Search results for: maximum power control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19012

Search results for: maximum power control

16882 Safety-Security Co-Engineering of Control Systems

Authors: Elena A. Troubitsyna

Abstract:

Designers of modern safety-critical control systems are increasingly relying on networking to provide the systems with advanced functionality and satisfy customer’s needs. However, networking nature of modern control systems also brings new technological challenges associated with ensuring system safety in the presence of openness and hence, potential security threats. In this paper, we propose a methodology that relies on systems-theoretic analysis to enable an integrated analysis of safety and security requirements of controlling software. We demonstrate how to create a safety case – a structured argument about system safety – with explicit representation of both safety and security goals. Our approach provides the designers with a systematic approach to analysing safety and security interdependencies while designing safety-critical control systems.

Keywords: controlling software, integrated analysis, security, safety-security co-engineering

Procedia PDF Downloads 497
16881 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness

Authors: Igor Astrov, Natalya Berezovski

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMA-L2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle, aviation

Procedia PDF Downloads 420
16880 Smart Surveillance with 5G: A Performance Study in Adama City

Authors: Shenko Chura Aredo, Hailu Belay, Kevin T. Kornegay

Abstract:

In light of Adama City’s smart city development vision, this study thoroughly investigates the performance of smart security systems with Fifth Generation (5G) network capabilities. It can be logistically difficult to install a lot of cabling, particularly in big or dynamic settings. Moreover, latency issues might affect linked systems, making it difficult for them to monitor in real time. Through a focused analysis that employs Adama City as a case study, the performance has been evaluated in terms of spectrum and energy efficiency using empirical data and basic signal processing formulations at different frequency resources. The findings also demonstrate that cameras working at higher 5G frequencies have more capacity than those operating at sub-6 GHz, notwithstanding frequency-related issues. It has also been noted that when the beams of such cameras are adaptively focussed based on the distance of the last cell edge user rather than the maximum cell radius, less energy is required than with conventional fixed power ramping.

Keywords: 5G, energy efficiency, safety, smart security, spectral efficiency

Procedia PDF Downloads 18
16879 Efficient Use of Power Light-Emitting Diode Chips in the Main Lighting System and in Generating Heat in Intelligent Buildings

Authors: Siamak Eskandari, Neda Ebadi

Abstract:

Among common electronic parts which have been invented and have made a great revolution in the lighting system through the world, certainly LEDs have no rival. These small parts with their very low power consumption, very dazzling and powerful light and small size and with their extremely high lifetime- compared to incandescent bulbs and compact fluorescent lamp (CFLs) have undoubtedly revolutionized the lighting industry of the world. Based on conducted studies and experiments, in addition to their acceptable light and low power consumption -compared to incandescent bulbs and CFLs-, they have very low and in some cases zero environmental pollution and negative effects on human beings. Because of their longevity, in the case of using high-quality circuits and proper and consistent use of LEDs in conventional and intelligent buildings, there will be no need to replace the burnout lamps, for a long time (10 years). In this study which was conducted on 10-watt power LEDs with suitable heatsink/cooling, considerable amount of heat was generated during lighting after 5 minutes and 45 seconds. The temperature rose to above 99 degrees Celsius and this amount of heat can raise the water temperature to 60 degrees Celsius and more. Based on conducted experiments, this can provide the heat required for bathing, washing, radiators (in cold seasons) easily and only by imposing very low cost and it will be a big step in the optimization of energy consumption in the future.

Keywords: energy, light, water, optimization of power LED

Procedia PDF Downloads 153
16878 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: renewable energies, hybrid systems, optimization, operation control

Procedia PDF Downloads 379
16877 Adsorption of Congo Red on MgO Nanoparticles Prepared by Molten Salt Method

Authors: Shahbaa F. Bdewi, Bakhtyar K. Aziz, Ayad A. R. Mutar

Abstract:

Nano-materials show different surface properties due to their high surface area and active sites. This study investigates the feasibility of using nano-MgO (NMO) for removing Congo red (CR) dye from wastewater. NMO was prepared by molten salt method. Equilibrium experiments show the equilibrium was reached after 120 minutes and maximum adsorption efficiency was obtained in acidic media up to pH 6. Isotherm studies revealed the favorability of the adsorption process. The overall adsorption process was spontaneous and endothermic in nature with a maximum adsorption capacity of 1100 mg g-1 at 40°C as estimated from Langmuir isotherm. The adsorption kinetics was found to follow pseudo second-order rate equation. Relatively high activation energy (180.7 kJ mol-1) was obtained which is consistent with chemisorption mechanism for the adsorption process.

Keywords: adsorption, congo red, magnesium oxide, nanoparticles

Procedia PDF Downloads 209
16876 Competition and Cooperation of Prosumers in Cournot Games with Uncertainty

Authors: Yong-Heng Shi, Peng Hao, Bai-Chen Xie

Abstract:

Solar prosumers are playing increasingly prominent roles in the power system. However, its uncertainty affects the outcomes and functions of the power market, especially in the asymmetric information environment. Therefore, an important issue is how to take effective measures to reduce the impact of uncertainty on market equilibrium. We propose a two-level stochastic differential game model to explore the Cournot decision problem of prosumers. In particular, we study the impact of punishment and cooperation mechanisms on the efficiency of the Cournot game in which prosumers face uncertainty. The results show that under the penalty mechanism of fixed and variable rates, producers and consumers tend to take conservative actions to hedge risks, and the variable rates mechanism is more reasonable. Compared with non-cooperative situations, prosumers can improve the efficiency of the game through cooperation, which we attribute to the superposition of market power and uncertainty reduction. In addition, the market environment of asymmetric information intensifies the role of uncertainty. It reduces social welfare but increases the income of prosumers. For regulators, promoting alliances is an effective measure to realize the integration, optimization, and stable grid connection of producers and consumers.

Keywords: Cournot games, power market, uncertainty, prosumer cooperation

Procedia PDF Downloads 107
16875 A Low-Power, Low-Noise and High-Gain 58~66 GHz CMOS Receiver Front-End for Short-Range High-Speed Wireless Communications

Authors: Yo-Sheng Lin, Jen-How Lee, Chien-Chin Wang

Abstract:

A 60-GHz receiver front-end using standard 90-nm CMOS technology is reported. The receiver front-end comprises a wideband low-noise amplifier (LNA), and a double-balanced Gilbert cell mixer with a current-reused RF single-to-differential (STD) converter, an LO Marchand balun and a baseband amplifier. The receiver front-end consumes 34.4 mW and achieves LO-RF isolation of 60.7 dB, LO-IF isolation of 45.3 dB and RF-IF isolation of 41.9 dB at RF of 60 GHz and LO of 59.9 GHz. At IF of 0.1 GHz, the receiver front-end achieves maximum conversion gain (CG) of 26.1 dB at RF of 64 GHz and CG of 25.2 dB at RF of 60 GHz. The corresponding 3-dB bandwidth of RF is 7.3 GHz (58.4 GHz to 65.7 GHz). The measured minimum noise figure was 5.6 dB at 64 GHz, one of the best results ever reported for a 60 GHz CMOS receiver front-end. In addition, the measured input 1-dB compression point and input third-order inter-modulation point are -33.1 dBm and -23.3 dBm, respectively, at 60 GHz. These results demonstrate the proposed receiver front-end architecture is very promising for 60 GHz direct-conversion transceiver applications.

Keywords: CMOS, 60 GHz, direct-conversion transceiver, LNA, down-conversion mixer, marchand balun, current-reused

Procedia PDF Downloads 452
16874 Construction of a Dynamic Migration Model of Extracellular Fluid in Brain for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki, Kyoka Sato

Abstract:

In emergency medicine, it is recognized that brain resuscitation is very important for the reduction of mortality rate and neurological sequelae. Especially, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) are most required for stabilizing brain’s physiological state in the treatment for such as brain injury, stroke, and encephalopathy. However, the manual control of BT, ICP, and CBF frequently requires the decision and operation of medical staff, relevant to medication and the setting of therapeutic apparatus. Thus, the integration and the automation of the control of those is very effective for not only improving therapeutic effect but also reducing staff burden and medical cost. For realizing such integration and automation, a mathematical model of brain physiological state is necessary as the controlled object in simulations, because the performance test of a prototype of the control system using patients is not ethically allowed. A model of cerebral blood circulation has already been constructed, which is the most basic part of brain physiological state. Also, a migration model of extracellular fluid in brain has been constructed, however the condition that the total volume of intracranial cavity is almost changeless due to the hardness of cranial bone has not been considered in that model. Therefore, in this research, the dynamic migration model of extracellular fluid in brain was constructed on the consideration of the changelessness of intracranial cavity’s total volume. This model is connectable to the cerebral blood circulation model. The constructed model consists of fourteen compartments, twelve of which corresponds to perfused area of bilateral anterior, middle and posterior cerebral arteries, the others corresponds to cerebral ventricles and subarachnoid space. This model enable to calculate the migration of tissue fluid from capillaries to gray matter and white matter, the flow of tissue fluid between compartments, the production and absorption of cerebrospinal fluid at choroid plexus and arachnoid granulation, and the production of metabolic water. Further, the volume, the colloid concentration, and the tissue pressure of/in each compartment are also calculable by solving 40-dimensional non-linear simultaneous differential equations. In this research, the obtained model was analyzed for its validation under the four condition of a normal adult, an adult with higher cerebral capillary pressure, an adult with lower cerebral capillary pressure, and an adult with lower colloid concentration in cerebral capillary. In the result, calculated fluid flow, tissue volume, colloid concentration, and tissue pressure were all converged to suitable value for the set condition within 60 minutes at a maximum. Also, because these results were not conflict with prior knowledge, it is certain that the model can enough represent physiological state of brain under such limited conditions at least. One of next challenges is to integrate this model and the already constructed cerebral blood circulation model. This modification enable to simulate CBF and ICP more precisely due to calculating the effect of blood pressure change to extracellular fluid migration and that of ICP change to CBF.

Keywords: dynamic model, cerebral extracellular migration, brain resuscitation, automatic control

Procedia PDF Downloads 156
16873 Optimization of Pumping Power of Water between Reservoir Using Ant Colony System

Authors: Thiago Ribeiro De Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite Asano

Abstract:

The area of the electricity sector that deals with energy needs by the hydropower and thermoelectric in a coordinated way is called Planning Operating Hydrothermal Power Systems. The aim of this area is to find a political operative to provide electrical power to the system in a specified period with minimization of operating cost. This article proposes a computational tool for solving the planning problem. In addition, this article will be introducing a methodology to find new transfer points between reservoirs increasing energy production in hydroelectric power plants cascade systems. The computational tool proposed in this article applies: i) genetic algorithms to optimize the water transfer and operation of hydroelectric plants systems; and ii) Ant Colony algorithm to find the trajectory with the least energy pumping for the construction of pipes transfer between reservoirs considering the topography of the region. The computational tool has a database consisting of 35 hydropower plants and 41 reservoirs, which are part of the southeastern Brazilian system, which has been implemented in an individualized way.

Keywords: ant colony system, genetic algorithms, hydroelectric, hydrothermal systems, optimization, water transfer between rivers

Procedia PDF Downloads 326
16872 Simulation-Based Investigation of Ferroresonance in Different Transformer Configurations

Authors: George Eduful, Yuanyuan Fan, Ahmed Abu-Siada

Abstract:

Ferroresonance poses a substantial threat to the quality and reliability of power distribution systems due to its inherent characteristics of sustained overvoltages and currents. This paper aims to enhance the understanding and reduce the ferroresonance threat by investigating the susceptibility of different transformer configurations using MATLAB/Simulink simulations. To achieve this, four 200 kVA transformers with different vector groups (D-Yn, Yg-Yg, Yn-Yn, and Y-D11) and core types (3-limb, 5-limb, single-phase) were systematically exposed to controlled ferroresonance conditions. The impact of varying the length of the 11 kV cable connected to the transformers was also examined. Through comprehensive voltage, current, and total harmonic distortion analyses, the performance of each configuration was evaluated and compared. The results of the study indicate that transformers with Y-D11 and Yg-Yg configurations exhibited lower susceptibility to ferroresonance, in comparison to those with D-Y11 and Yg-Yg configurations. This implies that the Y-D11 and Yg-Yg transformers are better suited for applications with high risks of ferroresonance. The insights provided by this study are of significant value for the strategic selection and deployment of transformers in power systems, particularly in settings prone to ferroresonance. By identifying and recommending transformer configurations that demonstrate better resilience, this paper contributes to enhancing the overall robustness and reliability of power grid infrastructure.

Keywords: about cable-connected, core type, ferroresonance, over voltages, power transformer, vector group

Procedia PDF Downloads 40
16871 Comparison of Titanium and Aluminum Functions as Spoilers for Dose Uniformity Achievement in Abutting Oblique Electron Fields: A Monte Carlo Simulation Study

Authors: Faranak Felfeliyan, Parvaneh Shokrani, Maryam Atarod

Abstract:

Introduction Using electron beam is widespread in radiotherapy. The main criteria in radiation therapy is to irradiate the tumor volume with maximum prescribed dose and minimum dose to vital organs around it. Using abutting fields is common in radiotherapy. The main problem in using abutting fields is dose inhomogeneity in the junction region. Electron beam divergence and lateral scattering may lead to hot and cold spots in the junction region. One solution for this problem is using of a spoiler to broaden the penumbra and uniform dose in the junction region. The goal of this research was to compare titanium and aluminum effects as a spoiler for dose uniformity achievement in the junction region of oblique electron fields with Monte Carlo simulation. Dose uniformity in the junction region depends on density, scattering power, thickness of the spoiler and the angle between two fields. Materials and Methods In this study, Monte Carlo model of Siemens Primus linear accelerator was simulated for a 5 MeV nominal energy electron beam using manufacture provided specifications. BEAMnrc and EGSnrc user code were used to simulate the treatment head in electron mode (simulation of beam model). The resulting phase space file was used as a source for dose calculations for 10×10 cm2 field size at SSD=100 cm in a 30×30×45 cm3 water phantom using DOSXYZnrc user code (dose calculations). An automatic MP3-M water phantom tank, MEPHYSTO mc2 software platform and a Semi-Flex Chamber-31010 with sensitive vol­ume of 0.125 cm3 (PTW, Freiburg, Germany) were used for dose distribution measurements. Moreover, the electron field size was 10×10 cm2 and SSD=100 cm. Validation of devel­oped beam model was done by comparing the measured and calculated depth and lateral dose distributions (verification of electron beam model). Simulation of spoilers (using SLAB compo­nent module) placed at the end of the electron applicator, was done using previously vali­dated phase space file for a 5 MeV nominal energy and 10×10 cm2 field size (simulation of spoiler). An in-house routine was developed in order to calculate the combined isodose curves re­sulting from the two simulated abutting fields (calculation of dose distribution in abutting electron fields). Results Verification of the developed 5.9 MeV elec­tron beam model was done by comparing the calculated and measured dose distributions. The maximum percentage difference between calculated and measured PDD was 1%, except for the build-up region in which the difference was 2%. The difference between calculated and measured profile was 2% at the edges of the field and less than 1% in other regions. The effect of PMMA, aluminum, titanium and chromium in dose uniformity achievement in abutting normal electron fields with equivalent thicknesses to 5mm PMMA was evaluated. Comparing R90 and uniformity index of different materials, aluminum was chosen as the optimum spoiler. Titanium has the maximum surface dose. Thus, aluminum and titanium had been chosen to use for dose uniformity achievement in oblique electron fields. Using the optimum beam spoiler, junction dose decreased from 160% to 110% for 15 degrees, from 180% to 120% for 30 degrees, from 160% to 120% for 45 degrees and from 180% to 100% for 60 degrees oblique abutting fields. Using Titanium spoiler, junction dose decreased from 160% to 120% for 15 degrees, 180% to 120% for 30 degrees, 160% to 120% for 45 degrees and 180% to 110% for 60 degrees. In addition, penumbra width for 15 degrees, without spoiler in the surface was 10 mm and was increased to 15.5 mm with titanium spoiler. For 30 degrees, from 9 mm to 15 mm, for 45 degrees from 4 mm to 6 mm and for 60 degrees, from 5 mm to 8 mm. Conclusion Using spoilers, penumbra width at the surface increased, size and depth of hot spots was decreased and dose homogeneity improved at the junc­tion of abutting electron fields. Dose at the junction region of abutting oblique fields was improved significantly by using spoiler. Maximum dose at the junction region for 15⁰, 30⁰, 45⁰ and 60⁰ was decreased about 40%, 60%, 40% and 70% respectively for Titanium and about 50%, 60%, 40% and 80% for Aluminum. Considering significantly decrease in maximum dose using titanium spoiler, unfortunately, dose distribution in the junction region was not decreased less than 110%.

Keywords: abutting fields, electron beam, radiation therapy, spoilers

Procedia PDF Downloads 176
16870 Experimental and Theoratical Methods to Increase Core Damping for Sandwitch Cantilever Beam

Authors: Iyd Eqqab Maree, Moouyad Ibrahim Abbood

Abstract:

The purpose behind this study is to predict damping effect for steel cantilever beam by using two methods of passive viscoelastic constrained layer damping. First method is Matlab Program, this method depend on the Ross, Kerwin and Unger (RKU) model for passive viscoelastic damping. Second method is experimental lab (frequency domain method), in this method used the half-power bandwidth method and can be used to determine the system loss factors for damped steel cantilever beam. The RKU method has been applied to a cantilever beam because beam is a major part of a structure and this prediction may further leads to utilize for different kinds of structural application according to design requirements in many industries. In this method of damping a simple cantilever beam is treated by making sandwich structure to make the beam damp, and this is usually done by using viscoelastic material as a core to ensure the damping effect. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. There is a very good agreement of the experimental results with the theoretical findings. The main ideas of this thesis are to find the transition region for damped steel cantilever beam (4mm and 8mm thickness) from experimental lab and theoretical prediction (Matlab R2011a). Experimentally and theoretically proved that the transition region for two specimens occurs at modal frequency between mode 1 and mode 2, which give the best damping, maximum loss factor and maximum damping ratio, thus this type of viscoelastic material core (3M468) is very appropriate to use in automotive industry and in any mechanical application has modal frequency eventuate between mode 1 and mode 2.

Keywords: 3M-468 material core, loss factor and frequency, domain method, bioinformatics, biomedicine, MATLAB

Procedia PDF Downloads 271
16869 A Study on the False Alarm Rates of MEWMA and MCUSUM Control Charts When the Parameters Are Estimated

Authors: Umar Farouk Abbas, Danjuma Mustapha, Hamisu Idi

Abstract:

It is now a known fact that quality is an important issue in manufacturing industries. A control chart is an integrated and powerful tool in statistical process control (SPC). The mean µ and standard deviation σ parameters are estimated. In general, the multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) are used in the detection of small shifts in joint monitoring of several correlated variables; the charts used information from past data which makes them sensitive to small shifts. The aim of the paper is to compare the performance of Shewhart xbar, MEWMA, and MCUSUM control charts in terms of their false rates when parameters are estimated with autocorrelation. A simulation was conducted in R software to generate the average run length (ARL) values of each of the charts. After the analysis, the results show that a comparison of the false alarm rates of the charts shows that MEWMA chart has lower false alarm rates than the MCUSUM chart at various levels of parameter estimated to the number of ARL0 (in control) values. Also noticed was that the sample size has an advert effect on the false alarm of the control charts.

Keywords: average run length, MCUSUM chart, MEWMA chart, false alarm rate, parameter estimation, simulation

Procedia PDF Downloads 222
16868 A Review of Magnesium Air Battery Systems: From Design Aspects to Performance Characteristics

Authors: R. Sharma, J. K. Bhatnagar, Poonam, R. C. Sharma

Abstract:

Metal–air batteries have been designed and developed as an essential source of electric power to propel automobiles, make electronic equipment functional, and use them as the source of power in remote areas and space. High energy and power density, lightweight, easy recharge capabilities, and low cost are essential features of these batteries. Both primary and rechargeable magnesium air batteries are highly promising. Our focus will be on the basics of electrode reaction kinetics of Mg–air cell in this paper. Design and development of Mg or Mg alloys as anode materials, design and composition of air cathode, and promising electrolytes for Mg–air batteries have been reviewed. A brief note on the possible and proposed improvements in design and functionality is also incorporated. This article may serve as the primary and premier document in the critical research area of Mg-air battery systems.

Keywords: air cathode, battery design, magnesium air battery, magnesium anode, rechargeable magnesium air battery

Procedia PDF Downloads 243
16867 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach

Authors: Isara Muangthai, Lin Sue Jane

Abstract:

Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.

Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption

Procedia PDF Downloads 482
16866 Pragmatic Analysis of the Effectiveness of a Power Conditioning Device (DC-DC Converters) in a Simple Photovoltaics System

Authors: Asowata Osamede

Abstract:

Solar radiation provides the largest renewable energy potential on earth and photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduce dependence on fossil fuels. The aim of this paper is to evaluate the efficiency of power conditioning devices with a focus on the Buck and Boost DC-DC converters (12 V, 24 V and 48 V) in a basic off grid PV system with a varying load profile. This would assist in harnessing more of the available solar energy. The practical setup consists of a PV panel that is set to an orientation angle of 0º N, with corresponding tilt angles. Preliminary results, which include data analysis showing the power loss in the system and efficiency, indicate that the 12V DC-DC converter coupled with the load profile had the highest efficiency for a latitude of 26º S throughout the year.

Keywords: poly-crystalline PV panels, DC-DC converters, tilt and orientation angles, direct solar radiation, load profile

Procedia PDF Downloads 162
16865 Effects of the Flow Direction on the Fluid Flow and Heat Transfer in the Rod Bundle

Authors: Huirui Han, Chao Zhang

Abstract:

The rod bundle is used in the fuel assembly of the supercritical water-cooled nuclear reactor. In the rod bundle, the coolant absorbs the heat contributed by the fission process. Because of the dramatic variations in the thermophysical properties of water at supercritical conditions, it is essential to investigate the heat transfer characteristics of supercritical water in the rod bundle to ensure the safety of the nuclear power plant. In this study, the effects of the flow direction, including horizontal, upward, and downward, on the fluid flow and heat transfer of the supercritical water in the rod bundle were studied numerically. The results show the possibility of gap vortices in the flow subchannels of the rod bundle. In addition, the distributions of the circumferential wall temperature show differences in different flow direction conditions. It was also found that the circumferential cladding surface temperature distribution in the upward flow condition is extremely non-uniform, and there is a large difference between the maximum wall temperatures for different fuel rods.

Keywords: heat transfer, rod bundle, supercritical water, wall temperature

Procedia PDF Downloads 101
16864 Comprehensive Multilevel Practical Condition Monitoring Guidelines for Power Cables in Industries: Case Study of Mobarakeh Steel Company in Iran

Authors: S. Mani, M. Kafil, E. Asadi

Abstract:

Condition Monitoring (CM) of electrical equipment has gained remarkable importance during the recent years; due to huge production losses, substantial imposed costs and increases in vulnerability, risk and uncertainty levels. Power cables feed numerous electrical equipment such as transformers, motors, and electric furnaces; thus their condition assessment is of a very great importance. This paper investigates electrical, structural and environmental failure sources, all of which influence cables' performances and limit their uptimes; and provides a comprehensive framework entailing practical CM guidelines for maintenance of cables in industries. The multilevel CM framework presented in this study covers performance indicative features of power cables; with a focus on both online and offline diagnosis and test scenarios, and covers short-term and long-term threats to the operation and longevity of power cables. The study, after concisely overviewing the concept of CM, thoroughly investigates five major areas of power quality, Insulation Quality features of partial discharges, tan delta and voltage withstand capabilities, together with sheath faults, shield currents and environmental features of temperature and humidity; and elaborates interconnections and mutual impacts between those areas; using mathematical formulation and practical guidelines. Detection, location, and severity identification methods for every threat or fault source are also elaborated. Finally, the comprehensive, practical guidelines presented in the study are presented for the specific case of Electric Arc Furnace (EAF) feeder MV power cables in Mobarakeh Steel Company (MSC), the largest steel company in MENA region, in Iran. Specific technical and industrial characteristics and limitations of a harsh industrial environment like MSC EAF feeder cable tunnels are imposed on the presented framework; making the suggested package more practical and tangible.

Keywords: condition monitoring, diagnostics, insulation, maintenance, partial discharge, power cables, power quality

Procedia PDF Downloads 228
16863 Optimal Beam for Accelerator Driven Systems

Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov

Abstract:

The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).

Keywords: accelerator driven system, ion beam, electrical power, energy gain

Procedia PDF Downloads 140
16862 Power and Representation in Female Autobiographies

Authors: Shafag Dadashova

Abstract:

The study discusses relativity of perception and interpretation of power, its interdependence with conformity level of an individual. It describes an autobiography as a form of epiphany. It is suggested that life-writing helps the author analyze the past and define the borders of his personal power and sources of empowerment. As all life-writings deal with behaviors, values, attitudes, relationships and emotions, their investigation requires qualitative methods to understand social norms, gender roles, religion, and their role in empowerment and disempowerment of the author. The study consists of two parts. The first part is theoretical and interrogates the notion of personal power and how writing the own life can bring to conscious empowerment. The second part presents two autobiographies by female authors from two different Muslim cultures who negotiate between the larger nationalist agenda and their own personal concerns. These autobiographies (Tehmina Durrani, Pakistani author ‘My Feudal Lord’, Banine, Azerbaijani writer 'Caucasian days' and 'Parisian days') are the end of their authors’ long silence, their revolt against the conventional norms, their decision to have an agency to confess and protest. These autobiographies are the authors’ attempts to break the established matrix of perceptions, imposed norms, and gain power to build the real picture of their identity. The study sums up with the conclusion that in spite of very similar motifs of female authors to get empowered through self-analysis, different cultures and time create specific subjectivities associated with particular historical events and geographical location.

Keywords: conformity level, empowerment, female autobiography, self-identity

Procedia PDF Downloads 257
16861 Control Strategy of Solar Thermal Cooling System under the Indonesia Climate

Authors: Budihardjo Sarwo Sastrosudiro, Arnas Lubis, Muhammad Idrus Alhamid, Nasruddin Jusuf

Abstract:

Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m2, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 oC. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results.

Keywords: absorption chiller, control system, solar cooling, solar energy

Procedia PDF Downloads 274
16860 Review of Various Designs and Development in Hydropower Turbines

Authors: Fatemeh Behrouzi, Adi Maimun, Mehdi Nakisa

Abstract:

The growth of population, rising fossil fuel prices which the fossil fuels are limited and decreased day by day, pollution problem due to use of fossil fuels and electrical demand are important role to encourage of using the green energy and renewable technologies. Among different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contribution to the world's electricity generation by using water current turbines. Nowadays, researchers focus on design and development of different kind of turbines to capture hydro-power electricity generation as clean and reliable energy. This article is review about statues of water current turbines carried out to generate electricity from hydro-kinetic energy especially places that they do not have electricity, but they have access to the current water.

Keywords: water current turbine, renewable energy, hydro-power, mechanic

Procedia PDF Downloads 479
16859 Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode

Authors: Mahdi Kiani, Hassan Salarieh, Aria Alasty, S. Mahdi Darbandi

Abstract:

The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems.

Keywords: active magnetic bearing, three pole AMB, hybrid control, Lyapunov function

Procedia PDF Downloads 342
16858 In vitro Synergistic Antioxidant Activity of Honey-Mentha Spicata Combination

Authors: Yuva Bellik, Selles Mohamed Amar

Abstract:

The beneficial health effects including antioxidant properties of mint (Mentha spicata) and honey bees (Apis mellifera) have been extensively studied. However, there is no data about the effects of their associated use. In this study the total phenolic and flavonoid contents for individual extracts of mint and honey and their combination were determined. The antioxidant activity was investigated by using reducing power, 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2´- azinobis-(3-ethylbenzothiazoline-6-sulphonic acid diamonium salt (ABTS), and chelating power methods. The results showed that individual extracts contained important quantity of phenolics and flavonoids and their combination was found to produce best antioxidant activity. A significant linear correlation between the phenolic/flavonoid contents and antioxidant activity, especially with reducing power and free radical scavenging abilities, was observed.

Keywords: honey, mint, synergy, antioxidant activity

Procedia PDF Downloads 389
16857 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation

Authors: Desmond Young

Abstract:

In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.

Keywords: energy, ADMD, electrical load assessment, energy benchmarks

Procedia PDF Downloads 112
16856 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs

Authors: Swapnil Gupta, C. Pandu Rangan

Abstract:

A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.

Keywords: uniquely restricted matching, interval graph, matching, induced matching, witness counting

Procedia PDF Downloads 389
16855 Rapides-Des-Îles Main Spillway - Rehabilitation

Authors: Maryam Kamali Nezhad

Abstract:

As part of the project to rehabilitate the main spillway ("main") of the Rapides-des-Îles development in 2019, it was noted that there is a difference between the water level of the intake gauge and the level measured at the main spillway. The Rapides-des-Îles Generating Station is a Hydro-Québec hydroelectric generating station and dam located on the Ottawa River in the Abitibi-Témiscamingue administrative region of Québec. This plant, with an installed capacity of 176 MW, was commissioned in 1966. During the start-up meeting held at the site in May 2019, it was noticed that the water level upstream of the main spillway was considerably higher than the water level at the powerhouse intake. Measurements showed that the level was 229.46 m, whereas the normal operating level (NOL) and the critical maximum level (CML) used in the design were 228.60 m and 229.51 m, respectively. Considering that the water level had almost reached the maximum critical level of the structure despite a flood with a recurrence period of about 100 years, the work was suspended while the project was being decided. This is the first time since the Rapides des îles project was commissioned that a significant difference in elevation between the water level at the powerhouse (intake) and the main spillway has been observed. Following this observation, the contractor's work was suspended. The objective of this study is to identify the reason(s) for this problem and find solutions. Then determine the new upstream levels at the main spillway at which the safety of the structure is ensured and then adjust the engineering of the main spillway in the rehabilitation project accordingly.

Keywords: spillway, rehabilitation, water level, powerhouse, normal operating level, critical maximum level, safety of the structure

Procedia PDF Downloads 73
16854 Investigation of the Effect of Fine-Grained and Its Plastic Properties on Liquefaction Resistance of Sand

Authors: S. A. Naeini, M. Mortezaee

Abstract:

The purpose of this paper is to investigate the effect of fine grain content in soil and its plastic properties on soil liquefaction potential. For this purpose, the conditions for considering the fine grains effect and percentage of plastic fine on the liquefaction resistance of saturated sand presented by researchers has been investigated. Then, some comprehensive results of all the issues raised by some researchers are stated. From these investigations it was observed that by increasing the percentage of cohesive fine grains in the sandy soil (up to 20%), the maximum shear strength decreases and by adding more fine- grained percentage, the maximum shear strength of the resulting soil increases but never reaches the amount of clean sand.

Keywords: fine-grained, liquefaction, plasticity, shear strength, sand

Procedia PDF Downloads 131
16853 Application of Simulation of Discrete Events in Resource Management of Massive Concreting

Authors: Mohammad Amin Hamedirad, Seyed Javad Vaziri Kang Olyaei

Abstract:

Project planning and control are one of the most critical issues in the management of construction projects. Traditional methods of project planning and control, such as the critical path method or Gantt chart, are not widely used for planning projects with discrete and repetitive activities, and one of the problems of project managers is planning the implementation process and optimal allocation of its resources. Massive concreting projects is also a project with discrete and repetitive activities. This study uses the concept of simulating discrete events to manage resources, which includes finding the optimal number of resources considering various limitations such as limitations of machinery, equipment, human resources and even technical, time and implementation limitations using analysis of resource consumption rate, project completion time and critical points analysis of the implementation process. For this purpose, the concept of discrete-event simulation has been used to model different stages of implementation. After reviewing the various scenarios, the optimal number of allocations for each resource is finally determined to reach the maximum utilization rate and also to reduce the project completion time or reduce its cost according to the existing constraints. The results showed that with the optimal allocation of resources, the project completion time could be reduced by 90%, and the resulting costs can be reduced by up to 49%. Thus, allocating the optimal number of project resources using this method will reduce its time and cost.

Keywords: simulation, massive concreting, discrete event simulation, resource management

Procedia PDF Downloads 148