Search results for: static dielectric constant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3454

Search results for: static dielectric constant

1324 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers

Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago

Abstract:

An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.

Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design

Procedia PDF Downloads 193
1323 Effect of Microfiltration on the Composition and Ripening of Iranian Fetta Cheese

Authors: M. Dezyani, R. Ezzati belvirdi, M. Shakerian, H. Mirzaei

Abstract:

The effect of Microfiltration (MF) on proteolysis, hardness, and flavor of Feta cheese during 6 mo of aging was determined. Raw skim milk was microfiltered two-fold in two cheese making trials. In trial 1, four vats of cheese were made in 1 d using unconcentrated milk (1X), 1.26X, 1.51X, and 1.82X Concentration Factors (CF). Casein-(CN)-to-fat ratio was constant among treatments. Proteolysis during cheese aging decreased with increasing CF due to either limitation of substrate availability for chymosin due to low moisture in the nonfat substance (MNFS), inhibition of chymosin activity by high molecular weight milk serum proteins, such as α2-macroglobulin, retained in the cheese or low residual chymosin in the cheese. Hardness of fresh cheese increased, and cheese flavor intensity decreased with increasing CF. In trial 2, the 1X and 1.8X CF were compared directly. Changes made in the cheese making procedure for the 1.8X CF (more chymosin and less cooking) increased the MNFS and made proteolysis during aging more comparable for the 1X and 1.8X cheeses. The significant difference in cheese hardness due to CF in trial 1 was eliminated in trial 2. In a triangle test, panelists could not differentiate between the 1X and 1.8X cheeses. Therefore, increasing chymosin and making the composition of the two cheeses more similar allowed production of aged Fetta cheese from milk concentrated up to 1.8X by MF that was not perceived as different from aged feta cheese produced without MF.

Keywords: feta cheese, microfiltration, concentration factor, proteolysis

Procedia PDF Downloads 413
1322 The Study of X- Bracing on Limit State Behaviour of Buckling Restrained Brace (BRB) in Steel Frames Using Pushover Analysis

Authors: Peyman Shadman Heidari, Hamid Bastani, Pouya Shadman Heidari

Abstract:

Nowadays, using energy dampers in structures is highly considered for the dissipation and absorption of earthquake energy. The main advantage of using energy damper is absorbing the earthquake energy in some sections apart from the structure frame. Among different types of dampers, hysteresis dampers are of special place because of low cost, high reliability and the lack of mechanical parts. In this paper, a special kind of hysteresis damper is considered under the name of buckling brace, which is provided with the aim of the study and investigation of cross braces in boundary behaviour of steel frames using nonlinear static analysis. In this paper, ninety three models of steel frames with cross braces of buckling type are processed with different bays and heights and their plasticity index, behaviour coefficient, distribution type and the number of plastic hinges formed were calculated. Finally, the mean behaviour coefficient was compared with standard behaviour coefficient of 2800 and the suitable mode of braces placing in improving nonlinear behaviour and suitable distribution of plastic hinges were presented. In addition, it was determined that for some placing mode of braces the behaviour coefficient will increase to 15 times of recommended 2800 standard coefficient and in some placing modes, the braced bays will show considerable difference with suggested 2800 standard behaviour coefficient relative to each other.

Keywords: buckling restrained brace, plasticity index, behaviour coefficient, resistance coefficient, plastic joints

Procedia PDF Downloads 513
1321 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity

Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier

Abstract:

The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.

Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model

Procedia PDF Downloads 319
1320 Mailchimp AI Application For Marketing Employees

Authors: Alia El Akhrass, Raheed Al Jifri, Sara Babalghoum, Jana Bushnag

Abstract:

This project delves into exploring the functionalities of Mailchimp, an artificial intelligence application. The objective is to comprehend its operations through the AI tools it offers. To achieve this, a survey was conducted among peers, seeking insights into Mailchimp's functionality, accessibility, efficiency, and overall benefits. The survey aimed to gather valuable feedback for analysis. Subsequently, a thorough analysis of the collected data was performed to identify trends, patterns, and areas of improvement. Visual representations were then crafted to effectively summarize the findings, aiding in conveying the research outcomes clearly. Founded in 2001, Mailchimp initially provided email marketing services but has since expanded into a comprehensive marketing platform. Its focus on simplicity and accessibility has contributed to its success among businesses of all sizes. Alternative platforms such as Constant Contact, AWeber, and GetResponse offer similar services with their own unique strengths. Mailchimp's journey exemplifies the importance of vision and adaptability in the ever-evolving digital marketing landscape. By prioritizing innovation, user-centricity, and customer service, Mailchimp has established itself as a trusted partner in the field of digital marketing, enabling businesses to effectively connect with their customers and achieve their marketing goals.

Keywords: email marketing, ai tool, connect, communicate, generate

Procedia PDF Downloads 40
1319 Improving Seat Comfort by Semi-Active Control of Magnetorheological Damper

Authors: Karel Šebesta, Jiří Žáček, Matuš Salva, Mohammad Housam

Abstract:

Drivers of agricultural vehicles are exposed to continuous vibration caused by driving over rough terrain. The long-term effects of these vibrations could start with a decreased level of vigilance at work and could reach the level of several health problems. Therefore, eliminating the vibration to maximize the comfort of the driver is essential for better/longer performance. One of the modern damping systems, which can deal with this problem is the Semi-active (S/A) suspension system featuring a Magnetorheological (MR) damper. With this damper, the damping level can be adjusted using varying currents through the coil. Adjustments of the damping force can be carried out continuously based on the evaluated data (position and acceleration of seat) by the control algorithm. The advantage of this system is the wide dynamic range and the high speed of force response time. Compared to other S/A or active systems, the MR damper does not need as much electrical power, and the system is much simpler. This paper aims to prove the effectiveness of this damping system used in the tractor seat. The vibration testing stand was designed and manufactured specifically for this type of research, which is used to simulate vibrations with constant amplitude at variable frequency.

Keywords: magnetorheological damper, semi-active suspension, seat scissor mechanism, sky-hook

Procedia PDF Downloads 96
1318 Strategies to Synthesize Ambient Stable Ultrathin Ag Film Supported on Oxide Substrate

Authors: Allamula Ashok, Peela Lasya, Daljin Jacob, P. Muhammed Razi, Satyesh Kumar Yadav

Abstract:

We report zinc (Zn) as a seed layer material and a need for a specific disposition sequence to grow ultrathin silver (Ag) films on quartz (SiO₂). Ag films of thickness 4, 6, 8 and 10 nm were deposited by DC magnetron sputtering without and with Zn seed layer thickness of 1, 2 and 4 nm. The effect of Zn seed layer thickness and its annealing on the surface morphology, sheet resistance, and stability of ultrathin Ag films is investigated. We show that by increasing Zn seed layer thickness from 1 to 2 nm, there is a 5-order reduction in sheet resistance of 6 nm Ag films. We find that annealing of the seed layer is crucial to achieving stability of ultrathin Ag films. 6 nm Ag film with 2 nm Zn is unstable to 100 oC annealing, while the 6 nm Ag film with annealed 2 nm Zn seed layer is stable. 2 nm Zn seeded 8 nm Ag film maintained a constant sheet resistance of 7 Ω/□ for all 6 months of exposure to ambient conditions. Among the ultrathin film grown, 8nm Ag film with 2nm Zn seed layer had the best figure of merit with sheet resistance of 7 Ω/□, mean absolute surface roughness (Ra) ~1 nm, and optical transparency of 61 %. Such stable exposed ultrathin Ag films can find applications as catalysts, sensors, and transparent and conductive electrodes for solar cells, LEDs and plasmonic devices.

Keywords: ultrathin Ag films, magnetron sputtering, thermal stability, seed layer, exposed silver, zinc.

Procedia PDF Downloads 39
1317 Bhumastra “Unmanned Ground Vehicle”

Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J

Abstract:

Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.

Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI

Procedia PDF Downloads 124
1316 Experimental Investigation of Mechanical Friction Influence in Semi-Hydraulic Clutch Actuation System Over Mileage

Authors: Abdul Azarrudin M. A., Pothiraj K., Kandasamy Satish

Abstract:

In the current automobile scenario, there comes a demand on more sophistication and comfort drive feel on passenger segments. The clutch pedal effort is one such customer touch feels in manual transmission vehicles, where the driver continuous to operate the clutch pedal in his entire the driving maneuvers. Hence optimum pedal efforts at green condition and over mileage to be ensured for fatigue free the driving. As friction is one the predominant factor and its tendency to challenge the technicality by causing the function degradation. One such semi-hydraulic systems shows load efficiency of about 70-75% over lifetime only due to the increase in friction which leads to the increase in pedal effort and cause fatigue to the vehicle driver. This work deals with the study of friction with different interfaces and its influence in the fulcrum points over mileage, with the objective of understanding the trend over mileage and determining the alternative ways of resolving it. In that one way of methodology is the reduction of friction by experimental investigation of various friction reduction interfaces like metal-to-metal interface and it has been tried out and is detailed further. Also, the specific attention has been put up considering the fulcrum load and its contact interfaces to move on with this study. The main results of the experimental data with the influence of three different contact interfaces are being presented with an ultimate intention of ending up into less fatigue with longer consistent pedal effort, thus smoothens the operation of the end user. The Experimental validation also has been done through rig-level test setup to depict the performance at static condition and in-parallel vehicle level test has also been performed to record the additional influences if any.

Keywords: automobile, clutch, friction, fork

Procedia PDF Downloads 124
1315 Virtual Life: Fashion, Expression, and Identity in the Digital World

Authors: Elizabeth Bourgeois

Abstract:

During social distancing, fashion and self-expression have been pushed further into virtual environments. In VR spaces, identities can be curated easily, untethered from the necessities of life and work. Personal styles reach a wider audience and follow new rules. Digital platforms leave some, but not all, 'real world' clothing constraints behind. Virtual aesthetics are set by the user and the software. Gen Z is a native user, applying face filters on Instagram and Snapchat and styling outfits and skins in apps like Gacha Life, Roblox, and Fortnite. These games cultivate space for community and personal style. Loosely tied to human forms, each app has physical aesthetics, with clear vernacular dress defining it. There are ecosystems of makers, consumers, and critics. Designer-modelers create original assets, brands, and luxury items. Fashion and beauty are ephemeral but always reflect the idealization of form and self. Online communities have already established new beauty ideals that impact live fashion trends. Fashion houses develop AR filters, gaming hairstyles challenge real-world colorists, and musicians perform virtual concerts in their avatar forms. In these times, social media and gaming communities promote the expression of public identity. The online dress is no longer tied to 'real' bodies or cloth. In virtual worlds, there are still tribes, status symbols, gender identities, and roles, but free of fabric, form, and static social structure, there is room for fantastic invention.

Keywords: virtual reality, fashion, Gen Z, social media, gaming

Procedia PDF Downloads 135
1314 Hardness and Microstructure of Rapidly Quenched Aluminum Alloys

Authors: Mehdi Ghatus

Abstract:

Two simple apparatus based on the hammer and anvil principle have been constructed and used to study the microstructure and micro-hardness characteristics of some AL-base alloys. Foils with thicknesses arranging from 20 µm up to 600 µm have been obtained. The cooling rate was estimated to be in the range 10^4 - 10^5 K/sec. Microstructure study of rapidly quenched Al-30% Si foils indicated that with decreasing the foil thickness the size of primary Si crystallites decreases in the whole investigated range (0.64-0.15 mm). However, the volume fraction of the primary Si crystals in the structure remained constant down to thickness the primary Si volume fraction started to decrease. Rapid quenching of Al- 14-16% Cu showed single phase cell structure. In foils up to 0.55 mm with decreasing the foil thickness the cell size decreases and micro-hardness increases particularly in foils below 0.3 mm in thickness. Isochronal annealing of theses foils show that the highly supersaturated Al-14-16% Cu solid solution decomposes readily at relatively low temperature and short time intervals. The maximum hardness is obtained after annealing at 100 °C for 30 minutes. However with decreasing the Cu content of the foils the precipitation process is largely delayed. Eight hours of annealing at 100 °C was not enough to achieve the maximum hardness in Al-4% Cu thin foils. The achieved hardness value was more than twice of the maximum hardness obtained in articles of similar composition but conventionally aged.

Keywords: aluminum, hardness, alloys, quenched aluminum

Procedia PDF Downloads 440
1313 Effect of Addition Rate of Expansive Additive on Autogenous Shrinkage and Delayed Expansion of Ultra-High Strength Mortar

Authors: Yulu Zhang, Atushi Teramoto, Taka-Aki Ohkubo

Abstract:

In this study, the effect of expansive additives on autogenous shrinkage and delayed expansion of ultra-high strength mortar was explored. The specimens made for the study were composed of ultra-high strength mortar, which was mixed with ettringite-lime composite type expansive additive. Two series of experiments were conducted with the specimens. The experimental results confirmed that the autogenous shrinkage of specimens was effectively decreased by increasing the proportion of the expansive additive. On the other hand, for the specimens, which had 7% expansive additive, and were cured for seven days at a constant temperature of 20°C, and then cured for a long time in either in an underwater, moist (Relative humidity: 100%) or dry air (Relative humidity: 60%) environment, excessively large expansion strain occurred. Specifically, typical turtle shell-like swelling expansion cracks were confirmed in the specimens that underwent long-term curing in an underwater and moist environment. According to the result of hydration analysis, the formation of expansive substances, calcium hydroxide and alumina, ferric oxide, tri-sulfate contribute to the occurrence of delayed expansion.

Keywords: ultra-high strength mortar, expansive additive, autogenous shrinkage, delayed expansion

Procedia PDF Downloads 239
1312 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm

Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy

Abstract:

IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.

Keywords: IoT, fog networks, data stewardship, dynamic access policy

Procedia PDF Downloads 59
1311 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sands

Authors: Salah Brahim Belakhdar, Tari Mohammed Amin, Rafai Abderrahmen, Amalsi Bilal

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic, and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behaviour of granular classes of sands mixed with salt in loose and dense states (Dr=15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200, and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have a significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: mechanical behavior, silty sand, friction angle, cohesion, fines content

Procedia PDF Downloads 373
1310 Nitrogen Doping Effect on Enhancement of Electrochemical Performance of a Carbon Nanotube Based Microsupercapacitor

Authors: Behnoush Dousti, Ye Choi, Gil S. Lee

Abstract:

Microsupercapacitors (MScs) are known as the future of miniaturized energy sources that can be coupled to a battery to deliver stable and constant energy to microelectronics. Among all their counterparts, electrochemical microsupercapacitor have drawn the most research attention due to their higher power density and long cycle life. Designing the microstructure and choosing the electroactive materials are two significant factors that greatly affect the performance of the device. Here, we report successful fabrication and characterization of a microsupercapacitor with interdigitated structure based on Carbon nanotube sheets (CNT sheet). Novel structure of highly aligned CNT sheet as the electrode materials which also offers excellent conductivity and large surface area along with doping with nitrogen, enabled us to develop a device with serval order of magnitude higher electrochemical performance than the pristine CNT in aqueous electrolyte including high specific capacitance and rate capabilities and excellent cycle life over 10000 cycles. Geometric parameters such as finger width and gap size were also studied and it was shown the device performance is much depended on them. Results of this study confirms the potential of CNT sheet for future energy storage devices.

Keywords: carbon nanotube, energy storage systems, microsupercapacitor, nitrogen doping

Procedia PDF Downloads 132
1309 A Comparative Analysis about the Effects of a Courtyard in Indoor Thermal Environment of a Room with and without Transitional Space Adjacent to Courtyard of a House in Old Dhaka, Bangladesh

Authors: Fatema Tasmia, Brishti Majumder, Atiqur Rahman

Abstract:

Attaining appropriate comfort conditions in a place where the climate is hot and humid can be perplexing. Especially, when it is resided at a congested place like old Dhaka Bangladesh, the provision of giving cross ventilation and building with proper orientation is quite difficult. Courtyards are the part of buildings which are used as space for outdoor household activities, social gathering and it is also proved to have indoor thermal comfort as an effect of courtyard. This paper aims to investigate the effect of courtyard in indoor thermal environment of a room adjacent to the courtyard and a room next to transitional space after a courtyard through field measurements of a case study house. The field measurement was conducted in a two-storey house. Among different aspects of thermal environment, the study of this paper is based on the analysis of temperature in both situations. Ventilation or air movement was considered to have no impact because of the rooms’ layout and location. Other aspects and their variables were considered as constant (especially material) for accuracy and avoidance of confusion. This study focuses on the outcome that can ultimately contribute to the configuration of courtyards and in its relation to indoor space while achieving thermal comfort.

Keywords: courtyard, old Dhaka, temperature, thermal comfort, transitional space

Procedia PDF Downloads 224
1308 An Optimal Approach for Full-Detailed Friction Model Identification of Reaction Wheel

Authors: Ghasem Sharifi, Hamed Shahmohamadi Ousaloo, Milad Azimi, Mehran Mirshams

Abstract:

The ever-increasing use of satellites demands a search for increasingly accurate and reliable pointing systems. Reaction wheels are rotating devices used commonly for the attitude control of the spacecraft since provide a wide range of torque magnitude and high reliability. The numerical modeling of this device can significantly enhance the accuracy of the satellite control in space. Modeling the wheel rotation in the presence of the various frictions is one of the critical parts of this approach. This paper presents a Dynamic Model Control of a Reaction Wheel (DMCR) in the current control mode. In current-mode, the required current is delivered to the coils in order to achieve the desired torque. During this research, all the friction parameters as viscous and coulomb, motor coefficient, resistance and voltage constant are identified. In order to model identification of a reaction wheel, numerous varying current commands apply on the particular wheel to verify the estimated model. All the parameters of DMCR are identified by classical Levenberg-Marquardt (CLM) optimization method. The experimental results demonstrate that the developed model has an appropriate precise and can be used in the satellite control simulation.

Keywords: experimental modeling, friction parameters, model identification, reaction wheel

Procedia PDF Downloads 233
1307 An Adaptive Controller Method Based on Full-State Linear Model of Variable Cycle Engine

Authors: Jia Li, Huacong Li, Xiaobao Han

Abstract:

Due to the more variable geometry parameters of VCE (variable cycle aircraft engine), presents an adaptive controller method based on the full-state linear model of VCE and has simulated to solve the multivariate controller design problem of the whole flight envelops. First, analyzes the static and dynamic performances of bypass ratio and other state parameters caused by variable geometric components, and develops nonlinear component model of VCE. Then based on the component model, through small deviation linearization of main fuel (Wf), the area of tail nozzle throat (A8) and the angle of rear bypass ejector (A163), setting up multiple linear model which variable geometric parameters can be inputs. Second, designs the adaptive controllers for VCE linear models of different nominal points. Among them, considering of modeling uncertainties and external disturbances, derives the adaptive law by lyapunov function. The simulation results showed that, the adaptive controller method based on full-state linear model used the angle of rear bypass ejector as input and effectively solved the multivariate control problems of VCE. The performance of all nominal points could track the desired closed-loop reference instructions. The adjust time was less than 1.2s, and the system overshoot was less than 1%, at the same time, the errors of steady states were less than 0.5% and the dynamic tracking errors were less than 1%. In addition, the designed controller could effectively suppress interference and reached the desired commands with different external random noise signals.

Keywords: variable cycle engine (VCE), full-state linear model, adaptive control, by-pass ratio

Procedia PDF Downloads 318
1306 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning

Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie

Abstract:

This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.

Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network

Procedia PDF Downloads 143
1305 Effect of pH-Dependent Surface Charge on the Electroosmotic Flow through Nanochannel

Authors: Partha P. Gopmandal, Somnath Bhattacharyya, Naren Bag

Abstract:

In this article, we have studied the effect of pH-regulated surface charge on the electroosmotic flow (EOF) through nanochannel filled with binary symmetric electrolyte solution. The channel wall possesses either an acidic or a basic functional group. Going beyond the widely employed Debye-Huckel linearization, we develop a mathematical model based on Nernst-Planck equation for the charged species, Poisson equation for the induced potential, Stokes equation for fluid flow. A finite volume based numerical algorithm is adopted to study the effect of key parameters on the EOF. We have computed the coupled governing equations through the finite volume method and our results found to be in good agreement with the analytical solution obtained from the corresponding linear model based on low surface charge condition or strong electrolyte solution. The influence of the surface charge density, reaction constant of the functional groups, bulk pH, and concentration of the electrolyte solution on the overall flow rate is studied extensively. We find the effect of surface charge diminishes with the increase in electrolyte concentration. In addition for strong electrolyte, the surface charge becomes independent of pH due to complete dissociation of the functional groups.

Keywords: electroosmosis, finite volume method, functional group, surface charge

Procedia PDF Downloads 419
1304 Victim and Active Subject of the Crime of Violence in Family Reflected in the Criminal Code of the Republic of Moldova

Authors: Nastas Andrei

Abstract:

Ensuring accessible and functional justice is one of the priority objectives of judicial reform, and protecting the family against any acts that may harm its existence is one of the first priorities that have determined the need to defend the social order. In this context, the correlative approach of the victim and the aggressor becomes relevant as a subject of the crime of domestic violence. Domestic violence is a threat of physical, moral, or material harm, externalized now or in the past, or its provocation, which is characterized by a constant tendency to escalate and a high probability of repetitiveness in the relationship between the social partners, regardless of their legal status or domicile.Studying the legal support to identify the particularities of the victim and the subject of the crime of domestic violence facilitates the identification of the determinants of this crime, therefore, the development of means to prevent domestic violence. The scientific research has been effectuated on the base of the proper and authentic empirical data obtained from the analysis of the judicial practice in the matter of domestic violence, as well as being based on the most recent scientific issues in the field of the Substantive Criminal Law and other branches of science (criminology, psychology, sociology, pedagogy). As a result of the study performed, there have been formulated conclusions and interpretations able to be used in the science of the Substantive Criminal law, as well as in the practice of application of the legal norm in the matter of domestic violence.

Keywords: family violence, victim, crime, violence

Procedia PDF Downloads 108
1303 Radio Labeling and Characterization of Cysteine and Its Derivatives with Tc99m and Their Bio-Distribution

Authors: Rabia Ashfaq, Saeed Iqbal, Atiq ur Rehman, Irfanullah Khan

Abstract:

An extensive series of radiopharmaceuticals have been explored in order to discover a better brain tumour diagnostic agent. Tc99m labelling with cysteine and its derivatives in liposomes shows effective tagging of about 70% to 80 %. Due to microscopic size it successfully crossed the brain barrier in 2 minutes which gradually decreases in 5 to 15 minutes. HMPAO labelled with Tc99m is another important radiopharmaceutical used to study brain perfusion but it comes with a flaw that it’s only functional during epilepsy. 1, 1 ECD is purely used in Tc99m ECD formulation; because it not only tends to cross the blood brain barrier but it can be metabolized which can be easily entrapped in human brain. Radio labelling of Cysteine with Tc99m at room temperature was performed which yielded no good results. Hence cysteine derivatives with salicylaldehyde were prepared that produced about 75 % yield for ligand. In order to perform it’s radio labelling a suitable solvent DMSO was selected and physical parameters were performed. Elemental analyser produced remarkably similar results for ligand as reported in literature. IR spectra of Ligand in DMSO concluded in the absence of SH stretch and presence of N-H vibration. Thermal analysis of the ligand further suggested its decomposition pattern with no distinct curve for a melting point. Radio labelling of ligand was performed which produced excellent results giving up to 88% labelling at pH 5.0. Clinical trials using Rabbit were performed after validating the products reproducibility. The radiopharmaceutical prepared was injected into the rabbit. Dynamic as well as static study was performed under the SPECT. It showed considerable uptake in the kidneys and liver considering it suitable for the Hypatobilliary study.

Keywords: marcapto compounds, 99mTc - radiolabeling, salicylaldicysteine, thiozolidine

Procedia PDF Downloads 344
1302 Listening to the Voices of Syrian Refugee Women in Canada: An Ethnographic Insight into the Journey from Trauma to Adaptation

Authors: Areej Al-Hamad, Cheryl Forchuk, Abe Oudshoorn, Gerald Patrick Mckinley

Abstract:

Syrian refugee women face many obstacles when accessing health services in host countries that are influenced by various cultural, structural, and practical factors. This paper is based on critical ethnographic research undertaken in Canada to explore Syrian refugee women's migration experiences. Also, we aim to critically examine how the intersection of gender, trauma, violence and the political and economic conditions of Syrian refugee women shapes their everyday lives and health. The study also investigates the strategies and practices by which Syrian refugee women are currently addressing their healthcare needs and the models of care that are suggested for meeting their physical and mental health needs. Findings show that these women experienced constant worries, hardship, vulnerability, and intrusion of dignity. These experiences and challenges were aggravated by the structure of the Canadian social and health care system. This study offers a better understanding of the impact of migration and trauma on Syrian refugee women's roles, responsibilities, gender dynamics, and interaction with Ontario's healthcare system to improve interaction and outcomes. Health care models should address these challenges among Syrian refugee families in Canada.

Keywords: Syrian refugee women, intersectionality, critical ethnography, migration

Procedia PDF Downloads 95
1301 Risk Management Strategy for Protecting Cultural Heritage: Case Study of the Institute of Egypt

Authors: Amany A. Ragheb, Ghada Ragheb, Abd ElRahman A.

Abstract:

Egypt has a countless heritage of mansions, castles, cities, towns, villages, industrial and manufacturing sites. This richness of heritage provides endless and matchless prospects for culture. Despite being famous worldwide, Egypt’s heritage still is in constant need of protection. Political conflicts and religious revolutions form a direct threat to buildings in various areas, historic, archaeological sites, and religious monuments. Egypt has witnessed two revolutions in less than 60 years; both had an impact on its architectural heritage. In this paper, the authors aim to review legal and policy framework to protect the cultural heritage and present the risk management strategy for cultural heritage in conflict. Through a review of selected international models of devastated architectural heritage in conflict zones and highlighting some of their changes, we can learn from the experiences of other countries to assist towards the development of a methodology to halt the plundering of architectural heritage. Finally, the paper makes an effort to enhance the formulation of a risk management strategy for protection and conservation of cultural heritage, through which to end the plundering of Egypt’s architectural legacy in the Egyptian community (revolutions, 1952 and 2011); and by presenting to its surrounding community the benefits derived from maintaining it.

Keywords: cultural heritage, legal regulation, risk management, preservation

Procedia PDF Downloads 400
1300 Effects of Fourth Alloying Additive on Microstructure and Mechanical Properties of Sn-Ag-Cu Alloy

Authors: Ugur Buyuk, Sevda Engin

Abstract:

Among the various alloy systems being considered as lead-free solder candidates, Sn-Ag-Cu alloys have been recognized as the most promising because of their excellent reliability and compatibility with current components. Thus, Sn-Ag-Cu alloys have recently attracted considerable attention and have been proposed by the Japanese, the EU and the US consortiums to replace conventional Sn-Pb eutectic solder. However, many problems or unknown characteristics of the Sn-Ag-Cu alloy system such as the best composition, the large undercooling in solidification, and the formation of large intermetallics still exist. It is expected that the addition of some solidification nuclei for Sn-Ag-Cu alloys will refine the solidification microstructure and will suppress undercooling.In the present work, the effects of the fourth elements, i.e., Zn, Ni, Bi, In and Co, on microstructural and mechanical properties of Sn-3.5Ag-0.9Cu lead-free solder were investigated. Sn-3.5Ag-0.9Cu-0.5X (X= Zn, Ni, Bi, In, Co (wt.)) alloys were prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upward at a constant temperature gradient and growth rates by using a Bridgman type directional solidification furnace. The microstructure, microhardness and ultimate tensile strength of alloys were measured. The effects of fourth elements on the microstructure and mechanical properties of Sn–Ag-Cu eutectic alloys were investigated. The results obtained in the present work were compared with the previous experimental results.

Keywords: lead-free solders, microhardness, microstructure, tensile strength

Procedia PDF Downloads 413
1299 Electronic Media and Physical Activity of Primary School Children

Authors: Srna Jenko Miholic, Marta Borovec, Josipa Persun

Abstract:

The constant expansion of technology has further accelerated the development of media and vice versa. Although its promotion includes all kinds of interesting and positive sides, the poor functioning of the media is still being researched and proven. Young people, as well as children from the earliest age, resort to the media the most, so it is necessary to defend the role of adults as it were parents, teachers, and environment against virtual co-educators such as the media. The research aim of this study was to determine the time consumption of using electronic media by primary school children as well as their involvement in certain physical activities. Furthermore, to determine what is happening when parents restrict their children's access to electronic media and encourage them to participate in alternative contents during their leisure time. Result reveals a higher percentage of parents restrict their children's access to electronic media and then encourage children to socialize with family and friends, spend time outdoors, engage in physical activity, read books or learn something unrelated to school content even though it would not be children's favorite activity. The results highlight the importance of parental control when it comes to children's use of electronic media and the positive effects that parental control has in terms of encouraging children to be useful, socially desirable, physically active, and healthy activities.

Keywords: elementary school, digital media, leisure time, parents, physical engagement

Procedia PDF Downloads 147
1298 Reservoir Potential, Net Pay Zone and 3D Modeling of Cretaceous Clastic Reservoir in Eastern Sulieman Belt Pakistan

Authors: Hadayat Ullah, Pervez Khalid, Saad Ahmed Mashwani, Zaheer Abbasi, Mubashir Mehmood, Muhammad Jahangir, Ehsan ul Haq

Abstract:

The aim of the study is to explore subsurface structures through data that is acquired from the seismic survey to delineate the characteristics of the reservoir through petrophysical analysis. Ghazij Shale of Eocene age is regional seal rock in this field. In this research work, 3D property models of subsurface were prepared by applying Petrel software to identify various lithologies and reservoir fluids distribution throughout the field. The 3D static modeling shows a better distribution of the discrete and continuous properties in the field. This model helped to understand the reservoir properties and enhance production by selecting the best location for future drilling. A complete workflow is proposed for formation evaluation, electrofacies modeling, and structural interpretation of the subsurface geology. Based on the wireline logs, it is interpreted that the thickness of the Pab Sandstone varies from 250 m to 350 m in the entire study area. The sandstone is massive with high porosity and intercalated layers of shales. Faulted anticlinal structures are present in the study area, which are favorable for the accumulation of hydrocarbon. 3D structural models and various seismic attribute models were prepared to analyze the reservoir character of this clastic reservoir. Based on wireline logs and seismic data, clean sand, shaly sand, and shale are marked as dominant facies in the study area. However, clean sand facies are more favorable to act as a potential net pay zone.

Keywords: cretaceous, pab sandstone, petrophysics, electrofacies, hydrocarbon

Procedia PDF Downloads 143
1297 Modeling the Reliability of a Fuel Cell and the Influence of Mechanical Aspects on the Production of Electrical Energy

Authors: Raed Kouta

Abstract:

A fuel cell is a multi-physical system. Its electrical performance depends on chemical, electrochemical, fluid, and mechanical parameters. Many studies focus on physical and chemical aspects. Our study contributes to the evaluation of the influence of mechanical aspects on the performance of a fuel cell. This study is carried out as part of a reliability approach. Reliability modeling allows to consider the uncertainties of the incoming parameters and the probabilistic modeling of the outgoing parameters. The fuel cell studied is the one often used in land, sea, or air transport. This is the Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC). This battery can provide the required power level. One of the main scientific and technical challenges in mastering the design and production of a fuel cell is to know its behavior in its actual operating environment. The study proposes to highlight the influence on the production of electrical energy: Mechanical design and manufacturing parameters and their uncertainties (Young module, GDL porosity, permeability, etc.). The influence of the geometry of the bipolar plates is also considered. An experimental design is proposed with two types of materials as well as three geometric shapes for three joining pressures. Other experimental designs are also proposed for studying the influence of uncertainties of mechanical parameters on cell performance. - Mechanical (static, dynamic) and thermal (tightening - compression, vibrations (road rolling and tests on vibration-climatic bench, etc.) loads. This study is also carried out according to an experimental scheme on a fuel cell system for vibration loads recorded on a vehicle test track with three temperatures and three expected performance levels. The work will improve the coupling between mechanical, physical, and chemical phenomena.

Keywords: fuel cell, mechanic, reliability, uncertainties

Procedia PDF Downloads 188
1296 Sorption of Charged Organic Dyes from Anionic Hydrogels

Authors: Georgios Linardatos, Miltiadis Zamparas, Vlasoula Bekiari, Georgios Bokias, Georgios Hotos

Abstract:

Hydrogels are three-dimensional, hydrophilic, polymeric networks composed of homopolymers or copolymers and are insoluble in water due to the presence of chemical or physical cross-links. When hydrogels come in contact with aqueous solutions, they can effectively sorb and retain the dissolved substances, depending on the nature of the monomeric units comprising the hydrogel. For this reason, hydrogels have been proposed in several studies as water purification agents. At the present work anionic hydrogels bearing negatively charged –COO- groups were prepared and investigated. These gels are based on sodium acrylate (ANa), either homopolymerized (poly(sodiumacrylate), PANa) or copolymerized (P(DMAM-co-ANa)) with N,N Dimethylacrylamide (DMAM). The hydrogels were used to extract some model organic dyes from water. It is found that cationic dyes are strongly sorbed and retained by the hydrogels, while sorption of anionic dyes was negligible. In all cases it was found that both maximum sorption capacity and equilibrium binding constant varied from one dye to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. Finally, the nonionic hydrogel of the homopolymer poly(N,N-dimethylacrylamide), PDMAM, was also used for reasons of comparison.

Keywords: anionic organic hydrogels, sorption, organic dyes, water purification agents

Procedia PDF Downloads 259
1295 Identification of Effective Factors on Marketing Performance Management in Iran’s Airports and Air Navigation Companies

Authors: Morteza Hamidpour, Kambeez Shahroudi

Abstract:

The aim of this research was to identify the factors affecting the measurement and management of marketing performance in Iran's airports and air navigation companies (Economics in Air and Airport Transport). This study was exploratory and used a qualitative content analysis technique. The study population consisted of university professors in the field of air transportation and senior airport managers, with 15 individuals selected as samples using snowball technique. Based on the results, 15 main indicators were identified for measuring the marketing performance of Iran's airports and air navigation companies. These indicators include airport staff, general and operational expenses, annual passenger reception capacity, number of counter receptions and passenger dispatches, airport runway length, airline companies' loyalty to using airport space and facilities, regional market share of transit and departure flights, claims and net profit (aviation and non-aviation). By keeping the input indicators constant, the output indicators can be improved, enhancing performance efficiency and consequently increasing the economic situation in air transportation.

Keywords: air transport economics, marketing performance management, marketing performance input factors, marketing performance intermediary factors, marketing performance output factors, content analysis

Procedia PDF Downloads 67