Search results for: environmentally conscious manufacturing
886 Exploratory Study to Obtain a Biolubricant Base from Transesterified Oils of Animal Fats (Tallow)
Authors: Carlos Alfredo Camargo Vila, Fredy Augusto Avellaneda Vargas, Debora Alcida Nabarlatz
Abstract:
Due to the current need to implement environmentally friendly technologies, the possibility of using renewable raw materials to produce bioproducts such as biofuels, or in this case, to produce biolubricant bases, from residual oils (tallow), originating has been studied of the bovine industry. Therefore, it is hypothesized that through the study and control of the operating variables involved in the reverse transesterification method, a biolubricant base with high performance is obtained on a laboratory scale using animal fats from the bovine industry as raw materials, as an alternative for material recovery and environmental benefit. To implement this process, esterification of the crude tallow oil must be carried out in the first instance, which allows the acidity index to be decreased ( > 1 mg KOH/g oil), this by means of an acid catalysis with sulfuric acid and methanol, molar ratio 7.5:1 methanol: tallow, 1.75% w/w catalyst at 60°C for 150 minutes. Once the conditioning has been completed, the biodiesel is continued to be obtained from the improved sebum, for which an experimental design for the transesterification method is implemented, thus evaluating the effects of the variables involved in the process such as the methanol molar ratio: improved sebum and catalyst percentage (KOH) over methyl ester content (% FAME). Finding that the highest percentage of FAME (92.5%) is given with a 7.5:1 methanol: improved tallow ratio and 0.75% catalyst at 60°C for 120 minutes. And although the% FAME of the biodiesel produced does not make it suitable for commercialization, it does ( > 90%) for its use as a raw material in obtaining biolubricant bases. Finally, once the biodiesel is obtained, an experimental design is carried out to obtain biolubricant bases using the reverse transesterification method, which allows the study of the effects of the biodiesel: TMP (Trimethylolpropane) molar ratio and the percentage of catalyst on viscosity and yield as response variables. As a result, a biolubricant base is obtained that meets the requirements of ISO VG (Classification for industrial lubricants according to ASTM D 2422) 32 (viscosity and viscosity index) for commercial lubricant bases, using a 4:1 biodiesel molar ratio: TMP and 0.51% catalyst at 120°C, at a pressure of 50 mbar for 180 minutes. It is necessary to highlight that the product obtained consists of two phases, a liquid and a solid one, being the first object of study, and leaving the classification and possible application of the second one incognito. Therefore, it is recommended to carry out studies of the greater depth that allows characterizing both phases, as well as improving the method of obtaining by optimizing the variables involved in the process and thus achieving superior results.Keywords: biolubricant base, bovine tallow, renewable resources, reverse transesterification
Procedia PDF Downloads 112885 Effects of Plasma Technology in Biodegradable Films for Food Packaging
Authors: Viviane P. Romani, Bradley D. Olsen, Vilásia G. Martins
Abstract:
Biodegradable films for food packaging have gained growing attention due to environmental pollution caused by synthetic films and the interest in the better use of resources from nature. Important research advances were made in the development of materials from proteins, polysaccharides, and lipids. However, the commercial use of these new generation of sustainable materials for food packaging is still limited due to their low mechanical and barrier properties that could compromise the food quality and safety. Thus, strategies to improve the performance of these materials have been tested, such as chemical modifications, incorporation of reinforcing structures and others. Cold plasma is a versatile, fast and environmentally friendly technology. It consists of a partially ionized gas containing free electrons, ions, and radicals and neutral particles able to react with polymers and start different reactions, leading to the polymer degradation, functionalization, etching and/or cross-linking. In the present study, biodegradable films from fish protein prepared through the casting technique were plasma treated using an AC glow discharge equipment. The reactor was preliminary evacuated to ~7 Pa and the films were exposed to air plasma for 2, 5 and 8 min. The films were evaluated by their mechanical and water vapor permeability (WVP) properties and changes in the protein structure were observed using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Potential cross-links and elimination of surface defects by etching might be the reason for the increase in tensile strength and decrease in the elongation at break observed. Among the times of plasma application tested, no differences were observed when higher times of exposure were used. The X-ray pattern showed a broad peak at 2θ = 19.51º that corresponds to the distance of 4.6Å by applying the Bragg’s law. This distance corresponds to the average backbone distance within the α-helix. Thus, the changes observed in the films might indicate that the helical configuration of fish protein was disturbed by plasma treatment. SEM images showed surface damage in the films with 5 and 8 min of plasma treatment, indicating that 2 min was the most adequate time of treatment. It was verified that plasma removes water from the films once weight loss of 4.45% was registered for films treated during 2 min. However, after 24 h in 50% of relative humidity, the water lost was recovered. WVP increased from 0.53 to 0.65 g.mm/h.m².kPa after plasma treatment during 2 min, that is desired for some foods applications which require water passage through the packaging. In general, the plasma technology affects the properties and structure of fish protein films. Since this technology changes the surface of polymers, these films might be used to develop multilayer materials, as well as to incorporate active substances in the surface to obtain active packaging.Keywords: fish protein films, food packaging, improvement of properties, plasma treatment
Procedia PDF Downloads 162884 Reliability Enhancement by Parameter Design in Ferrite Magnet Process
Abstract:
Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design.Keywords: ferrite magnet, crack, reliability, process optimization, Taguchi method
Procedia PDF Downloads 517883 Exploration of in-situ Product Extraction to Increase Triterpenoid Production in Saccharomyces Cerevisiae
Authors: Mariam Dianat Sabet Gilani, Lars M. Blank, Birgitta E. Ebert
Abstract:
Plant-derived lupane-type, pentacyclic triterpenoids are biologically active compounds that are highly interesting for applications in medical, pharmaceutical, and cosmetic industries. Due to the low abundance of these valuable compounds in their natural sources, and the environmentally harmful downstream process, alternative production methods, such as microbial cell factories, are investigated. Engineered Saccharomyces cerevisiae strains, harboring the heterologous genes for betulinic acid synthesis, can produce up to 2 g L-1 triterpenoids, showing high potential for large-scale production of triterpenoids. One limitation of the microbial synthesis is the intracellular product accumulation. It not only makes cell disruption a necessary step in the downstream processing but also limits productivity and product yield per cell. To overcome these restrictions, the aim of this study is to develop an in-situ extraction method, which extracts triterpenoids into a second organic phase. Such a continuous or sequential product removal from the biomass keeps the cells in an active state and enables extended production time or biomass recycling. After screening of twelve different solvents, selected based on product solubility, biocompatibility, as well as environmental and health impact, isopropyl myristate (IPM) was chosen as a suitable solvent for in-situ product removal from S. cerevisiae. Impedance-based single-cell analysis and off-gas measurement of carbon dioxide emission showed that cell viability and physiology were not affected by the presence of IPM. Initial experiments demonstrated that after the addition of 20 vol % IPM to cultures in the stationary phase, 40 % of the total produced triterpenoids were extracted from the cells into the organic phase. In future experiments, the application of IPM in a repeated batch process will be tested, where IPM is added at the end of each batch run to remove triterpenoids from the cells, allowing the same biocatalysts to be used in several sequential batch steps. Due to its high biocompatibility, the amount of IPM added to the culture can also be increased to more than 20 vol % to extract more than 40 % triterpenoids in the organic phase, allowing the cells to produce more triterpenoids. This highlights the potential for the development of a continuous large-scale process, which allows biocatalysts to produce intracellular products continuously without the necessity of cell disruption and without limitation of the cell capacity.Keywords: betulinic acid, biocompatible solvent, in-situ extraction, isopropyl myristate, process development, secondary metabolites, triterpenoids, yeast
Procedia PDF Downloads 151882 Managing Construction Wastes in Nigeria for Sustainable Development
Authors: Ezekiel Ejiofor Nnadi
Abstract:
Nigeria construction industry is known for its active construction activities. This has earmarked the industry to be the key to economic growth of the nation. It has largest employer of labour and gives sustenance to other industries like manufacturing industry. While this is a sign of growth and prosperity; the waste generated by the industry has always been a problem and a serious concern. It results in wastage of economic gain and has resultant health effect on the populace apart from injury being sustained on sites. This work provides a platform to learn more about construction waste, its management strategy and how to reduce waste production in Nigeria construction industry. Construction sites, waste management authority and public health institutions in Lagos as the centre of most construction activities in Nigeria were selected, and a set of questionnaire was administered to using the systematic sampling technique. Descriptive statistics and relative importance index (RII) technique were employed for the analysis of the data gathered. The findings of the analysis show that excessive wastes reduce contractors’ profit margin and also that some construction wastes contain hazardous and toxic elements such as lead, asbestos or radioactive materials which required proper handling and effective disposal. The conclusion was drawn that the check on waste on construction sites starts with the designers to the contractors who execute on site.Keywords: construction cost, construction industry, economic growth, materials wastes
Procedia PDF Downloads 271881 Uptake of Off-Site Construction: Benefit and Future Application
Authors: Faisal Alazzaz, Andrew Whyte
Abstract:
Off-site construction methods have played an important role in the construction sector in the past few decades. It is increasingly becoming a major alternative technique and strategic direction compared to traditional in-situ method. It produces a significant amount of value for the construction industry and the economy more generally. To date, an impressive number of studies have been lunched on the perceived perception of off-site construction. However, it seems that a quantifying benefit on the offsite construction area is lacking. Therefore, this paper examines the recent research literature on the benefits of off- site construction and provides future direction. In the beginning, this paper provides a brief history and current value of the off-site construction followed by a detailed discussion on the benefit of off-site construction. These benefits include but not limited to time saving, quality improvement, relieving skills shortages, cost reduction and productivity improvement. Toward this end, off-site construction should learn from other productive industry similar to services or manufacturing industry by applying operational management tools and techniques with extensive focus on employee empowerment will shed the light on future uptake of Off-site construction. This study is of value in providing scholars have a clear picture of perceived benefit of off-site construction research and give an opportunities for future uptake of off-site method.Keywords: building projects, employer empowerment, off-site construction benefits, productivity
Procedia PDF Downloads 434880 Isolation and Selection of Strains Perspective for Sewage Sludge Processing
Authors: A. Zh. Aupova, A. Ulankyzy, A. Sarsenova, A. Kussayin, Sh. Turarbek, N. Moldagulova, A. Kurmanbayev
Abstract:
One of the methods of organic waste bioconversion into environmentally-friendly fertilizer is composting. Microorganisms that produce hydrolytic enzymes play a significant role in accelerating the process of organic waste composting. We studied the enzymatic potential (amylase, protease, cellulase, lipase, urease activity) of bacteria isolated from the sewage sludge of Nur-Sultan, Rudny, and Fort-Shevchenko cities, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha for processing organic waste and identifying active strains. Microorganism isolation was carried out by the cultures enrichment method on liquid nutrient media, followed by inoculating on different solid media to isolate individual colonies. As a result, sixty-one microorganisms were isolated, three of which were thermophiles (DS1, DS2, and DS3). The highest number of isolates, twenty-one and eighteen, were isolated from sewage sludge of Nur-Sultan and Rudny cities, respectively. Ten isolates were isolated from the wastewater of the sewage treatment plant in Fort-Shevchenko. From the dacha soil of Nur-Sultan city and freshly cut grass - 9 and 5 isolates were revealed, respectively. The lipolytic, proteolytic, amylolytic, cellulolytic, ureolytic, and oil-oxidizing activities of isolates were studied. According to the results of experiments, starch hydrolysis (amylolytic activity) was found in 2 isolates - CB2/2, and CB2/1. Three isolates - CB2, CB2/1, and CB1/1 were selected for the highest ability to break down casein. Among isolated 61 bacterial cultures, three isolates could break down fats - CB3, CBG1/1, and IL3. Seven strains had cellulolytic activity - DS1, DS2, IL3, IL5, P2, P5, and P3. Six isolates rapidly decomposed urea. Isolate P1 could break down casein and cellulose. Isolate DS3 was a thermophile and had cellulolytic activity. Thus, based on the conducted studies, 15 isolates were selected as a potential for sewage sludge composting - CB2, CB3, CB1/1, CB2/2, CBG1/1, CB2/1, DS1, DS2, DS3, IL3, IL5, P1, P2, P5, P3. Selected strains were identified on a mass spectrometer (Maldi-TOF). The isolate - CB 3 was referred to the genus Rhodococcus rhodochrous; two isolates CB2 and CB1 / 1 - to Bacillus cereus, CB 2/2 - to Cryseobacterium arachidis, CBG 1/1 - to Pseudoxanthomonas sp., CB2/1 - to Bacillus megaterium, DS1 - to Pediococcus acidilactici, DS2 - to Paenibacillus residui, DS3 - to Brevibacillus invocatus, three strains IL3, P5, P3 - to Enterobacter cloacae, two strains IL5, P2 - to Ochrobactrum intermedium, and P1 - Bacillus lichenoformis. Hence, 60 isolates were isolated from the wastewater of the cities of Nur-Sultan, Rudny, Fort-Shevchenko, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha. Based on the highest enzymatic activity, 15 active isolates were selected and identified. These strains may become the candidates for bio preparation for sewage sludge processing.Keywords: sewage sludge, composting, bacteria, enzymatic activity
Procedia PDF Downloads 100879 Mitigating Supply Chain Risk for Sustainability Using Big Data Knowledge: Evidence from the Manufacturing Supply Chain
Authors: Mani Venkatesh, Catarina Delgado, Purvishkumar Patel
Abstract:
The sustainable supply chain is gaining popularity among practitioners because of increased environmental degradation and stakeholder awareness. On the other hand supply chain, risk management is very crucial for the practitioners as it potentially disrupts supply chain operations. Prediction and addressing the risk caused by social issues in the supply chain is paramount importance to the sustainable enterprise. More recently, the usage of Big data analytics for forecasting business trends has been gaining momentum among professionals. The aim of the research is to explore the application of big data, predictive analytics in successfully mitigating supply chain social risk and demonstrate how such mitigation can help in achieving sustainability (environmental, economic & social). The method involves the identification and validation of social issues in the supply chain by an expert panel and survey. Later, we used a case study to illustrate the application of big data in the successful identification and mitigation of social issues in the supply chain. Our result shows that the company can predict various social issues through big data, predictive analytics and mitigate the social risk. We also discuss the implication of this research to the body of knowledge and practice.Keywords: big data, sustainability, supply chain social sustainability, social risk, case study
Procedia PDF Downloads 407878 Modeling and Characterization of the SiC Single Crystal Growth Process
Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski
Abstract:
In the present study numerical simulations silicon carbide single crystal growth process in Physical Vapor Transport reactor are addressed. Silicon Carbide is a perspective material for many applications in modern electronics. One of the main challenges for wider applications of SiC is high price of high quality mono crystals. Improvement of silicon carbide manufacturing process has a significant influence on the product price. Better understanding of crystal growth allows for optimization of the process, and it can be achieved by numerical simulations. In this work Virtual Reactor software was used to simulate the process. Predicted geometrical properties of the final product and information about phenomena occurring inside process reactor were obtained. The latter is especially valuable because reactor chamber is inaccessible during the process due to high temperature inside the reactor (over 2000˚C). Obtained data was used for improvement of the process and reactor geometry. Resultant crystal quality was also predicted basing on crystallization front shape evolution and threading dislocation paths. Obtained results were confronted with experimental data and the results are in good agreement.Keywords: Finite Volume Method, semiconductors, Physical Vapor Transport, silicon carbide
Procedia PDF Downloads 527877 Lean Environmental Management Integration System (LEMIS) Framework Development
Authors: A. P. Puvanasvaran, Suresh A. L. Vasu, N. Norazlin
Abstract:
The Lean Environmental Management Integration System (LEMIS) framework development is integration between lean core element and ISO 14001. The curiosity on the relationship between continuous improvement and sustainability of lean implementation has influenced this study toward LEMIS. Characteristic of ISO 14001 standard clauses and core elements of lean principles are explored from past studies and literature reviews. Survey was carried out on ISO 14001 certified companies to examine continual improvement by implementing the ISO 14001 standard. The study found that there is a significant and positive relationship between Lean Principles: value, value stream, flow, pull and perfection with the ISO 14001 requirements. LEMIS is significant to support the continuous improvement and sustainability. The integration system can be implemented to any manufacturing company. It gives awareness on the importance on why organizations need to sustain its Environmental management system. At the meanwhile, the lean principle can be adapted in order to streamline daily activities of the company. Throughout the study, it had proven that there is no sacrifice or trade-off between lean principles with ISO 14001 requirements. The framework developed in the study can be further simplified in the future, especially the method of crossing each sub requirements of ISO 14001 standard with the core elements of Lean principles in this study.Keywords: LEMIS, ISO 14001, integration, framework
Procedia PDF Downloads 404876 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation
Authors: P. D. Pastuszak
Abstract:
The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.Keywords: active thermography, composite, curved structures, defects
Procedia PDF Downloads 317875 Interactive Winding Geometry Design of Power Transformers
Authors: Paffrath Meinhard, Zhou Yayun, Guo Yiqing, Ertl Harald
Abstract:
Winding geometry design is an important part of power transformer electrical design. Conventionally, the winding geometry is designed manually, which is a time-consuming job because it involves many iteration steps in order to meet all cost, manufacturing and electrical requirements. Here a method is presented which automatically generates the winding geometry for given user parameters and allows the user to interactively set and change parameters. To achieve this goal, the winding problem is transferred to a mixed integer nonlinear optimization problem. The relevant geometrical design parameters are defined as optimization variables. The cost and other requirements are modeled as constraints. For the solution, a stochastic ant colony optimization algorithm is applied. It is well-known, that an optimizer can get stuck in a local minimum. For the winding problem, we present efficient strategies to come out of local minima, furthermore a reduced variable search range helps to accelerate the solution process. Numerical examples show that the optimization result is delivered within seconds such that the user can interactively change the variable search area and constraints to improve the design.Keywords: ant colony optimization, mixed integer nonlinear programming, power transformer, winding design
Procedia PDF Downloads 379874 Investigating Interlayer Bonding in 3D Printing Pressure Vessel Applications
Authors: Cam Minh Tri Tien, Richard Fenrich, Tristan Shelley, Nam Mai-Duy, Allan Malano, Xuesen Zeng
Abstract:
Since additive manufacturing is a layer-by-layer deposition approach, good bonding quality between adjacent layers is critically important to achieve optimal mechanical performance, including applications in pressure vessels. The need to enhance the strength of printed products, especially in the build direction where layup gaps and voids exist between the printed layers, has garnered significant attention. The proposed research will focus on improving the current Fused Deposition Modelling (FDM) process to produce polymers reinforced with chopped fibers, utilizing a controlled heat zone to enhance the adhesion between printed layers. Energy will be applied to both printed and printing layers to improve the bonding strength between adjacent layers. Through the enhanced FDM process, the mechanical performance of composite parts will experience a substantial improvement, particularly in the build direction, as compared to current FDM methods. A combination of experimental, numerical, and analytical methods will be employed to demonstrate the enhanced performance of heat-controlled 3D printed parts.Keywords: 3D Printing, pressure vessels, interlayer bonding, controlled heat
Procedia PDF Downloads 49873 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend
Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang
Abstract:
Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical, and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and non-toxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75, and 0:100), and fiber content (i.e. in the range of 1-25 % wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using the native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness, and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.Keywords: polylactic acid, thermoplastic starch, Jute fiber, composite, blend
Procedia PDF Downloads 421872 Analysis of Histamine Content in Selected Food Products from the Serbian Market
Authors: Brizita Djordjevic, Bojana Vidovic, Milica Zrnic, Uros Cakar, Ivan Stankovic, Davor Korcok, Sladjana Sobajic
Abstract:
Histamine is a biogenic amine, which is formed by enzymatic decarboxylation from the amino acid histidine. It can be found in foods such as fish and fish products, meat and fermented meat products, cheese, wine and beer. The presence of histamine in these foods can indicate microbiological spoilage or poor manufacturing processes. The consumption of food containing large amounts of histamine can have toxicological consequences. In 62 food products (31 canned fish products, 19 wines and 12 cheeses) from the market of Serbia the content of histamine was determined using enzyme-linked immunosorbent assay (ELISA) test kit according to the manufacturer's instructions (Immunolab GmbH, Kassel, Germany). The detection limits of this assay were 20 µg/kg for fish and cheese and 4 µg/L for wine. The concentration of histamine varied between 0.16-207 mg/kg in canned fish products, 0.03-1.47 mg/kg in cheeses and 0.01- 0.18 mg/L in wines. In all analyzed canned fish products the results obtained for the histamine were below the limits set by European and national legislation, so they can be considered acceptable and safe for the health consumers. The levels of histamine in analyzed cheeses and wines were very low and did not pose safety concerns.Keywords: cheese, enzyme-linked immunosorbent assay, histamine, fish products, wine
Procedia PDF Downloads 444871 Multi Objective Optimization for Two-Sided Assembly Line Balancing
Authors: Srushti Bhatt, M. B. Kiran
Abstract:
Two-sided assembly line balancing problem is yet to be addressed simply to compete for the global market for manufacturers. The task assigned in an ordered sequence to get optimum performance of the system is known as assembly line balancing problem mainly classified as single and two sided. It is very challenging in manufacturing industries to balance two-sided assembly line, wherein the set of sequential workstations the task operations are performed in two sides of the line. The conflicting major objective in two-sided assembly line balancing problem is either to maximize /minimize the performance parameters. The present study emphases on combining different evolutionary algorithm; ant colony, Tabu search and petri net method; and compares their results of an algorithm for solving two-sided assembly line balancing problem. The concept of multi objective optimization of performance parameters is now a day adopted to make a decision involving more than one objective function to be simultaneously optimized. The optimum result can be expected among the selected methods using multi-objective optimization. The performance parameters considered in the present study are a number of workstation, slickness and smoothness index. The simulation of the assembly line balancing problem provides optimal results of classical and practical problems.Keywords: Ant colony, petri net, tabu search, two sided ALBP
Procedia PDF Downloads 276870 Pharmaceutical Applications of Newton's Second Law and Disc Inertia
Authors: Nicholas Jensen
Abstract:
As the effort to create new drugs to treat rare conditions cost-effectively intensifies, there is a need to ensure maximum efficiency in the manufacturing process. This includes the creation of ultracompact treatment forms, which can best be achieved via applications of fundamental laws of physics. This paper reports an experiment exploring the relationship between the forms of Newton's 2ⁿᵈ Law appropriate to linear motion and to transversal architraves. The moment of inertia of three discs was determined by experiments and compared with previous data derived from a theoretical relationship. The method used was to attach the discs to a moment arm. Comparing the results with those obtained from previous experiments, it is found to be consistent with the first law of thermodynamics. It was further found that Newton's 2ⁿᵈ law violates the second law of thermodynamics. The purpose of this experiment was to explore the relationship between the forms of Newton's 2nd Law appropriate to linear motion and to apply torque to a twisting force, which is determined by position vector r and force vector F. Substituting equation alpha in place of beta; angular acceleration is a linear acceleration divided by radius r of the moment arm. The nevrological analogy of Newton's 2nd Law states that these findings can contribute to a fuller understanding of thermodynamics in relation to viscosity. Implications for the pharmaceutical industry will be seen to be fruitful from these findings.Keywords: Newtonian physics, inertia, viscosity, pharmaceutical applications
Procedia PDF Downloads 114869 Sandwich Structure Composites: Effect of Kenaf on Mechanical Properties
Authors: Maizatulnisa Othman, Mohamad Bukhari, Zahurin Halim, Souad A. Muhammad, Khalisani Khalid
Abstract:
Sandwich structure composites produced by epoxy core and aluminium skin were developed as potential building materials. Interface bonding between core and skin was controlled by varying kenaf content. Five different weight percentage of kenaf loading ranging from 10 wt% to 50 wt% were employed in the core manufacturing in order to study the mechanical properties of the sandwich composite. Properties of skin aluminium with epoxy were found to be affected by drying time of the adhesive. Mechanical behavior of manufactured sandwich composites in relation with properties of constituent materials was studied. It was found that 30 wt% of kenaf loading contributed to increase the flexural strength and flexural modulus up to 102 MPa and 32 Gpa, respectively. Analysis were done on the flatwise and edgewise compression test. For flatwise test, it was found that 30 wt% of fiber loading could withstand maximum force until 250 kN, with compressive strength results at 96.94 MPa. However, at edgewise compression test, the sandwich composite with same fiber loading only can withstand 31 kN of the maximum load with 62 MPa of compressive strength results.Keywords: sandwich structure composite, epoxy, aluminium, kenaf fiber
Procedia PDF Downloads 391868 Recognizing and Prioritizing Effective Factors on Productivity of Human Resources Through Using Technique for Order of Preference by Similarity to Ideal Solution Method
Authors: Amirmehdi Dokhanchi, Babak Ziyae
Abstract:
Studying and prioritizing effective factors on productivity of human resources through TOPSIS method is the main aim of the present research study. For this reason, while reviewing concepts existing in productivity, effective factors were studied. Managers, supervisors, staff and personnel of Tabriz Tractor Manufacturing Company are considered subject of this study. Of total individuals, 160 of them were selected through the application of random sampling method as 'subject'. Two questionnaires were used for collecting data in this study. The factors, which had the highest effect on productivity, were recognized through the application of software packages. TOPSIS method was used for prioritizing recognized factors. For this reason, the second questionnaire was put available to statistics sample for studying effect of each of factors towards predetermined indicators. Therefore, decision-making matrix was obtained. The result of prioritizing factors shows that existence of accurate organizational strategy, high level of occupational skill, application of partnership and contribution system, on-the-job-training services, high quality of occupational life, dissemination of appropriate organizational culture, encouraging to creativity and innovation, and environmental factors are prioritized respectively.Keywords: productivity of human resources, productivity indicators, TOPSIS, prioritizing factors
Procedia PDF Downloads 331867 Mechanical Response of Aluminum Foam Under Biaxial Combined Quasi-Static Compression-Torsional Loads
Authors: Solomon Huluka, Akrum Abdul-Latif, Rachid Baleh
Abstract:
Metal foams have been developed intensively as a new class of materials for the last two decades due to their unique structural and multifunctional properties. The aim of this experimental work was to characterize the effect of biaxial loading complexity (combined compression-torsion) on the plastic response of highly uniform architecture open-cell aluminum foams of spherical porous with a density of 80%. For foam manufacturing, the Kelvin cells model was used to generate the generally spherical shape with a cell diameter of 11 mm. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e. 0°, 45° and 60°). The key mechanical responses to be examined are yield stress, stress plateau, and energy absorption capacity. The collapse mode was also investigated. It was concluded that the higher the loading complexity, the greater the yield strength and the greater energy absorption capacity of the foam. Experimentally, it was also noticed that there were large softening effects that occurred after the first pick stress for both biaxial-45° and biaxial-60° loading.Keywords: aluminum foam, loading complexity, characterization, biaxial loading
Procedia PDF Downloads 141866 Optimal Design of InGaP/GaAs Heterojonction Solar Cell
Authors: Djaafar F., Hadri B., Bachir G.
Abstract:
We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300°K led to the following result Icc =14.22 mA/cm2, Voc =2.42V, FF =91.32 %, η = 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η =23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell. This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.Keywords: modeling, simulation, multijunction, optimization, silvaco ATLAS
Procedia PDF Downloads 617865 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw
Authors: N. Ouslimani, M. T. Abadlia
Abstract:
Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption
Procedia PDF Downloads 261864 The Impact of Artificial Intelligence on Textiles Technology
Authors: Ramy Kamel Fekrey Gadelrab
Abstract:
Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, it come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.Keywords: nanoparticles, enzymes, immobilization, textilesconductive yarn, e-textiles, smart textiles, thermal analysisflexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design
Procedia PDF Downloads 45863 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.Keywords: electric discharge machining, material removal rate, surface roughness, too wear rate, multi-response signal-to-noise ratio, multi response signal-to-noise ratio, optimization
Procedia PDF Downloads 352862 Environmental Performance of Different Lab Scale Chromium Removal Processes
Authors: Chiao-Cheng Huang, Pei-Te Chiueh, Ya-Hsuan Liou
Abstract:
Chromium-contaminated wastewater from electroplating industrial activity has been a long-standing environmental issue, as it can degrade surface water quality and is harmful to soil ecosystems. The traditional method of treating chromium-contaminated wastewater has been to use chemical coagulation processes. However, this method consumes large amounts of chemicals such as sulfuric acid, sodium hydroxide, and sodium bicarbonate in order to remove chromium. However, a series of new methods for treating chromium-containing wastewater have been developed. This study aimed to compare the environmental impact of four different lab scale chromium removal processes: 1.) chemical coagulation process (the most common and traditional method), in which sodium metabisulfite was used as reductant, 2.) electrochemical process using two steel sheets as electrodes, 3.) reduction by iron-copper bimetallic powder, and 4.) photocatalysis process by TiO2. Each process was run in the lab, and was able to achieve 100% removal of chromium in solution. Then a Life Cycle Assessment (LCA) study was conducted based on the experimental data obtained from four different case studies to identify the environmentally preferable alternative to treat chromium wastewater. The model used for calculating the environmental impact was TRACi, and the system scope includes the production phase and use phase of chemicals and electricity consumed by the chromium removal processes, as well as the final disposal of chromium containing sludge. The functional unit chosen in this study was the removal of 1 mg of chromium. Solution volume of each case study was adjusted to 1 L in advance and the chemicals and energy consumed were proportionally adjusted. The emissions and resources consumed were identified and characterized into 15 categories of midpoint impacts. The impact assessment results show that the human ecotoxicity category accounts for 55 % of environmental impact in Case 1, which can be attributed to the sulfuric acid used for pH adjustment. In Case 2, production of steel sheet electrodes is an energy-intensive process, thus contributed to 20 % of environmental impact. In Case 3, sodium bicarbonate is used as an anti-corrosion additive, which results mainly in 1.02E-05 Comparative Toxicity Unit (CTU) in the human toxicity category and 0.54E-05 (CTU) in acidification of air. In Case 4, electricity consumption for power supply of UV lamp gives 5.25E-05 (CTU) in human toxicity category, 1.15E-05 (kg Neq) in eutrophication. In conclusion, Case 3 and Case 4 have higher environmental impacts than Case 1 and Case 2, which can be attributed mostly to higher energy and chemical consumption, leading to high impacts in the global warming and ecotoxicity categories.Keywords: chromium, lab scale, life cycle assessment, wastewater
Procedia PDF Downloads 262861 Solving Process Planning, Weighted Apparent Tardiness Cost Dispatching, and Weighted Processing plus Weight Due-Date Assignment Simultaneously Using a Hybrid Search
Authors: Halil Ibrahim Demir, Caner Erden, Abdullah Hulusi Kokcam, Mumtaz Ipek
Abstract:
Process planning, scheduling, and due date assignment are three important manufacturing functions which are studied independently in literature. There are hundreds of works on IPPS and SWDDA problems but a few works on IPPSDDA problem. Integrating these three functions is very crucial due to the high relationship between them. Since the scheduling problem is in the NP-Hard problem class without any integration, an integrated problem is even harder to solve. This study focuses on the integration of these functions. Sum of weighted tardiness, earliness, and due date related costs are used as a penalty function. Random search and hybrid metaheuristics are used to solve the integrated problem. Marginal improvement in random search is very high in the early iterations and reduces enormously in later iterations. At that point directed search contribute to marginal improvement more than random search. In this study, random and genetic search methods are combined to find better solutions. Results show that overall performance becomes better as the integration level increases.Keywords: process planning, genetic algorithm, hybrid search, random search, weighted due-date assignment, weighted scheduling
Procedia PDF Downloads 360860 EverPro as the Missing Piece in the Plant Protein Portfolio to Aid the Transformation to Sustainable Food Systems
Authors: Aylin W Sahin, Alice Jaeger, Laura Nyhan, Gregory Belt, Steffen Münch, Elke K. Arendt
Abstract:
Our current food systems cause an increase in malnutrition resulting in more people being overweight or obese in the Western World. Additionally, our natural resources are under enormous pressure and the greenhouse gas emission increases yearly with a significant contribution to climate change. Hence, transforming our food systems is of highest priority. Plant-based food products have a lower environmental impact compared to their animal-based counterpart, representing a more sustainable protein source. However, most plant-based protein ingredients, such as soy and pea, are lacking indispensable amino acids and extremely limited in their functionality and, thus, in their food application potential. They are known to have a low solubility in water and change their properties during processing. The low solubility displays the biggest challenge in the development of milk alternatives leading to inferior protein content and protein quality in dairy alternatives on the market. Moreover, plant-based protein ingredients often possess an off-flavour, which makes them less attractive to consumers. EverPro, a plant-protein isolate originated from Brewer’s Spent Grain, the most abundant by-product in the brewing industry, represents the missing piece in the plant protein portfolio. With a protein content of >85%, it is of high nutritional value, including all indispensable amino acids which allows closing the protein quality gap of plant proteins. Moreover, it possesses high techno-functional properties. It is fully soluble in water (101.7 ± 2.9%), has a high fat absorption capacity (182.4 ± 1.9%), and a foaming capacity which is superior to soy protein or pea protein. This makes EverPro suitable for a vast range of food applications. Furthermore, it does not cause changes in viscosity during heating and cooling of dispersions, such as beverages. Besides its outstanding nutritional and functional characteristics, the production of EverPro has a much lower environmental impact compared to dairy or other plant protein ingredients. Life cycle assessment analysis showed that EverPro has the lowest impact on global warming compared to soy protein isolate, pea protein isolate, whey protein isolate, and egg white powder. It also contributes significantly less to freshwater eutrophication, marine eutrophication and land use compared the protein sources mentioned above. EverPro is the prime example of sustainable ingredients, and the type of plant protein the food industry was waiting for: nutritious, multi-functional, and environmentally friendly.Keywords: plant-based protein, upcycled, brewers' spent grain, low environmental impact, highly functional ingredient
Procedia PDF Downloads 79859 Investigating the Influence of the Ferro Alloys Consumption on the Slab Product Standard Cost with Different Grades Using Regression Analysis (A Case Study of Iran's Iron and Steel Industry)
Authors: Iman Fakhrian, Ali Salehi Manzari
Abstract:
Consistent Profitability is one of the most important priorities in manufacturing companies. One of the fundamental factors for increasing the companies profitability is cost management. Isfahan's mobarakeh steel company is one of the largest producers of the slab product grades in the middle east. Raw material cost constitutes about 70% of the company's expenditures. The costs of the ferro alloys have a remarkable contribution of the raw material costs. This research aims to determine the ferro alloys which have significant effect on the variability of the standard cost of the slab product grades. Used data in this study were collected from standard costing system of isfahan's mobarakeh steel company in 2022. The results of conducting the regression analysis model show that expense items: 03020, 03045, 03125, 03130 and 03150 have dominant role in variability of the standard cost of the slab product grades. In other words, the mentioned ferro alloys have noticeable and significant role in variability of the standard cost of the slab product grades.Keywords: consistent profitability, ferro alloys, slab product grades, regression analysis
Procedia PDF Downloads 70858 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar
Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy
Abstract:
The development of new construction materials using recycled plastic is important to both the construction and the plastic recycling industries. Manufacturing of fibers from industrial or post-consumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of ordinary cement based mortar. Parameters investigated include: Fiber length ranging from 20 to 50 mm, and fiber volume fraction ranging from 0% to 1.5% by volume. The test results showed significant improvement in crack arresting mechanism and substantial reduction in the surface area of cracks for the mortar reinforced with recycled plastic fibers compared to plain mortar. Furthermore, test results indicated that there was a slight decrease in compressive strength of mortar reinforced with different lengths and contents of recycled fibers compared to plain mortar. This study suggests that adding more than 1% of RP fibers to mortar, can be used effectively for controlling plastic shrinkage cracking of cement based mortar, and thus results in waste reduction and resources conservation.Keywords: mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers
Procedia PDF Downloads 406857 Scientific Insight Review of Corrosion Methods and Corrosion Control of Pre-Stressed Concrete Cylinder Pipes
Authors: Saad A. Bakheet, Ashraf A. Younees, Abdalsamia M. Falah
Abstract:
The main purpose of this study is to the occurrence of several failures in four-meter diameter pre-restressed concrete cylinder pipes, which transport a huge quantity of water from the Libyan Sahara Desert to the populated coastal area in the north. This study will help to address the problems related to corrosion of the pre-stressed concrete cylinder pipes and methods of controlling it. The methodologies used depended on reviewing the design and fabrication of pre-stressed concrete cylinder pipes and studying the cause of the corrosion, which resulted in the failure of the pre-stressed concrete cylinder pipe Man-Made River project in Libya. The chloride-induced corrosion penetrating through the mortar coat was the main reason for corrosion. The beginning of the occurrence of corrosion, its causes, and the mechanisms of its development in pre-stressed concrete pipes since 1937 have been reviewed and are continuing until now. Manufacturing technology control corrosion and all associated problems and technology to control it have been demonstrated, including variables during manufacture, the use of a modified coating, and cathodic protection systems. It has been revised and is still based on international standards. The development of these standards and the change in some of their technical contents reflect the world's interest in the problems of corrosion and the cost of maintenance and replacement.Keywords: PCCP corrosion, international standard, coating system, failure assessment
Procedia PDF Downloads 73