Search results for: depth average velocity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9140

Search results for: depth average velocity

7010 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa

Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka

Abstract:

Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.

Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise

Procedia PDF Downloads 203
7009 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System

Authors: Iwan Cony Setiadi, Aulia M. T. Nasution

Abstract:

The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).

Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network

Procedia PDF Downloads 319
7008 Influence of Milled Waste Glass to Clay Ceramic Foam Properties Made by Direct Foaming Route

Authors: A. Shishkin, V. Mironovs, D. Goljandin, A. Korjakins

Abstract:

The goal of this work is to develop sustainable and durable ceramic cellular structures using widely available natural resources- clay and milled waste glass. Present paper describes method of obtaining clay ceramic foam (CCF) with addition of milled waste glass in 5, 7 and 10 wt% by direct foaming with high speed mixer-disperser (HSMD). For more efficient clay and waste glass milling and mixing, the high velocity disintegrator was used. The CCF with 5, 7, and 10 wt% were obtained at 900, 950, 1000 and 1050 °C firing temperature and they have demonstrated mechanical compressive strength for all 12 samples ranging from 3.8 to 14.3 MPa and porosity 76-65%. Obtained CCF has compressive strength 14.3 MPa and porosity 65.3%.

Keywords: ceramic foam, waste glass, clay foam, glass foam, open cell, direct foaming

Procedia PDF Downloads 308
7007 Self-Organized TiO₂–Nb₂O₅–ZrO₂ Nanotubes on β-Ti Alloy by Anodization

Authors: Muhammad Qadir, Yuncang Li, Cuie Wen

Abstract:

Surface properties such as topography and physicochemistry of metallic implants determine the cell behavior. The surface of titanium (Ti)-based implant can be modified to enhance the bioactivity and biocompatibility. In this study, a self-organized titania–niobium pentoxide–zirconia (TiO₂–Nb₂O₅–ZrO₂) nanotubular layer on β phase Ti35Zr28Nb alloy was fabricated via electrochemical anodization. Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement techniques were used to investigate the nanotubes dimensions (i.e., the inner and outer diameters, and wall thicknesses), microstructural features and evolution of the hydrophilic properties. The in vitro biocompatibility of the TiO₂–Nb₂O₅–ZrO₂ nanotubes (NTs) was assessed by using osteoblast cells (SaOS2). Influence of anodization parameters on the morphology of TiO₂–Nb₂O₅–ZrO₂ NTs has been studied. The results indicated that the average inner diameter, outer diameter and the wall thickness of the TiO₂–Nb₂O₅–ZrO₂ NTs were ranged from 25–70 nm, 45–90 nm and 5–13 nm, respectively, and were directly influenced by the applied voltage during anodization. The average inner and outer diameters of NTs increased with increasing applied voltage, and the length of NTs increased with increasing anodization time and water content of the electrolyte. In addition, the size distribution of the NTs noticeably affected the hydrophilic properties and enhanced the biocompatibility as compared with the uncoated substrate. The results of this study could be considered for developing nano-scale coatings for a wide range of biomedical applications.

Keywords: Titanium alloy, TiO₂–Nb₂O₅–ZrO₂ nanotubes, anodization, surface wettability, biocompatibility

Procedia PDF Downloads 154
7006 A Study on Kinetic of Nitrous Oxide Catalytic Decomposition over CuO/HZSM-5

Authors: Y. J. Song, Q. S. Xu, X. C. Wang, H. Wang, C. Q. Li

Abstract:

The catalyst of copper oxide loaded on HZSM-5 was developed for nitrous oxide (N₂O) direct decomposition. The kinetic of nitrous oxide decomposition was studied for CuO/HZSM-5 catalyst prepared by incipient wetness impregnation method. The external and internal diffusion of catalytic reaction were considered in the investigation. Experiment results indicated that the external diffusion was basically eliminated when the reaction gas mixture gas hourly space velocity (GHSV) was higher than 9000h⁻¹ and the influence of the internal diffusion was negligible when the particle size of the catalyst CuO/HZSM-5 was small than 40-60 mesh. The experiment results showed that the kinetic of catalytic decomposition of N₂O was a first-order reaction and the activation energy and the pre-factor of the kinetic equation were 115.15kJ/mol and of 1.6×109, respectively.

Keywords: catalytic decomposition, CuO/HZSM-5, kinetic, nitrous oxide

Procedia PDF Downloads 182
7005 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption

Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.

Abstract:

The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.

Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design

Procedia PDF Downloads 77
7004 Computational Fluid Dynamics Analysis of an RC Airplane Wing Using a NACA 2412 Profile at Different Angle of Attacks

Authors: Huseyin Gokberk, Shian Gao

Abstract:

CFD analysis of the relationship between the coefficients of lift and drag with respect to the angle of attack on a NACA 2412 wing section of an RC plane is conducted. Both the 2D and 3D models are investigated with the turbulence model. The 2D analysis has a free stream velocity of 10m/s at different AoA of 0°, 2°, 5°, 10°, 12°, and 15°. The induced drag and drag coefficient increased throughout the changes in angles even after the critical angle had been exceeded, whereas the lift force and coefficient of lift increased but had a limit at the critical stall angle, which results in values to reduce sharply. Turbulence flow characteristics are analysed around the aerofoil with the additions caused due to a finite 3D model. 3D results highlight how wing tip vortexes develop and alter the flow around the wing with the effects of the tapered configuration.

Keywords: CFD, turbulence modelling, aerofoil, angle of attack

Procedia PDF Downloads 223
7003 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die

Authors: Muhammad Sohail Khan, Rehan Ali Shah

Abstract:

The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.

Keywords: corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method, wire coating die

Procedia PDF Downloads 335
7002 Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions

Authors: Matheus Fernando Pereira, Varese Salvador Timoteo

Abstract:

In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis.

Keywords: advection-diffusion equation, dispersion, numerical methods, pulse-type source

Procedia PDF Downloads 238
7001 MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field

Authors: Yue Yan, Chang Nyung Kim

Abstract:

The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field.

Keywords: curved duct, flow channel insert, liquid-metal, magnetohydrodynamic

Procedia PDF Downloads 495
7000 Studies on Plasma Spray Deposited La2O3 - YSZ (Yttria-Stabilized Zirconia) Composite Thermal Barrier Coating

Authors: Prashant Sharma, Jyotsna Dutta Majumdar

Abstract:

The present study concerns development of a composite thermal barrier coating consisting of a mixture of La2O3 and YSZ (with 8 wt.%, 32 wt.% and 50 wt.% 50% La2O3) by plasma spray deposition technique on a CoNiCrAlY based bond coat deposited on Inconel 718 substrate by high velocity oxy-fuel deposition (HVOF) technique. The addition of La2O3 in YSZ causes the formation of pyrochlore (La2Zr2O7) phase in the inter splats boundary along with the presence of LaYO3 phase. The coefficient of thermal expansion is significantly reduced from due to the evolution of different phases and structural defects in the sprayed coating. The activation energy for TGO growth under isothermal and cyclic oxidation was increased in the composite coating as compared to YSZ coating.

Keywords: plasma spraying, oxidation resistance, thermal barrier coating, microstructure, X-ray method

Procedia PDF Downloads 349
6999 Measurement and Prediction of Speed of Sound in Petroleum Fluids

Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma

Abstract:

Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.

Keywords: experimental design, octane, speed of sound, toluene

Procedia PDF Downloads 271
6998 Stable Time Reversed Integration of the Navier-Stokes Equation Using an Adjoint Gradient Method

Authors: Jurriaan Gillissen

Abstract:

This work is concerned with stabilizing the numerical integration of the Navier-Stokes equation (NSE), backwards in time. Applications involve the detection of sources of, e.g., sound, heat, and pollutants. Stable reverse numerical integration of parabolic differential equations is also relevant for image de-blurring. While the literature addresses the reverse integration problem of the advection-diffusion equation, the problem of numerical reverse integration of the NSE has, to our knowledge, not yet been addressed. Owing to the presence of viscosity, the NSE is irreversible, i.e., when going backwards in time, the fluid behaves, as if it had a negative viscosity. As an effect, perturbations from the perfect solution, due to round off errors or discretization errors, grow exponentially in time, and reverse integration of the NSE is inherently unstable, regardless of using an implicit time integration scheme. Consequently, some sort of filtering is required, in order to achieve a stable, numerical, reversed integration. The challenge is to find a filter with a minimal adverse affect on the accuracy of the reversed integration. In the present work, we explore an adjoint gradient method (AGM) to achieve this goal, and we apply this technique to two-dimensional (2D), decaying turbulence. The AGM solves for the initial velocity field u0 at t = 0, that, when integrated forward in time, produces a final velocity field u1 at t = 1, that is as close as is feasibly possible to some specified target field v1. The initial field u0 defines a minimum of a cost-functional J, that measures the distance between u1 and v1. In the minimization procedure, the u0 is updated iteratively along the gradient of J w.r.t. u0, where the gradient is obtained by transporting J backwards in time from t = 1 to t = 0, using the adjoint NSE. The AGM thus effectively replaces the backward integration by multiple forward and backward adjoint integrations. Since the viscosity is negative in the adjoint NSE, each step of the AGM is numerically stable. Nevertheless, when applied to turbulence, the AGM develops instabilities, which limit the backward integration to small times. This is due to the exponential divergence of phase space trajectories in turbulent flow, which produces a multitude of local minima in J, when the integration time is large. As an effect, the AGM may select unphysical, noisy initial conditions. In order to improve this situation, we propose two remedies. First, we replace the integration by a sequence of smaller integrations, i.e., we divide the integration time into segments, where in each segment the target field v1 is taken as the initial field u0 from the previous segment. Second, we add an additional term (regularizer) to J, which is proportional to a high-order Laplacian of u0, and which dampens the gradients of u0. We show that suitable values for the segment size and for the regularizer, allow a stable reverse integration of 2D decaying turbulence, with accurate results for more then O(10) turbulent, integral time scales.

Keywords: time reversed integration, parabolic differential equations, adjoint gradient method, two dimensional turbulence

Procedia PDF Downloads 222
6997 The Development of Noctiluca scintillans Algal Bloom in Coastal Waters of Muscat, Sulanate of Oman

Authors: Aysha Al Sha'aibi

Abstract:

Algal blooms of the dinoflagellate species Noctiluca scintillans became frequent events in Omani waters. The current study aims at elucidating the abundance, size variation and observations on the feeding mechanism performed by this species during the winter bloom. An attempt was made, to relate observed biological parameters of the Noctiluca population to environmental factors. Field studies spanned the period from December 2014 to April 2015. Samples were collected from Bandar Rawdah (Muscat region) by Bongo nets, twice per week, from the surface and the integrated upper mixed layer. The measured environmental variables were: temperature, salinity, dissolved oxygen, chlorophyll a, turbidity, nitrite, phosphate, wind speed and rainfall. During the winter bloom (from December 2014 through February 2015), the abundance exhibited the highest concentration on 17 February (640.24×106 cell.L-1) in oblique samples and 83.9x103 cell.L-1 in surface samples, with a subsequent decline up to the end of April. The average number of food vacuoles inside Noctiluca cells was 1.5 per cell; the percentage of feeding Noctiluca compared to the entire population varied from 0.01% to 0.03%. Both the surface area of the Noctiluca symbionts (Pedinomonas noctilucae) and cell diameter were maximal in December. In oblique samples the highest average cell diameter and the surface area of symbiont algae were 751.7 µm and 179.2x103 µm2 respectively. In surface samples, highest average cell diameter and the surface area of symbionts were 760 µm and 284.05x103 µm2 respectively. No significant correlations were detected between Noctiluca’s biological parameters and environmental variables except for the correlation between cell diameter and chlorophyll a, also between symbiotic algae surface area and chlorophyll a. The high correlation of chlorophyll a was as a reason of endosymbiotic algae Pedinomonas noctilucae and green Noctiluca enhanced chlorophyll during bloom. All correlations among biological parameters were significant; they are perhaps one of major factors that mediating high growth rates, generating millions of cell per liter in a short time range. The results gained from this study will provide a beneficial background for understanding deeply the development of coastal algal blooms of Noctiluca scintillans. Moreover, results could be used in different applications related to marine environment.

Keywords: abundance, feeding activities, Noctiluca scintillans, Oman

Procedia PDF Downloads 434
6996 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat

Authors: Basman Elhadidi, Islam Elqatary, Osama Saaid, Hesham Othman

Abstract:

An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.

Keywords: active slat, flow control, experimental investigation, aerodynamic performance

Procedia PDF Downloads 435
6995 Contribution of Income Diversification to Total Rural Households Income in the Upper East Region, Ghana

Authors: Yakubu Abdulai, Kenichi Matsui

Abstract:

The agricultural industry has faced a variety of challenges in meeting the expanding income demand of the rural population. As a result, rural households must diversify their income sources to meet their income demand. Although income diversification strategies help rural households, it contributes to total household income, and the socio-demographic determinants are not known in the Upper East Region of Ghana. For these reasons, the purpose of this study was to determine the contribution of income diversification strategies to household income and the socio-demographic factors influencing it. We conducted a questionnaire survey among 360 rural households in the Upper East Region of Ghana. We asked about their socio-demographic information, their choice of income diversification strategies, and their remittances through rural-city migration. The questionnaire survey findings demonstrate that the main livelihood income source contributes 22%, and on-farm income diversification contributes the most to household total income (47%), followed by non-farm diversification income (16%) and off-farm diversification income (15%). Calculations from the income diversity index showed that the average income diversification strategy was 0.5 out of 1. The calculation of the income dependence index also showed that the average dependent on a particular source of income was 0.2 out of 1. All the respondents said household members temporarily migrate to contribute to household income through remittances. The results further reveal that their choice of income diversification is influenced by their age, educational background, experience, and farm size. The paper recommends the promotion of rural development policies that increase income-generating activities and educate rural households on how to increase returns from their investment.

Keywords: income diversification, poverty alleviation, rural households, upper east region

Procedia PDF Downloads 110
6994 Students Attitudes University of Tabuk Toward the Study at the Deanship of the Preparatory Year According to the Variables of the Academic and Gender

Authors: Awad Alhwiti

Abstract:

The purpose of this study was to investigate attitudes students in Tabuk University towards the study in the deanship of the preparation year according to the study stream (scientific, literature) and gender (male, female).The sample of the study consisted of (219) males, (120) of them are in the scientific stream and (99) from the literature stream. Moreover, (238) females, (172) of them are in the scientific stream and (66) from the literature stream. The researcher developed valid and reliable instrument to measure their attitudes towards the study in the deanship of the preparation year. The scale of the study consisted of a group of paragraphs which take positive numbers from (1) to (13) in the meter, and a group of paragraphs which take negative number from (14) to (34) in the scale. The findings of the study showed that (13) items of the scale had a high degree of evaluation, while two items had an average evaluation degree. Meanwhile, (19) items had a low evaluation degree, and the trends in general where it came from (19) paragraphs negative, and (14) paragraphs positive. As the total means of Tabuk students attitudes towards the study in the deanship of the preparation year was (1.92) with a standard deviation of (0.64) with an average evaluation degree. The findings showed that there were significant statistical difference at the level of (α = 0.05) in the samples’ attitudes towards the study in the preparation year attributed to study stream (scientific, literature) on the favor of the scientific stream. While, there were no significant statistical difference at the level of (α = 0.05) in the samples’ attitudes towards the study in the preparation year attributed to and gender (male, female).

Keywords: students attitudes, preparation year deanship, Tabuk University, education technology

Procedia PDF Downloads 255
6993 Assessment of Efficiency of Underwater Undulatory Swimming Strategies Using a Two-Dimensional CFD Method

Authors: Dorian Audot, Isobel Margaret Thompson, Dominic Hudson, Joseph Banks, Martin Warner

Abstract:

In competitive swimming, after dives and turns, athletes perform underwater undulatory swimming (UUS), copying marine mammals’ method of locomotion. The body, performing this wave-like motion, accelerates the fluid downstream in its vicinity, generating propulsion with minimal resistance. Through this technique, swimmers can maintain greater speeds than surface swimming and take advantage of the overspeed granted by the dive (or push-off). Almost all previous work has considered UUS when performed at maximum effort. Critical parameters to maximize UUS speed are frequently discussed; however, this does not apply to most races. In only 3 out of the 16 individual competitive swimming events are athletes likely to attempt to perform UUS with the greatest speed, without thinking of the cost of locomotion. In the other cases, athletes will want to control the speed of their underwater swimming, attempting to maximise speed whilst considering energy expenditure appropriate to the duration of the event. Hence, there is a need to understand how swimmers adapt their underwater strategies to optimize the speed within the allocated energetic cost. This paper develops a consistent methodology that enables different sets of UUS kinematics to be investigated. These may have different propulsive efficiencies and force generation mechanisms (e.g.: force distribution along with the body and force magnitude). The developed methodology, therefore, needs to: (i) provide an understanding of the UUS propulsive mechanisms at different speeds, (ii) investigate the key performance parameters when UUS is not performed solely for maximizing speed; (iii) consistently determine the propulsive efficiency of a UUS technique. The methodology is separated into two distinct parts: kinematic data acquisition and computational fluid dynamics (CFD) analysis. For the kinematic acquisition, the position of several joints along the body and their sequencing were either obtained by video digitization or by underwater motion capture (Qualisys system). During data acquisition, the swimmers were asked to perform UUS at a constant depth in a prone position (facing the bottom of the pool) at different speeds: maximum effort, 100m pace, 200m pace and 400m pace. The kinematic data were input to a CFD algorithm employing a two-dimensional Large Eddy Simulation (LES). The algorithm adopted was specifically developed in order to perform quick unsteady simulations of deforming bodies and is therefore suitable for swimmers performing UUS. Despite its approximations, the algorithm is applied such that simulations are performed with the inflow velocity updated at every time step. It also enables calculations of the resistive forces (total and applied to each segment) and the power input of the modeled swimmer. Validation of the methodology is achieved by comparing the data obtained from the computations with the original data (e.g.: sustained swimming speed). This method is applied to the different kinematic datasets and provides data on swimmers’ natural responses to pacing instructions. The results show how kinematics affect force generation mechanisms and hence how the propulsive efficiency of UUS varies for different race strategies.

Keywords: CFD, efficiency, human swimming, hydrodynamics, underwater undulatory swimming

Procedia PDF Downloads 219
6992 Cross Professional Team-Assisted Teaching Effectiveness

Authors: Shan-Yu Hsu, Hsin-Shu Huang

Abstract:

The main purpose of this teaching research is to design an interdisciplinary team-assisted teaching method for trainees and interns and review the effectiveness of this teaching method on trainees' understanding of peritoneal dialysis. The teaching research object is the fifth and sixth-grade trainees in a medical center's medical school. The teaching methods include media teaching, demonstration of technical operation, face-to-face communication with patients, special case discussions, and field visits to the peritoneal dialysis room. Evaluate learning effectiveness before, after, and verbally. Statistical analysis was performed using the SPSS paired-sample t-test to analyze whether there is a difference in peritoneal dialysis professional cognition before and after teaching intervention. Descriptive statistics show that the average score of the previous test is 74.44, the standard deviation is 9.34, the average score of the post-test is 95.56, and the standard deviation is 5.06. The results of the t-test of the paired samples are shown as p-value = 0.006, showing the peritoneal dialysis professional cognitive test. Significant differences were observed before and after. The interdisciplinary team-assisted teaching method helps trainees and interns to improve their professional awareness of peritoneal dialysis. At the same time, trainee physicians have positive feedback on the inter-professional team-assisted teaching method. This teaching research finds that the clinical ability development education of trainees and interns can provide cross-professional team-assisted teaching methods to assist clinical teaching guidance.

Keywords: monitor quality, patient safety, health promotion objective, cross-professional team-assisted teaching methods

Procedia PDF Downloads 142
6991 A Bottleneck-Aware Power Management Scheme in Heterogeneous Processors for Web Apps

Authors: Inyoung Park, Youngjoo Woo, Euiseong Seo

Abstract:

With the advent of WebGL, Web apps are now able to provide high quality graphics by utilizing the underlying graphic processing units (GPUs). Despite that the Web apps are becoming common and popular, the current power management schemes, which were devised for the conventional native applications, are suboptimal for Web apps because of the additional layer, the Web browser, between OS and application. The Web browser running on a CPU issues GL commands, which are for rendering images to be displayed by the Web app currently running, to the GPU and the GPU processes them. The size and number of issued GL commands determine the processing load of the GPU. While the GPU is processing the GL commands, CPU simultaneously executes the other compute intensive threads. The actual user experience will be determined by either CPU processing or GPU processing depending on which of the two is the more demanded resource. For example, when the GPU work queue is saturated by the outstanding commands, lowering the performance level of the CPU does not affect the user experience because it is already deteriorated by the retarded execution of GPU commands. Consequently, it would be desirable to lower CPU or GPU performance level to save energy when the other resource is saturated and becomes a bottleneck in the execution flow. Based on this observation, we propose a power management scheme that is specialized for the Web app runtime environment. This approach incurs two technical challenges; identification of the bottleneck resource and determination of the appropriate performance level for unsaturated resource. The proposed power management scheme uses the CPU utilization level of the Window Manager to tell which one is the bottleneck if exists. The Window Manager draws the final screen using the processed results delivered from the GPU. Thus, the Window Manager is on the critical path that determines the quality of user experience and purely executed by the CPU. The proposed scheme uses the weighted average of the Window Manager utilization to prevent excessive sensitivity and fluctuation. We classified Web apps into three categories using the analysis results that measure frame-per-second (FPS) changes under diverse CPU/GPU clock combinations. The results showed that the capability of the CPU decides user experience when the Window Manager utilization is above 90% and consequently, the proposed scheme decreases the performance level of CPU by one step. On the contrary, when its utilization is less than 60%, the bottleneck usually lies in the GPU and it is desirable to decrease the performance of GPU. Even the processing unit that is not on critical path, excessive performance drop can occur and that may adversely affect the user experience. Therefore, our scheme lowers the frequency gradually, until it finds an appropriate level by periodically checking the CPU utilization. The proposed scheme reduced the energy consumption by 10.34% on average in comparison to the conventional Linux kernel, and it worsened their FPS by 1.07% only on average.

Keywords: interactive applications, power management, QoS, Web apps, WebGL

Procedia PDF Downloads 190
6990 A Novel Model for Saturation Velocity Region of Graphene Nanoribbon Transistor

Authors: Mohsen Khaledian, Razali Ismail, Mehdi Saeidmanesh, Mahdiar Hosseinghadiry

Abstract:

A semi-analytical model for impact ionization coefficient of graphene nanoribbon (GNR) is presented. The model is derived by calculating probability of electrons reaching ionization threshold energy Et and the distance traveled by electron gaining Et. In addition, ionization threshold energy is semi-analytically modeled for GNR. We justify our assumptions using analytic modeling and comparison with simulation results. Gaussian simulator together with analytical modeling is used in order to calculate ionization threshold energy and Kinetic Monte Carlo is employed to calculate ionization coefficient and verify the analytical results. Finally, the profile of ionization is presented using the proposed models and simulation and the results are compared with that of silicon.

Keywords: nanostructures, electronic transport, semiconductor modeling, systems engineering

Procedia PDF Downloads 470
6989 Alternate Optical Coherence Tomography Technologies in Use for Corneal Diseases Diagnosis in Dogs and Cats

Authors: U. E. Mochalova, A. V. Demeneva, Shilkin A. G., J. Yu. Artiushina

Abstract:

Objective. In medical ophthalmology OCT has been actively used in the last decade. It is a modern non-invasive method of high-precision hardware examination, which gives a detailed cross-sectional image of eye tissues structure with a high level of resolution, which provides in vivo morphological information at the microscopic level about corneal tissue, structures of the anterior segment, retina and optic nerve. The purpose of this study was to explore the possibility of using the OCT technology in complex ophthalmological examination in dogs and cats, to characterize the revealed pathological structural changes in corneal tissue in cats and dogs with some of the most common corneal diseases. Procedures. Optical coherence tomography of the cornea was performed in 112 animals: 68 dogs and 44 cats. In total, 224 eyes were examined. Pathologies of the organ of vision included: dystrophy and degeneration of the cornea, endothelial corneal dystrophy, dry eye syndrome, chronic superficial vascular keratitis, pigmented keratitis, corneal erosion, ulcerative stromal keratitis, corneal sequestration, chronic glaucoma and also postoperative period after performed keratoplasty. When performing OCT, we used certified medical devices: "Huvitz HOCT-1/1F», «Optovue iVue 80» and "SOCT Copernicus Revo (60)". Results. The results of a clinical study on the use of optical coherence tomography (OCT)of the cornea in cats and dogs, performed by the authors of the article in the complex diagnosis of keratopathies of variousorigins: endothelial corneal dystrophy, pigmented keratitis, chronic keratoconjunctivitis, chronic herpetic keratitis, ulcerative keratitis, traumatic corneal damage, sequestration of the cornea of cats, chronic keratitis, complicating the course of glaucoma. The characteristics of the OCT scans are givencorneas of cats and dogs that do not have corneal pathologies. OCT scans of various corneal pathologies in dogs and cats with a description of the revealed pathological changes are presented. Of great clinical interest are the data obtained during OCT of the cornea of animals undergoing keratoplasty operations using various forms of grafts. Conclusions. OCT makes it possible to assess the thickness and pathological structural changes of the corneal surface epithelium, corneal stroma and descemet membrane. We can measure them, determine the exact localization, and record pathological changes. Clinical observation of the dynamics of the pathological process in the cornea using OCT makes it possible to evaluate the effectiveness of drug treatment. In case of negative dynamics of corneal disease, it is necessary to determine the indications for surgical treatment (to assess the thickness of the cornea, the localization of its thinning zones, to characterize the depth and area of pathological changes). According to the OCT of the cornea, it is possible to choose the optimal surgical treatment for the patient, the technique and depth of optically constructive surgery (penetrating or anterior lamellar keratoplasty).; determine the depth and diameter of the planned microsurgical trepanation of corneal tissue, which will ensure good adaptation of the edges of the donor material.

Keywords: optical coherence tomography, corneal sequestration, optical coherence tomography of the cornea, corneal transplantation, cat, dog

Procedia PDF Downloads 66
6988 Effects of Dietary Canola Oil and Vitamin E on Sperm Motility in Kurdish Ram

Authors: A. Pirestani, M. Alirezaie, S. Safavipour

Abstract:

The present study was designed to investigate the effect of dietary canola oil and Vit E on sperm motility parameters. Sixteen Kurdish rams were selected with weight average 54.47±2.58 and with year of 3 to 4 approximately and divided to four experimental groups as randomly. Experimental groups were control, Vit E (20 IU in diet), canola oil (2.5% of DMI) and Vit E (20 IU in diet) + Canola oil (2.5% of DMI). Sperm was collected by electroejaculation at 6 week and 11 week after begging of experiment and sperm motility was analyzed by using CASA software. The results showed that motility parameter wasn’t significant difference between whole experimental groups at first time (week 6) but PM% and TM% was significant difference in canola oil and Vit E at second time (week 11), separately. It was concluded that Vit E and canola oil improvement sperm motility in Kurdish ram. The present study was designed to investigate the effect of dietary canola oil and Vit E on sperm motility parameters. Sixteen Kurdish rams were selected with weight average 54.47±2.58 and with year of 3 to 4 approximately and divided to four experimental groups as randomly. Experimental groups were control, Vit E (20 IU in diet), canola oil (2.5% of DMI) and Vit E (20 IU in diet) + Canola oil (2.5% of DMI). Sperm was collected by electroejaculation at 6 week and 11 week after begging of experiment and sperm motility was analyzed by using CASA software. The results showed that motility parameter was not significant difference between whole experimental groups at first time (week 6) but PM% and TM% was significant difference in canola oil and Vit E at second time (week 11), separately. It was concluded that Vit E and canola oil improvement sperm motility in Kurdish ram. The present study was designed to investigate the effect of dietary canola oil and Vit E on sperm motility parameters. Sixteen Kurdish rams were selected with weight average 54.47±2.58 and with year of 3 to 4 approximately and divided to four experimental groups as randomly. Experimental groups were control, Vit E (20 IU in diet), canola oil (2.5% of DMI) and Vit E (20 IU in diet) + Canola oil (2.5% of DMI). Sperm was collected by electroejaculation at 6 week and 11 week after begging of experiment and sperm motility was analyzed by using CASA software. The results showed that motility parameter wasn’t significant difference between whole experimental groups at first time (week 6) but PM% and TM% was significant difference in canola oil and Vit E at second time (week 11), separately. It was concluded that Vit E and canola oil improvement sperm motility in Kurdish ram. The present study was designed to investigate the effect of dietary canola oil and Vit E on sperm motility parameters. Sixteen Kurdish rams were selected with weight average 54.47±2.58 and with year of 3 to 4 approximately and divided to four experimental groups as randomly. Experimental groups were control, Vit E (20 IU in diet), canola oil (2.5% of DMI) and Vit E (20 IU in diet) + Canola oil (2.5% of DMI). Sperm was collected by electroejaculation at 6 week and 11 week after begging of experiment and sperm motility was analyzed by using CASA software. The results showed that motility parameter wasn’t significant difference between whole experimental groups at first time (week 6) but PM% and TM% was significant difference in canola oil and Vit E at second time (week 11), separately. It was concluded that Vit E and canola oil improvement sperm motility in Kurdish ram.

Keywords: canola oil, motility, ram, sperm, Vit E

Procedia PDF Downloads 641
6987 Adaptive Cooperative Control of Nonholonomic Mobile Robot Based on Immersion and Invariance

Authors: Imil Hamda Imran, Sami El Ferik

Abstract:

This paper deals with adaptive cooperative control of non holonomic mobile robot moved together in a given formation. The controller is designed based on the Immersion and Invariance (I&I) approach. I&I is a framework for adaptive stabilization of nonlinear systems with uncertain parameters. We investigate the tracking control of non holonomic mobile robot with uncertainties in The I&I-based adaptive controller regulates the angular and linear velocity of non holonomic mobile robot. The results demonstrate that the ability of I&I-based adaptive cooperative control in tracking the position of non holonomic mobile robot.

Keywords: nonholonomic mobile robot, immersion and invariance, adaptive control, uncertain nonlinear systems

Procedia PDF Downloads 497
6986 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 160
6985 Efficacy of Vitamins A, C and E on the Growth Performance of Broiler Chickens Subjected to Heat Stress

Authors: Desierin Rodrin, Magdalena Alcantara, Cristina Olo

Abstract:

The increase in environmental temperatures brought about by climate change impacts negatively the growth performance of broilers that may be solved by manipulating the diet of the animals. Hence, this study was conducted to evaluate the effects of different vitamin supplements on the growth performance of broiler chickens subjected to ambient (31°C) and heat stress (34°C) temperatures. The treatments were: I- Control (no vitamin supplement), II- Vitamin A (4.5 mg/kg of feed), III- Vitamin C (250 mg/kg of feed), IV- Vitamin E (250 mg/kg of feed), V- Vitamin C and E (250 mg/kg of feed and 250 mg/kg of feed), VI- Vitamin A and E (4.5 mg/kg of feed and 250 mg/kg of feed), VII- Vitamin A and C (4.5 mg/kg of feed and 250 mg/kg of feed), and VIII- Vitamin A, C and E (4.5 mg/kg of feed, 250 mg/kg of feed and 250 mg/kg of feed). The birds (n=240) were distributed randomly into eight treatments replicated three times, with each replicates having five birds. Ambient temperature was maintained using a 25 watts bulb for every 20 birds, while heat stress condition was sustained at 34°C for about 9 hours daily by using a 50 watts bulb per 5 birds. The interaction of vitamin supplements and temperatures did not significantly (P>0.05) affected body weight, average daily gain, feed consumption and feed conversion efficiency throughout the growing period. Similarly, supplementation of different vitamins did not improve (P>0.05) the overall production performance of birds throughout the rearing period. Birds raised in heat stress (34°C) condition had significantly lower ((P<0.05) body weight, average daily gain, and feed consumption compared to birds raised in ambient temperature at weeks 3, 4 and 5 of rearing. Supplementation of vitamins A, C, and E in the diet of broilers did not alleviate the effect of heat stress in the growth performance of broilers.

Keywords: broiler growth performance, heat stress, vitamin supplementation, vitamin A, vitamin C, vitamin E

Procedia PDF Downloads 288
6984 Effectiveness of Multi-Business Core Development Policy in Tokyo Metropolitan Area

Authors: Takashi Nakamura

Abstract:

In the Tokyo metropolitan area, traffic congestion and long commute times are caused by overconcentration in the central area. To resolve these problems, a core business city development policy was adopted in 1988. The core business cities, which include Yokohama, Chiba, Saitama, Tachikawa, and others, have designated business facilities accumulation districts where assistance measures are applied. Focusing on Yokohama city, this study investigates the trends in the number of offices, employees, and commuters at 2001 and 2012 Economic Census, as well as the average commute time in the Tokyo metropolitan area from 2005 to 2015 Metropolitan Transportation Census. Surveys were administered in 2001 and 2012 Economic Census to participants who worked in Yokohama, according to their distribution in the city's 1,757 subregions. Four main findings emerged: (1) The number of offices increased in Yokohama when the number of offices decreased in the Tokyo metropolitan area overall. Additionally, the number of employees at Yokohama increased. (2) The number of commuters to Tokyo's central area increased from Saitama prefecture, Tokyo Tama area, and Tokyo central area. However, it decreased from other areas. (3) The average commute time in the Tokyo metropolitan area was 67.7 minutes in 2015, a slight decrease from 2005 and 2010. (4) The number of employees at business facilities accumulation districts in Yokohama city increased greatly.

Keywords: core business city development policy, commute time, number of employees, Yokohama city, distribution of employees

Procedia PDF Downloads 142
6983 Efficiency of Treatment in Patients with Newly Diagnosed Destructive Pulmonary Tuberculosis Using Intravenous Chemotherapy

Authors: M. Kuzhko, M. Gumeniuk, D. Butov, T. Tlustova, O. Denysov, T. Sprynsian

Abstract:

Background: The aim of the research was to determine the effectiveness of chemotherapy using intravenous antituberculosis drugs compared with their oral administration during the intensive phase of treatment. Methods: 152 tuberculosis patients were randomized into 2 groups: Main (n=65) who received isoniazid, ethambutol and sodium rifamycin intravenous + pyrazinamide per os and control (n=87) who received all the drugs (isoniazid, rifampicin, ethambutol, pyrazinamide) orally. Results: After 2 weeks of treatment symptoms of intoxication disappeared in 59 (90.7±3.59 %) of patients of the main group and 60 (68.9±4.9 %) patients in the control group, p<0.05. The mean duration of symptoms of intoxication in patients main group was 9.6±0.7 days, in control group – 13.7±0.9 days. After completing intensive phase sputum conversion was found in all the patients main group and 71 (81.6±4.1 %) patients control group p < 0.05. The average time of sputum conversion in main group was 1.6±0.1 months and 1.9±0.1 months in control group, p > 0.05. In patients with destructive pulmonary tuberculosis time to sputum conversion was 1.7±0.1 months in main group and 2.2±0.2 months in control group, p < 0.05. The average time of cavities healing in main group was 2.9±0.2 months and 3.9±0.2 months in the control group, p < 0.05. Conclusions: In patients with newly diagnosed destructive pulmonary tuberculosis use of isoniazid, ethambutol and sodium rifamycin intravenous in the intensive phase of chemotherapy resulted in a significant reduction in terms of the disappearance of symptoms of intoxication and sputum conversion.

Keywords: intravenous chemotherapy, tuberculosis, treatment efficiency, tuberculosis drugs

Procedia PDF Downloads 201
6982 Finding the Free Stream Velocity Using Flow Generated Sound

Authors: Saeed Hosseini, Ali Reza Tahavvor

Abstract:

Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples, the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is founded. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.

Keywords: the flow generated sound, free stream, sound processing, speed, wave power

Procedia PDF Downloads 413
6981 Numerical Study on Enhancement of Heat Transfer by Turbulence

Authors: Muhammad Azmain Abdullah, Ar Rashedul, Mohammad Ali

Abstract:

This paper scrutinizes the influences of turbulence on heat transport rate, Nusselt number. The subject matter of this investigation also deals with the improvement of heat transfer efficiency of the swirl flow obtained by rotating a twisted tape in a circular pipe. The conditions to be fulfilled to observe the impact of Reynolds number and rotational speed of twisted tape are: a uniform temperature on the outer surface of the pipe, the magnitude of velocity of water varying from 0.1 m/s to 0.7 m/s in order to alter Reynolds number and a rotational speed of 200 rpm to 600 rpm. The gyration of twisted tape increase by 17%. It is also observed that heat transfer is exactly proportional to inlet gauge pressure and reciprocally proportional to increase of twist ratio.

Keywords: swirl flow, twisted tape, twist ratio, heat transfer

Procedia PDF Downloads 259