Search results for: teaching learning based optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34667

Search results for: teaching learning based optimization

32537 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.

Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor

Procedia PDF Downloads 140
32536 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 460
32535 Pilot Scale Deproteinization Study on Fish Scale Using Response Surface Methodology

Authors: Fatima Bellali, Mariem Kharroubi

Abstract:

Fish scale wastes are one of the main sources of production of value-added products such as collagen. The main aim of this study is to investigate the optimization conditions of the sardine scale deproteinization using response surface methodology (RSM) on a pilot scale. In order to look for the optimal conditions, a Box–Behnken-based design of experiment (DOE) method was carried out. The model predicted values of product coal ash content were in good agreement with the experiment values (R2 = 0.9813). Finally, model-based optimization was carried out to identify the operating parameters (reaction time=4h and the solid-liquid ratio= 1/10) and to obtain the lowest collagen content.

Keywords: pilot scale, Plackett and Burman design, fish waste, deproteinization

Procedia PDF Downloads 160
32534 Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO

Authors: Ouahab Kadri, Leila Hayet Mouss

Abstract:

In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system.

Keywords: ant colony algorithms, complex and dynamic systems, diagnosis, classification, optimization

Procedia PDF Downloads 299
32533 The Impact of Teachers’ Beliefs and Perceptions about Formative Assessment in the University ESL Class Assistant Lecturer: Barzan Hadi Hama Karim University of Halabja

Authors: Barzan Hadi Hama Karim

Abstract:

The topic of formative assessment and its implementation in Iraqi Kurdistan have not attracted the attention of researchers and educators. Teachers’ beliefs about formative assessment as well as their assessment roles have remained unexplored. This paper reports on the research results of our survey which is conducted in 20014 to examine issues relating to formative assessment in the university ESL classroom settings. The paper portrays the findings of a qualitative study on the formative assessment role and beliefs of a group of teachers of English as a Foreign Language (EFL) in the departments of English Languages in Iraqi Kurdistan universities. Participants of the study are 25 Kurdish EFL teachers from different departments of English languages. Close-ended and open-ended questionnaire is used to collect teacher’s beliefs and perceptions about the importance of formative assessment to improve the process of teaching and learning English language. The result of the study shows that teachers do not play a significant role in the assessment process because of top-down managerial approaches and educational system. The results prove that the teachers’ assessment beliefs and their key role in assessment should not be neglected. Our research papers pursued the following questions: What is the nature of formative assessment in a second language classroom setting? Do the teacher’s assessment practices reflect what she thinks about formative assessment? What are the teachers’ perceptions regarding the benefits of formative assessment for teaching and learning English language at the university level?

Keywords: formative assessment, teachers’ beliefs and perceptions, assessment, education reform, ESL

Procedia PDF Downloads 402
32532 Joint Optimization of Carsharing Stations with Vehicle Relocation and Demand Selection

Authors: Jiayuan Wu. Lu Hu

Abstract:

With the development of the sharing economy and mobile technology, carsharing becomes more popular. In this paper, we focus on the joint optimization of one-way station-based carsharing systems. We model the problem as an integer linear program with six elements: station locations, station capacity, fleet size, initial vehicle allocation, vehicle relocation, and demand selection. A greedy-based heuristic is proposed to address the model. Firstly, initialization based on the location variables relaxation using Gurobi solver is conducted. Then, according to the profit margin and demand satisfaction of each station, the number of stations is downsized iteratively. This method is applied to real data from Chengdu, Sichuan taxi data, and it’s efficient when dealing with a large scale of candidate stations. The result shows that with vehicle relocation and demand selection, the profit and demand satisfaction of carsharing systems are increased.

Keywords: one-way carsharing, location, vehicle relocation, demand selection, greedy algorithm

Procedia PDF Downloads 137
32531 The Impact of Usefulness and Ease of Using Mobile Learning Technology on Faculty Acceptance

Authors: Leena Ahmad Khaleel Alfarani, Maggie McPherson, Neil Morris

Abstract:

Over the last decade, m-learning has been widely accepted and utilized by many western universities. However, Saudi universities face many challenges in utilizing such technology, a central one being to encourage teachers to use such technology. Although there are several factors that affect faculty members’ participation in the adoption of m-learning, this paper focuses merely on two factors, the usefulness and ease of using m-learning. A sample of 279 faculty members in one Saudi university has responded to the online survey. The results of the study have revealed that there is a statistically significant relationship (at the 0.05 level) between both usefulness and ease of using m-learning factors and the intention of teachers to use m-learning currently and in the future.

Keywords: mobile learning, diffusion of innovation theory, technology acceptance, faculty adoption

Procedia PDF Downloads 545
32530 Design of the Ubiquitous Cloud Learning Management System

Authors: Panita Wannapiroon, Noppadon Phumeechanya, Sitthichai Laisema

Abstract:

This study is the research and development which is intended to: 1) design the ubiquitous cloud learning management system and: 2) assess the suitability of the design of the ubiquitous cloud learning management system. Its methods are divided into 2 phases. Phase 1 is the design of the ubiquitous cloud learning management system, phase 2 is the assessment of the suitability of the design the samples used in this study are work done by 25 professionals in the field of Ubiquitous cloud learning management systems and information and communication technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ubiquitous cloud learning management system consists of 2 main components which are: 1) the ubiquitous cloud learning management system server (u-Cloud LMS Server) including: cloud repository, cloud information resources, social cloud network, cloud context awareness, cloud communication, cloud collaborative tools, and: 2) the mobile client. The result of the system suitability assessment from the professionals is in the highest range.

Keywords: learning management system, cloud computing, ubiquitous learning, ubiquitous learning management system

Procedia PDF Downloads 520
32529 The Pioneering Model in Teaching Arabic as a Mother Tongue through Modern Innovative Strategies

Authors: Rima Abu Jaber Bransi, Rawya Jarjoura Burbara

Abstract:

This study deals with two pioneering approaches in teaching Arabic as a mother tongue: first, computerization of literary and functional texts in the mother tongue; second, the pioneering model in teaching writing skills by computerization. The significance of the study lies in its treatment of a serious problem that is faced in the era of technology, which is the widening gap between the pupils and their mother tongue. The innovation in the study is that it introduces modern methods and tools and a pioneering instructional model that turns the process of mother tongue teaching into an effective, meaningful, interesting and motivating experience. In view of the Arabic language diglossia, standard Arabic and spoken Arabic, which constitutes a serious problem to the pupil in understanding unused words, and in order to bridge the gap between the pupils and their mother tongue, we resorted to computerized techniques; we took texts from the pre-Islamic period (Jahiliyya), starting with the Mu'allaqa of Imru' al-Qais and other selected functional texts and computerized them for teaching in an interesting way that saves time and effort, develops high thinking strategies, expands the literary good taste among the pupils, and gives the text added values that neither the book, the blackboard, the teacher nor the worksheets provide. On the other hand, we have developed a pioneering computerized model that aims to develop the pupil's ability to think, to provide his imagination with the elements of growth, invention and connection, and motivate him to be creative, and raise level of his scores and scholastic achievements. The model consists of four basic stages in teaching according to the following order: 1. The Preparatory stage, 2. The reading comprehension stage, 3. The writing stage, 4. The evaluation stage. Our lecture will introduce a detailed description of the model with illustrations and samples from the units that we built through highlighting some aspects of the uniqueness and innovation that are specific to this model and the different integrated tools and techniques that we developed. One of the most significant conclusions of this research is that teaching languages through the employment of new computerized strategies is very likely to get the Arabic speaking pupils out of the circle of passive reception into active and serious action and interaction. The study also emphasizes the argument that the computerized model of teaching can change the role of the pupil's mind from being a store of knowledge for a short time into a partner in producing knowledge and storing it in a coherent way that prevents its forgetfulness and keeping it in memory for a long period of time. Consequently, the learners also turn into partners in evaluation by expressing their views, giving their notes and observations, and application of the method of peer-teaching and learning.

Keywords: classical poetry, computerization, diglossia, writing skill

Procedia PDF Downloads 225
32528 Creative Application of Cognitive Linguistics and Communicative Methods to Eliminate Common Learners' Mistakes in Academic Essay Writing

Authors: Ekaterina Lukianchenko

Abstract:

This article sums up a six-year experience of teaching English as a foreign language to over 900 university students at MGIMO (Moscow University of International Relations, Russia), all of them native speakers of Russian aged 16 to 23. By combining modern communicative approach to teaching with cognitive linguistics theories, one can deal more effectively with deeply rooted mistakes which particular students have of which conventional methods have failed to eliminate. If language items are understood as concepts and frames, and classroom activities as meaningful parts of language competence development, this might help to solve such problems as incorrect use of words, unsuitable register, and confused tenses - as well as logical or structural mistakes, and even certain psychological issues concerning essay writing. Along with classic teaching methods, such classroom practice includes plenty of interaction between students - playing special classroom games aimed at eliminating particular mistakes, working in pairs and groups, integrating all skills in one class. The main conclusions that the author of the experiment makes consist in an assumption that academic essay writing classes demand a balanced plan. This should not only include writing as such, but additionally feature elements of listening, reading, speaking activities specifically chosen according to the skills and language students will need to write the particular type of essay.

Keywords: academic essay writing, creative teaching, cognitive linguistics, competency-based approach, communicative language teaching, frame, concept

Procedia PDF Downloads 297
32527 Choral Singers' Preference for Expressive Priming Techniques

Authors: Shawn Michael Condon

Abstract:

Current research on teaching expressivity mainly involves instrumentalists. This study focuses on choral singers’ preference of priming techniques based on four methods for teaching expressivity. 112 choral singers answered the survey about their preferred methods for priming expressivity (vocal modelling, using metaphor, tapping into felt emotions, and drawing on past experiences) in three conditions (active, passive, and instructor). Analysis revealed higher preference for drawing on past experience among more experienced singers. The most preferred technique in the passive and instructor roles was vocal modelling, with metaphors and tapping into felt emotions favoured in an active role. Priming techniques are often used in combination with other methods to enhance singing technique or expressivity and are dependent upon the situation, repertoire, and the preferences of the instructor and performer.

Keywords: emotion, expressivity, performance, singing, teaching

Procedia PDF Downloads 155
32526 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 171
32525 Children Learning Chinese as a Home Language in an English-Dominant Society

Authors: Sinming Law

Abstract:

Many Chinese families face many difficulties in maintaining their heritage language for their children in English-dominant societies. This article first looks at the losses from monolingualism and benefits of bilingualism. Then, it explores the common methods used today in teaching Chinese. We conclude that families and community play an indispensable role in their children’s acquisition. For children to acquire adequate proficiency in the language, educators should inform families about this topic and partner with them. Families can indeed be active in the process. Hence, the article further describes a guide designed and written by the author to accommodate the needs of parents. It can be used as a model for future guides. Further, the article recommends effective media routes by which families can have access to similar guides.

Keywords: children learning Chinese, biliteracy and bilingual acquisition, family and community support, heritage language maintenance

Procedia PDF Downloads 367
32524 A Multi-Agent Simulation of Serious Games to Predict Their Impact on E-Learning Processes

Authors: Ibtissem Daoudi, Raoudha Chebil, Wided Lejouad Chaari

Abstract:

Serious games constitute actually a recent and attractive way supposed to replace the classical boring courses. However, the choice of the adapted serious game to a specific learning environment remains a challenging task that makes teachers unwilling to adopt this concept. To fill this gap, we present, in this paper, a multi-agent-based simulator allowing to predict the impact of a serious game integration in a learning environment given several game and players characteristics. As results, the presented tool gives intensities of several emotional aspects characterizing learners reactions to the serious game adoption. The presented simulator is tested to predict the effect of basing a coding course on the serious game ”CodeCombat”. The obtained results are compared with feedbacks of using the same serious game in a real learning process.

Keywords: emotion, learning process, multi-agent simulation, serious games

Procedia PDF Downloads 398
32523 Goal Orientation, Learning Strategies and Academic Performance in Adult Distance Learning

Authors: Ying Zhou, Jian-Hua Wang

Abstract:

Based upon the self-determination theory and self-regulated learning theory, this study examined the predictiveness of goal orientation and self-regulated learning strategies on academic achievement of adult students in distance learning. The results show a positive relation between goal orientation and the use of self-regulated strategies, and academic achievements. A significant and positive indirect relation of mastery goal orientation through self-regulated learning strategies was also found. In addition, results pointed to a positive indirect impact of performance-approach goal orientation on academic achievement. The effort regulation strategy fully mediated this relation. The theoretical and instructional implications are discussed. Interventions can be made to motivate students’ mastery or performance approach goal orientation and help them manage their time or efforts.

Keywords: goal orientation, self-regulated strategies, achievement, adult distance students

Procedia PDF Downloads 274
32522 Translation Training in the AI Era

Authors: Min Gao

Abstract:

In the past year, the advent of large language models (LLMs) has brought about a revolution in the language service industry, making it possible to efficiently produce more satisfactory and higher-quality translations. This is groundbreaking news for commercial companies involved in language services since much of a translator's work can now be completed by machines. However, it may be bad news for universities that provide translation training programs. They need to confront the challenges posed by AI in education by reconsidering issues such as the reform of traditional teaching methods, the translation ethics of students, and the new demands of the job market for their graduates. This article is an exploratory study of these issues based on the author's experiences in translation teaching. The research combines methods in the form of questionnaires and interviews. The findings include: (1) students may lose their motivation to learn in the AI era, but this can be compensated for by encouragement from the lecturer; (2) Translation ethics are not a serious problem in schools, considering the strict policies and regulations in place; (3) The role of translators has evolved in the new era, necessitating a reform of the traditional teaching methods.

Keywords: job market of translation, large language model, translation ethics, translation training

Procedia PDF Downloads 68
32521 Competences for Learning beyond the Academic Context

Authors: Cristina Galván-Fernández

Abstract:

Students differentiate the different contexts of their lives as well as employment, hobbies or studies. In higher education is needed to transfer the experiential knowledge to theory and viceversa. However, is difficult to achieve than students use their personal experiences and social readings for get the learning evidences. In an experience with 178 education students from Chile and Spain we have used an e-portfolio system and a methodology for 4 years with the aims of help them to: 1) self-regulate their learning process and 2) use social networks and professional experiences for make the learning evidences. These two objectives have been controlled by interviews to the same students in different moments and two questionnaires. The results of this study show that students recognize the ownership of their learning and progress in planning and reflection of their own learning.

Keywords: competences, e-portfolio, higher education, self-regulation

Procedia PDF Downloads 299
32520 Fluctuations in Motivational Strategies EFL Teachers Use in Virtual and In-Person Classes across Context

Authors: Sima Modirkhamene, Arezoo Khezri

Abstract:

The purpose of the present investigation was to probe the main motivational strategies Iranian school vs. institute teachers use in virtual and in-person classes to motivate students in learning the English language. Yet another purpose was to understand teachers’ perceptions about any modifications in their use of motivational strategies before and during/after the pandemic. For the purpose of this investigation, a total of 63 EFL teachers (35 female, 28 male) were conveniently sampled from schools and institutes in the cities of Mahabad and Sardasht. Moreover, for the interview phase of the study, 20 percent (n=16) of the sample was selected conveniently. The required data was gathered through a modified questionnaire (Cheng & Dornyei, 2007) consisting of 42 items and a set of semi-structured interviews. The outcomes of a set of non-parametric Mann-Whitney U tests demonstrated that presenting tasks properly in online classes and familiarizing learners with L2- related values in in-person classes came out as the most influential source of motivational strategies practiced by EFL school teachers. Additionally, it was found that proper teacher behavior(showing enthusiasm) in both in-person and virtual classes and presenting tasks properly in in-person classes were overwhelmingly endorsed by EFL institute teachers. The study also portrayed no statistically significant mean difference between school and institute EFL teachers’ overall use of motivational strategies in virtual and in-person classes. The interview results indicated that the strategies of designing tasks through technological aids, provision of videos, gamification techniques, assigning projects, and delivering formative online feedback were held in high regard during/after the pandemic due to the high reliance of teaching on the Internet connection. Meanwhile, the research has indicated that the spread of COVID-19 was the main reason for teachers’ modifications in motivational strategies, in response to the crisis of the pandemic, all educational contexts at all levels resorted to online education as a result their strategies were adapted to the new situation. The findings brought to light through this investigation provided initial evidence of the unintended consequences of the pandemic on teachers’ strategic choices. Therefore, to deliver a better education for the future, the study suggests more concentration on the quality of teaching as well as reframing the status quo of teaching .

Keywords: virtual teaching, motivational teaching strategies, teaching context, online education

Procedia PDF Downloads 57
32519 Development of Web-Based Iceberg Detection Using Deep Learning

Authors: A. Kavya Sri, K. Sai Vineela, R. Vanitha, S. Rohith

Abstract:

Large pieces of ice that break from the glaciers are known as icebergs. The threat that icebergs pose to navigation, production of offshore oil and gas services, and underwater pipelines makes their detection crucial. In this project, an automated iceberg tracking method using deep learning techniques and satellite images of icebergs is to be developed. With a temporal resolution of 12 days and a spatial resolution of 20 m, Sentinel-1 (SAR) images can be used to track iceberg drift over the Southern Ocean. In contrast to multispectral images, SAR images are used for analysis in meteorological conditions. This project develops a web-based graphical user interface to detect and track icebergs using sentinel-1 images. To track the movement of the icebergs by using temporal images based on their latitude and longitude values and by comparing the center and area of all detected icebergs. Testing the accuracy is done by precision and recall measures.

Keywords: synthetic aperture radar (SAR), icebergs, deep learning, spatial resolution, temporal resolution

Procedia PDF Downloads 91
32518 Trends in Practical Research on Universal Design for Learning (UDL) in Japanese Elementary Schools

Authors: Zolzaya Badmaavanchig, Shoko Miyamoto

Abstract:

In recent years, universal design for learning (hereinafter referred to as "UDL"), which aims to establish an inclusive education system and to make all children, regardless of their disabilities, experts in learning, has been attracting attention, and there have been some attempts to incorporate it into regular classrooms where children with developmental disabilities and those who show such tendencies are enrolled. The purpose of this study was to examine the effectiveness and challenges of implementing UDL in Japanese elementary schools based on the previous literature. As a method, we first searched for articles on UDL for learning and UDL in the classroom from 2010 to 2022. In addition, we selected practice studies that targeted children with special educational support needs and the classroom as a whole. In response to the extracted literature, this bridge examined the following five perspectives: (1) subjects and grades in which UDL was practiced, (2) methods to grasp the actual conditions of the children, (3) consideration for children with special needs during class, (4) form of class, and (5) effects of the practice. Based on the results, we would like to present issues related to future UDL efforts in Japanese elementary schools.

Keywords: universal design for learning, regular elementary school class, children with special education needs, special educational support

Procedia PDF Downloads 62
32517 Engaging Mature Learners through Video Case Studies

Authors: Jacqueline Mary Jepson

Abstract:

This article provides a case study centred on the development of 13 video episodes which have been created to enhance student engagement with a post graduate online course in Project Management. The student group was unique as their online course needed to provide for asynchronistic learning and an adult learning pedagogy. In addition, students had come from a wide range professional backgrounds, with some having no Project Management experience, while others had 20 years or more. Students had to gain an understanding of an advanced body of knowledge and the course needed to achieve the academic requirements to qualify individuals to apply their learning in a range of contexts for professional practice and scholarship. To achieve this, a 13 episode case study was developed along with supportive learning materials based on the relocation of a zoo. This unique project provided a learning environment where the project could evolve over each video episode demonstrating the application of Project Management methodology which was then tied into the learning outcomes for the course and the assessment tasks. Discussion forums provided a way for students to converse and demonstrate their own understanding of content and how Project Management methodology can be applied.

Keywords: project management, adult learning, video case study, asynchronistic education

Procedia PDF Downloads 338
32516 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate

Authors: Susan Diamond

Abstract:

Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare. 

Keywords: deep learning, machine learning, cognitive computing, model training

Procedia PDF Downloads 209
32515 The Development of Web Based Instruction on Puppet Show

Authors: Piyanut Sujit

Abstract:

The purposes of this study were to: 1) create knowledge and develop web based instruction on the puppet show, 2) evaluate the effectiveness of the web based instruction on the puppet show by using the criteria of 80/80, and 3) compare and analyze the achievement of the students before and after learning with web based instruction on the puppet show. The population of this study included 53 students in the Program of Library and Information Sciences who registered in the subject of Reading and Reading Promotion in semester 1/2011, Suansunandha Rajabhat University. The research instruments consisted of web based instruction on the puppet show, specialist evaluation form, achievement test, and tests during the lesson. The research statistics included arithmetic mean, variable means, standard deviation, and t-test in SPSS for Windows. The results revealed that the effectiveness of the developed web based instruction was 84.67/80.47 which was higher than the set criteria at 80/80. The student achievement before and after learning showed statistically significant difference at 0.05 as in the hypothesis.

Keywords: puppet, puppet show, web based instruction, library and information sciences

Procedia PDF Downloads 367
32514 Computer Aided Engineering Optimization of Synchronous Reluctance Motor and Vibro-Acoustic Analysis for Lift Systems

Authors: Ezio Bassi, Francesco Vercesi, Francesco Benzi

Abstract:

The aim of this study is to evaluate the potentiality of synchronous reluctance motors for lift systems by also evaluating the vibroacoustic behaviour of the motor. Two types of synchronous machines are designed, analysed, and compared with an equivalent induction motor, which is the more common solution in such gearbox applications. The machines' performance are further improved with optimization procedures based on multiobjective optimization genetic algorithm (MOGA). The difference between the two synchronous motors consists in the rotor geometry; a symmetric and an asymmetric rotor design were investigated. The evaluation of the vibroacoustic performance has been conducted with a multi-variable model and finite element software taking into account electromagnetic, mechanical, and thermal features of the motor, therefore carrying out a multi-physics analysis of the electrical machine.

Keywords: synchronous reluctance motor, vibro-acoustic, lift systems, genetic algorithm

Procedia PDF Downloads 178
32513 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation

Authors: Ksenia Meshkova

Abstract:

With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.

Keywords: neural networks, computer vision, representation learning, autoencoders

Procedia PDF Downloads 127
32512 Investigating the Efficacy of Developing Critical Thinking through Literature Reading

Authors: Julie Chuah Suan Choo

Abstract:

Due to the continuous change in workforce and the demands of the global workplace, many employers had lamented that the majority of university graduates were not prepared in the key areas of employment such as critical thinking, writing, self-direction and global knowledge which are most needed for the purposes of promotion. Further, critical thinking skills are deemed as integral parts of transformational pedagogy which aims at having a more informed society. To add to this, literature teaching has recently been advocated for enhancing students’ critical thinking and reasoning. Thus this study explored the effects of incorporating a few strategies in teaching literature, namely a Shakespeare play, into a course design to enhance these skills. An experiment involving a pretest and posttest using the California Critical Thinking Skills Test (CCTST) were administered on 80 first-year students enrolled in the Bachelor of Arts programme who were randomly assigned into the control group and experimental group. For the next 12 weeks, the experimental group was given intervention which included guided in-class discussion with Socratic questioning skills, learning log to detect their weaknesses in logical reasoning; presentations and quizzes. The results of CCTST which included paired T-test using SPSS version 22 indicated significant differences between the two groups. Findings have significant implications on the course design as well as pedagogical practice in using literature to enhance students’ critical thinking skills.

Keywords: literature teaching, critical thinking, California critical thinking skills test (CCTST), course design

Procedia PDF Downloads 463
32511 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 96
32510 Hierarchical Optimization of Composite Deployable Bridge Treadway Using Particle Swarm Optimization

Authors: Ashraf Osman

Abstract:

Effective deployable bridges that are characterized by an increased capacity to weight ratio are recently needed for post-disaster rapid mobility and military operations. In deployable bridging, replacing metals as the fabricating material with advanced composite laminates as lighter alternatives with higher strength is highly advantageous. This article presents a hierarchical optimization strategy of a composite bridge treadway considering maximum strength design and bridge weight minimization. Shape optimization of a generic deployable bridge beam cross-section is performed to achieve better stress distribution over the bridge treadway hull. The developed cross-section weight is minimized up to reserving the margins of safety of the deployable bridging code provisions. Hence, the strength of composite bridge plates is maximized through varying the plies orientation. Different loading cases are considered of a tracked vehicle patch load. The orthotropic plate properties of a composite sandwich core are used to simulate the bridge deck structural behavior. Whereas, the failure analysis is conducted using Tsai-Wu failure criterion. The naturally inspired particle swarm optimization technique is used in this study. The proposed technique efficiently reduced the weight to capacity ratio of the developed bridge beam.

Keywords: CFRP deployable bridges, disaster relief, military bridging, optimization of composites, particle swarm optimization

Procedia PDF Downloads 141
32509 Teachers’ Experiences regarding Use of Information and Communication Technology for Visually Impaired Students

Authors: Zikra Faiz, Zaheer Asghar, Nisar Abid

Abstract:

Information and Communication Technologies (ICTs) includes computers, the Internet, and electronic delivery systems such as televisions, radios, multimedia, and overhead projectors etc. In the modern world, ICTs is considered as an essential element of the teaching-learning process. The study was aimed to discover the usage of ICTs in Special Education Institutions for Visually Impaired students, Lahore, Pakistan. Objectives of the study were to explore the problems faced by teachers while using ICT in the classroom. The study was phenomenology in nature; a qualitative survey method was used through a semi-structured interview protocol developed by the researchers. The sample comprised of eighty faculty members selected through a purposive sampling technique. Data were analyzed through thematic analysis technique with the help of open coding. The study findings revealed that multimedia, projectors, computers, laptops and LEDs are used in special education institutes to enhance the teaching-learning process. Teachers believed that ICTs could enhance the knowledge of visually impaired students and every student should use these technologies in the classroom. It was concluded that multimedia, projectors and laptops are used in classroom by teachers and students. ICTs can promote effectively through the training of teachers and students. It was suggested that the government should take steps to enhance ICTs in teacher training and other institutions by pre-service and in-service training of teachers.

Keywords: information and communication technologies, in-services teachers, special education institutions

Procedia PDF Downloads 127
32508 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network

Authors: Vinai K. Singh

Abstract:

In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.

Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans

Procedia PDF Downloads 136