources viz, nuclear power, thermal power, coal mines which contain different types of contaminants and one of the emergent contaminant is strontium, used in the present study. The isotope of strontium (Sr90) is radioactive in nature with half-life of 28.8 years and permissible limit of strontium in drinking water is 1.5 ppm. Above the permissible limit causes several types of diseases in human being. Therefore, safe disposal of strontium into ground becomes a biggest challenge for the researchers. In this context, bentonite is being used as an efficient material to retain strontium onto ground due to its specific physical, chemical and mineralogical properties which exhibits higher cation exchange capacity and specific surface area. These properties influence the interaction between strontium and bentonite, which is quantified by employing a parameter known as distribution coefficient. Batch test was conducted, and sorption isotherms were modelled at different interaction time. The pseudo first-order and pseudo second order kinetic models have been used to fit experimental data, which helps to determine the sorption rate and mechanism.Keywords: bentonite, interaction time, sorption, strontium
Procedia PDF Downloads 310910 Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule
Authors: Rui-Xiong Han, Rui Ge, Shao-Peng Li, Lin Bian, Liang-Rui Sun, Min-Jing Sang, Rui Ye, Ya-Ping Liu, Xiang-Zhen Zhang, Jie-Hao Zhang, Zhuo Zhang, Jian-Qing Zhang, Miao-Fu Xu
Abstract:
The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning.Keywords: C-ADS, cryomodule, structure, thermal simulation, static heat load, dynamic heat load
Procedia PDF Downloads 406909 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment
Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal
Abstract:
In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.Keywords: biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell
Procedia PDF Downloads 449908 The Use of Waste Fibers as Reinforcement in Biopolymer Green Composites
Authors: Dalila Hammiche, Lisa Klaai, Amar Boukerrou
Abstract:
Following this trend, natural fiber reinforcements have been gaining importance in the composites sector. The effectiveness of natural fiber–reinforced PLA composite as an alternative material to substitute the non-renewable petroleum-based materials has been examined by researchers. In this study, we investigated the physicochemical, particle size and distribution, and thermal behavior of prickly pear seed flour (PPSF). Then, composites were manufactured with 20% in PPSF. Thermal, morphological, and mechanical properties have been studied, and water absorption tests as well. The characterization of this fiber has shown that cellulose is the majority constituent (30%), followed by hemicellulose (27%). To improve the fiber-matrix adhesion, the PPS was chemically treated with alkali treatment. The addition of PPSF decreases the thermal properties, and the study of the mechanical properties showed that the increase in the fiber content from 0 to 20% increased Young’s modulus. According to the results, the mechanical and thermal behaviors of composites are improved after fiber treatment. However, there is an increase in water absorption of composites compared to the PLA matrix. The moisture sensitivity of natural fiber composites limits their use in structural applications. Degradation of the fiber-matrix interface is likely to occur when the material is subjected to variable moisture conditions.Keywords: biopolymer, composites, alcali treatment, mechanical properties
Procedia PDF Downloads 131