Search results for: modeling and analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30292

Search results for: modeling and analysis

28192 Analytical Modeling of Globular Protein-Ferritin in α-Helical Conformation: A White Noise Functional Approach

Authors: Vernie C. Convicto, Henry P. Aringa, Wilson I. Barredo

Abstract:

This study presents a conformational model of the helical structures of globular protein particularly ferritin in the framework of white noise path integral formulation by using Associated Legendre functions, Bessel and convolution of Bessel and trigonometric functions as modulating functions. The model incorporates chirality features of proteins and their helix-turn-helix sequence structural motif.

Keywords: globular protein, modulating function, white noise, winding probability

Procedia PDF Downloads 477
28191 Play-Based Approaches to Stimulate Language

Authors: Sherri Franklin-Guy

Abstract:

The emergence of language in young children has been well-documented and play-based activities that support its continued development have been utilized in the clinic-based setting. Speech-language pathologists have long used such activities to stimulate the production of language in children with speech and language disorders via modeling and elicitation tasks. This presentation will examine the importance of play in the development of language in young children, including social and pragmatic communication. Implications for clinicians and educators will be discussed.

Keywords: language development, language stimulation, play-based activities, symbolic play

Procedia PDF Downloads 241
28190 Religious Tourism the Core Strategy of Shaping Life Style: Evidences from Iran

Authors: Mostafa Jafari

Abstract:

Religious tourism is the core strategy of shaping Iranian's life-style. Why and How? This paper answers to this question. Theoretical base: From strategic marketing point of view, Life style is pattern of believes values, interests and acts. Strategy can be defined as a set of continuous important decisions. Here, strategy is making decisions about the target place and vehicle of touristic travel due to reform and redefine the self-identity and shaping life style. Methodology: Target society of this research is the selected residents of three provinces at northwest of Iran. The data collection instrument is interview and questionnaire and the collected data analysis by SEM (structural Equation Modeling) and LISREL software. Results: The primary results show that variety of touristic travels play an important role on shaping new life style of Iranian people. The target places of touristic travel (Europe, USA. Japan and etc.) are at the second priority. The number of foreign friends is at the third position. The fourth criteria are the number of travels. Among all kind of touristic travels the religious tourism from competitive point of view plays the main role. Findings: The geometry of Iranian life style are shaping and reshaping through some domestic and international tourism strategies particular religious strategy. During the dynamic trend of identity redefine, so many Iranians put the quantity and quality of their touristic travel on the first priority.

Keywords: religious tourism, core strategy, shaping life style

Procedia PDF Downloads 413
28189 Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation

Authors: Rubens P. Costa, Marcelo A. Leigui de Oliveira

Abstract:

The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation.

Keywords: cosmic rays propagation, extragalactic magnetic fields, magnetic deflections, ultra-high energy

Procedia PDF Downloads 127
28188 An Insight into Early Stage Detection of Malignant Tumor by Microwave Imaging

Authors: Muhammad Hassan Khalil, Xu Jiadong

Abstract:

Detection of malignant tumor inside the breast of women is a challenging field for the researchers. MWI (Microwave imaging) for breast cancer diagnosis has been of interest for last two decades, newly it suggested for finding cancerous tissues of women breast. A simple and basic idea of the mathematical modeling is used throughout this paper for imaging of malignant tumor. In this paper, the authors explained inverse scattering method in the microwave imaging and also present some simulation results.

Keywords: breast cancer detection, microwave imaging, tomography, tumor

Procedia PDF Downloads 411
28187 Toward a Measure of Appropriateness of User Interfaces Adaptations Solutions

Authors: Abderrahim Siam, Ramdane Maamri, Zaidi Sahnoun

Abstract:

The development of adaptive user interfaces (UI) presents for a long time an important research area in which researcher attempt to call upon the full resources and skills of several disciplines. The adaptive UI community holds a thorough knowledge regarding the adaptation of UIs with users and with contexts of use. Several solutions, models, formalisms, techniques, and mechanisms were proposed to develop adaptive UI. In this paper, we propose an approach based on the fuzzy set theory for modeling the concept of the appropriateness of different solutions of UI adaptation with different situations for which interactive systems have to adapt their UIs.

Keywords: adaptive user interfaces, adaptation solution’s appropriateness, fuzzy sets

Procedia PDF Downloads 488
28186 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program

Authors: Ming Wen, Nasim Nezamoddini

Abstract:

Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.

Keywords: finite element analysis, FEA, random vibration fatigue, process automation, analytical hierarchy process, AHP, TOPSIS, multiple-criteria decision-making, MCDM

Procedia PDF Downloads 113
28185 Modeling Local Warming Trend: An Application of Remote Sensing Technique

Authors: Khan R. Rahaman, Quazi K. Hassan

Abstract:

Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).

Keywords: local warming, climate change, urban area, Alberta, Canada

Procedia PDF Downloads 347
28184 Predicting Depth of Penetration in Abrasive Waterjet Cutting of Polycrystalline Ceramics

Authors: S. Srinivas, N. Ramesh Babu

Abstract:

This paper presents a model to predict the depth of penetration in polycrystalline ceramic material cut by abrasive waterjet. The proposed model considered the interaction of cylindrical jet with target material in upper region and neglected the role of threshold velocity in lower region. The results predicted with the proposed model are validated with the experimental results obtained with Silicon Carbide (SiC) blocks.

Keywords: abrasive waterjet cutting, analytical modeling, ceramics, micro-cutting and inter-grannular cracking

Procedia PDF Downloads 305
28183 The Role of Creative Works Dissemination Model in EU Copyright Law Modernization

Authors: Tomas Linas Šepetys

Abstract:

In online content-sharing service platforms, the ability of creators to restrict illicit use of audiovisual creative works has effectively been abolished, largely due to specific infrastructure where a huge volume of copyrighted audiovisual content can be made available to the public. The European Union legislator has attempted to strengthen the positions of creators in the realm of online content-sharing services. Article 17 of the new Digital Single Market Directive considers online content-sharing service providers to carry out acts of communication to the public of any creative content uploaded to their platforms by users and posits requirements to obtain licensing agreements. While such regulation intends to assert authors‘ ability to effectively control the dissemination of their creative works, it also creates threats of parody content overblocking through automated content monitoring. Such potentially paradoxical outcome of the efforts of the EU legislator to deliver economic safeguards for the creators in the online content-sharing service platforms leads to presume lack of informity on legislator‘s part regarding creative works‘ economic exploitation opportunities provided to creators in the online content-sharing infrastructure. Analysis conducted in this scientific research discloses that the aforementioned irregularities of parody and other creative content dissemination are caused by EU legislators‘ lack of assessment of value extraction conditions for parody creators in the online content-sharing service platforms. Historical and modeling research method application reveals the existence of two creative content dissemination models and their unique mechanisms of commercial value creation. Obligations to obtain licenses and liability over creative content uploaded to their platforms by users set in Article 17 of the Digital Single Market Directive represent technological replication of the proprietary dissemination model where the creator is able to restrict access to creative content apart from licensed retail channels. The online content-sharing service platforms represent an open dissemination model where the economic potential of creative content is based on the infrastructure of unrestricted access by users and partnership with advertising services offered by the platform. Balanced modeling of proprietary dissemination models in such infrastructure requires not only automated content monitoring measures but also additional regulatory monitoring solutions to separate parody and other types of creative content. An example of the Digital Single Market Directive proves that regulation can dictate not only the technological establishment of a proprietary dissemination model but also a partial reduction of the open dissemination model and cause a disbalance between the economic interests of creators relying on such models. The results of this scientific research conclude an informative role of the creative works dissemination model in the EU copyright law modernization process. A thorough understanding of the commercial prospects of the open dissemination model intrinsic to the online content-sharing service platform structure requires and encourages EU legislators to regulate safeguards for parody content dissemination. Implementing such safeguards would result in a common application of proprietary and open dissemination models in the online content-sharing service platforms and balanced protection of creators‘ economic interests explicitly based on those creative content dissemination models.

Keywords: copyright law, creative works dissemination model, digital single market directive, online content-sharing services

Procedia PDF Downloads 74
28182 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 116
28181 Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows

Authors: S. Pradhan, V. Kumaran

Abstract:

Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O (1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter. In this study, we have obtained analytical and numerical solutions for the secondary flows generated at the cylinder curved surface and at the end-caps due to linear wall temperature gradient and external gas inflow/outflow at the axis of the cylinder. The effect of sources of mass, momentum and energy within the flow domain are also analyzed. The results of the analytical solutions are compared with the results of DSMC simulations for three types of forcing, a wall temperature gradient, inflow/outflow of gas along the axis, and mass/momentum input due to inserts within the flow. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used diffuse reflection boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a temperature slip (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity.

Keywords: rotating flows, generalized onsager and carrier-Maslen model, DSMC simulations, rarefied gas flow

Procedia PDF Downloads 398
28180 Quantile Coherence Analysis: Application to Precipitation Data

Authors: Yaeji Lim, Hee-Seok Oh

Abstract:

The coherence analysis measures the linear time-invariant relationship between two data sets and has been studied various fields such as signal processing, engineering, and medical science. However classical coherence analysis tends to be sensitive to outliers and focuses only on mean relationship. In this paper, we generalized cross periodogram to quantile cross periodogram and provide richer inter-relationship between two data sets. This is a general version of Laplace cross periodogram. We prove its asymptotic distribution under the long range process and compare them with ordinary coherence through numerical examples. We also present real data example to confirm the usefulness of quantile coherence analysis.

Keywords: coherence, cross periodogram, spectrum, quantile

Procedia PDF Downloads 390
28179 Physicochemical Characterization of Coastal Aerosols over the Mediterranean Comparison with Weather Research and Forecasting-Chem Simulations

Authors: Stephane Laussac, Jacques Piazzola, Gilles Tedeschi

Abstract:

Estimation of the impact of atmospheric aerosols on the climate evolution is an important scientific challenge. One of a major source of particles is constituted by the oceans through the generation of sea-spray aerosols. In coastal areas, marine aerosols can affect air quality through their ability to interact chemically and physically with other aerosol species and gases. The integration of accurate sea-spray emission terms in modeling studies is then required. However, it was found that sea-spray concentrations are not represented with the necessary accuracy in some situations, more particularly at short fetch. In this study, the WRF-Chem model was implemented on a North-Western Mediterranean coastal region. WRF-Chem is the Weather Research and Forecasting (WRF) model online-coupled with chemistry for investigation of regional-scale air quality which simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. One of the objectives was to test the ability of the WRF-Chem model to represent the fine details of the coastal geography to provide accurate predictions of sea spray evolution for different fetches and the anthropogenic aerosols. To assess the performance of the model, a comparison between the model predictions using a local emission inventory and the physicochemical analysis of aerosol concentrations measured for different wind direction on the island of Porquerolles located 10 km south of the French Riviera is proposed.

Keywords: sea-spray aerosols, coastal areas, sea-spray concentrations, short fetch, WRF-Chem model

Procedia PDF Downloads 196
28178 The Relationship between Proximity to Sources of Industrial-Related Outdoor Air Pollution and Children Emergency Department Visits for Asthma in the Census Metropolitan Area of Edmonton, Canada, 2004/2005 to 2009/2010

Authors: Laura A. Rodriguez-Villamizar, Alvaro Osornio-Vargas, Brian H. Rowe, Rhonda J. Rosychuk

Abstract:

Introduction/Objectives: The Census Metropolitan Area of Edmonton (CMAE) has important industrial emissions to the air from the Industrial Heartland Alberta (IHA) at the Northeast and the coal-fired power plants (CFPP) at the West. The objective of the study was to explore the presence of clusters of children asthma ED visits in the areas around the IHA and the CFPP. Methods: Retrospective data on children asthma ED visits was collected at the dissemination area (DA) level for children between 2 and 14 years of age, living in the CMAE between April 1, 2004, and March 31, 2010. We conducted a spatial analysis of disease clusters around putative sources with count (ecological) data using descriptive, hypothesis testing, and multivariable modeling analysis. Results: The mean crude rate of asthma ED visits was 9.3/1,000 children population per year during the study period. Circular spatial scan test for cases and events identified a cluster of children asthma ED visits in the DA where the CFPP are located in the Wabamum area. No clusters were identified around the IHA area. The multivariable models suggest that there is a significant decline in risk for children asthma ED visits as distance increases around the CFPP area this effect is modified at the SE direction with mean angle 125.58 degrees, where the risk increases with distance. In contrast, the regression models for IHA suggest that there is a significant increase in risk for children asthma ED visits as distance increases around the IHA area and this effect is modified at SW direction with mean angle 216.52 degrees, where the risk increases at shorter distances. Conclusions: Different methods for detecting clusters of disease consistently suggested the existence of a cluster of children asthma ED visits around the CFPP but not around the IHA within the CMAE. These results are probably explained by the direction of the air pollutants dispersion caused by the predominant and subdominant wind direction at each point. The use of different approaches to detect clusters of disease is valuable to have a better understanding of the presence, shape, direction and size of clusters of disease around pollution sources.

Keywords: air pollution, asthma, disease cluster, industry

Procedia PDF Downloads 282
28177 Financial Reports and Common Ownership: An Analysis of the Mechanisms Common Owners Use to Induce Anti-Competitive Behavior

Authors: Kevin Smith

Abstract:

Publicly traded company in the US are legally obligated to host earnings calls that discuss their most recent financial reports. During these calls, investors are able to ask these companies questions about these financial reports and on the future direction of the company. This paper examines whether common institutional owners use these calls as a way to indirectly signal to companies in their portfolio to not take actions that could hurt the common owner's interests. This paper uses transcripts taken from the earnings calls of the six largest health insurance companies in the US from 2014 to 2019. This data is analyzed using text analysis and sentiment analysis to look for patterns in the statements made by common owners. The analysis found that common owners where more likely to recommend against direct price competition and instead redirect the insurance companies towards more passive actions, like investing in new technologies. This result indicates a mechanism that common owners use to reduce competition in the health insurance market.

Keywords: common ownership, text analysis, sentiment analysis, machine learning

Procedia PDF Downloads 74
28176 Modeling Fertility and Production of Hazelnut Cultivars through the Artificial Neural Network under Climate Change of Karaj

Authors: Marziyeh Khavari

Abstract:

In recent decades, climate change, global warming, and the growing population worldwide face some challenges, such as increasing food consumption and shortage of resources. Assessing how climate change could disturb crops, especially hazelnut production, seems crucial for sustainable agriculture production. For hazelnut cultivation in the mid-warm condition, such as in Iran, here we present an investigation of climate parameters and how much they are effective on fertility and nut production of hazelnut trees. Therefore, the climate change of the northern zones in Iran has investigated (1960-2017) and was reached an uptrend in temperature. Furthermore, the descriptive analysis performed on six cultivars during seven years shows how this small-scale survey could demonstrate the effects of climate change on hazelnut production and stability. Results showed that some climate parameters are more significant on nut production, such as solar radiation, soil temperature, relative humidity, and precipitation. Moreover, some cultivars have produced more stable production, for instance, Negret and Segorbe, while the Mervill de Boliver recorded the most variation during the study. Another aspect that needs to be met is training and predicting an actual model to simulate nut production through a neural network and linear regression simulation. The study developed and estimated the ANN model's generalization capability with different criteria such as RMSE, SSE, and accuracy factors for dependent and independent variables (environmental and yield traits). The models were trained and tested while the accuracy of the model is proper to predict hazelnut production under fluctuations in weather parameters.

Keywords: climate change, neural network, hazelnut, global warming

Procedia PDF Downloads 132
28175 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 92
28174 Comparative Study on Structural Behaviour of Circular Hollow Steel Tubular, Concrete Filled Steel Tubular, and Reinforced Cement Concrete Stub Columns under Pure Axial Compression

Authors: Niladri Roy, M. Longshithung Patton

Abstract:

This paper is aimed at studying the structural response of circular hollow steel tubular (HST), concrete filled steel tubular (CFST), and reinforced cement concrete (RCC) stub columns when subjected to only axial compressive forces and also examining their comparative nature using finite element (FE) models. These results are further compared with the respective experimental results. FE software package ABAQUS 6.14 has been used for further parametric studies where a total of 108 FE models were modelled. The diameters of the HST, CFST, and RCC stub columns are kept as 100, 140, 180, and 220, with length to diameter ratio fixed at 3 to avoid end effects and flexural failure. To keep the same percentage of steel (by volume), the thicknesses of steel tubes in HST and CFST columns were varied in response to the change in diameter of the main reinforcement bar in RCC columns. M25 grade of concrete was used throughout. The objective is to compare the structural behaviour of HST, CFST, and RCC stub columns on the basis of their axial compressive load carrying capacity and failure modes. The studies show that filling the circular HST columns with concrete increases the Pu of the CCFST columns by 2.97 times. It was also observed that the Pu (HST) is about 0.72 times Pu (RCC) on average, and the Pu (CFST) is about 2.08 times Pu (RCC) on average. After the analysis and comparison, it has been proved that CFST has much more load carrying capacity than HST and RCC and also provides the same strength at a very less sectional size.

Keywords: HST columns, stub columns, CFST columns, RCC columns, finite element modeling, ABAQUS

Procedia PDF Downloads 100
28173 Comparative Study of Dynamic Effect on Analysis Approaches for Circular Tanks Using Codal Provisions

Authors: P. Deepak Kumar, Aishwarya Alok, P. R. Maiti

Abstract:

Liquid storage tanks have become widespread during the recent decades due to their extensive usage. Analysis of liquid containing tanks is known to be complex due to hydrodynamic force exerted on tank which makes the analysis a complex one. The objective of this research is to carry out analysis of liquid domain along with structural interaction for various geometries of circular tanks considering seismic effects. An attempt has been made to determine hydrodynamic pressure distribution on the tank wall considering impulsive and convective components of liquid mass. To get a better picture, a comparative study of Draft IS 1893 Part 2, ACI 350.3 and Eurocode 8 for Circular Shaped Tank has been performed. Further, the differences in the magnitude of shear and moment at base as obtained from static (IS 3370 IV) and dynamic (Draft IS 1892 Part 2) analysis of ground supported circular tank highlight the need for us to mature from the old code to a newer code, which is more accurate and reliable.

Keywords: liquid filled containers, circular tanks, IS 1893 (part 2), seismic analysis, sloshing

Procedia PDF Downloads 353
28172 Simulation the Effect of Temperature on the Residual Stress in Shot Peening Process Using FEM Method

Authors: M. Jalali Azizpour, H. Mohammadi Majd, A.R. Aboudi Asl, D. Sajedipour, V. Tawaf

Abstract:

Sandblasting is a generally used surface treatment technique to improve the residual stress and adhesion of coatings to substrate. The goal of this work is to study the effect of temperature on the residual stress in sandblasting AISI1045 substrate. For this purpose a two dimensional axisymmetric model of shot impacting on an AISI 1045 disc was generated using ABAQUS version 6.10. The result shows for sandblasting temperature there is an optimum condition. In addition there are other effective factors that influence the fatigue life of parts.

Keywords: modeling, shot peen, residual stress, temperature

Procedia PDF Downloads 586
28171 Numerical Validation of Liquid Nitrogen Phase Change in a Star-Shaped Ambient Vaporizer

Authors: Yusuf Yilmaz, Gamze Gediz Ilis

Abstract:

Gas Nitrogen where has a boiling point of -189.52oC at atmospheric pressure widely used in the industry. Nitrogen that used in the industry should be transported in liquid form to the plant area. Ambient air vaporizer (AAV) generally used for vaporization of cryogenic gases such as liquid nitrogen (LN2), liquid oxygen (LOX), liquid natural gas (LNG), and liquid argon (LAR) etc. AAV is a group of star-shaped fin vaporizer. The design and the effect of the shape of fins of the vaporizer is one of the most important criteria for the performance of the vaporizer. In this study, the performance of AAV working with liquid nitrogen was analyzed numerically in a star-shaped aluminum finned pipe. The numerical analysis is performed in order to investigate the heat capacity of the vaporizer per meter pipe length. By this way, the vaporizer capacity can be predicted for the industrial applications. In order to achieve the validation of the numerical solution, the experimental setup is constructed. The setup includes a liquid nitrogen tank with a pressure of 9 bar. The star-shaped aluminum finned tube vaporizer is connected to the LN2 tank. The inlet and the outlet pressure and temperatures of the LN2 of the vaporizer are measured. The mass flow rate of the LN2 is also measured and collected. The comparison of the numerical solution is performed by these measured data. The ambient conditions of the experiment are given as boundary conditions to the numerical model. The surface tension and contact angle have a significant effect on the boiling of liquid nitrogen. Average heat transfer coefficient including convective and nucleated boiling components should be obtained for liquid nitrogen saturated flow boiling in the finned tube. Fluent CFD module is used to simulate the numerical solution. The turbulent k-ε model is taken to simulate the liquid nitrogen flow. The phase change is simulated by using the evaporation-condensation approach used with user-defined functions (UDF). The comparison of the numerical and experimental results will be shared in this study. Besides, the performance capacity of the star-shaped finned pipe vaporizer will be calculated in this study. Based on this numerical analysis, the performance of the vaporizer per unit length can be predicted for the industrial applications and the suitable pipe length of the vaporizer can be found for the special cases.

Keywords: liquid nitrogen, numerical modeling, two-phase flow, cryogenics

Procedia PDF Downloads 119
28170 Post-Soviet LULC Analysis of Tbilisi, Batumi and Kutaisi Using of Remote Sensing and Geo Information System

Authors: Lela Gadrani, Mariam Tsitsagi

Abstract:

Human is a part of the urban landscape and responsible for it. Urbanization of cities includes the longest phase; thus none of the environment ever undergoes such anthropogenic impact as the area of large cities. The post-Soviet period is very interesting in terms of scientific research. The changes that have occurred in the cities since the collapse of the Soviet Union have not yet been analyzed best to our knowledge. In this context, the aim of this paper is to analyze the changes in the land use of the three large cities of Georgia (Tbilisi, Kutaisi, Batumi). Tbilisi as a capital city, Batumi as a port city, and Kutaisi as a former industrial center. Data used during the research process are conventionally divided into satellite and supporting materials. For this purpose, the largest topographic maps (1:10 000) of all three cities were analyzed, Tbilisi General Plans (1896, 1924), Tbilisi and Kutaisi historical maps. The main emphasis was placed on the classification of Landsat images. In this case, we have classified the images LULC (LandUse / LandCover) of all three cities taken in 1987 and 2016 using the supervised and unsupervised methods. All the procedures were performed in the programs: Arc GIS 10.3.1 and ENVI 5.0. In each classification we have singled out the following classes: built-up area, water bodies, agricultural lands, green cover and bare soil, and calculated the areas occupied by them. In order to check the validity of the obtained results, additionally we used the higher resolution images of CORONA and Sentinel. Ultimately we identified the changes that took place in the land use in the post-Soviet period in the above cities. According to the results, a large wave of changes touched Tbilisi and Batumi, though in different periods. It turned out that in the case of Tbilisi, the area of developed territory has increased by 13.9% compared to the 1987 data, which is certainly happening at the expense of agricultural land and green cover, in particular, the area of agricultural lands has decreased by 4.97%; and the green cover by 5.67%. It should be noted that Batumi has obviously overtaken the country's capital in terms of development. With the unaided eye it is clear that in comparison with other regions of Georgia, everything is different in Batumi. In fact, Batumi is an unofficial summer capital of Georgia. Undoubtedly, Batumi’s development is very important both in economic and social terms. However, there is a danger that in the uneven conditions of urban development, we will eventually get a developed center - Batumi, and multiple underdeveloped peripheries around it. Analysis of the changes in the land use is of utmost importance not only for quantitative evaluation of the changes already implemented, but for future modeling and prognosis of urban development. Raster data containing the classes of land use is an integral part of the city's prognostic models.

Keywords: analysis, geo information system, remote sensing, LULC

Procedia PDF Downloads 451
28169 Argumentative and Enunciative Analysis of Spanish Political Discourse

Authors: Cristina Diez

Abstract:

One of the most important challenges of discourse analysis is to find the linguistic mechanisms of subjectivity. The present article aims to raise the need for an argumentative and enunciative analysis to reach the subjective tissue of language. The intention is to prove that the instructions inscribed in the own language are those that indicate how a statement is to be interpreted and that the argumentative value is implied at the semantic level. For that, the theory of argumentation from Ducrot and Anscombre will be implemented. First, a reflection on the study about subjectivity and enunciation in language will be exposed, followed by concrete proposals on the linguistic mechanisms that speakers use either consciously or unconsciously, to finally focus on those argumentative tools that political discourse uses in order to influence the audience.

Keywords: argumentation, enunciation, discourse analysis, subjectivity

Procedia PDF Downloads 201
28168 Learning the Dynamics of Articulated Tracked Vehicles

Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri

Abstract:

In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.

Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue

Procedia PDF Downloads 449
28167 Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region

Authors: Orkan Ozcan, Nebiye Musaoglu, Murat Turkes

Abstract:

Climate change is largely recognized as one of the real, pressing and significant global problems. The concept of ‘climate change vulnerability’ helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. In this study, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. As a result, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem is based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a ‘very low’ vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as ‘very low’ account for 21% of the total area of the forest ecosystem, those classed as ‘low’ account for 36%, those classed as ‘medium’ account for 20%, and those classed as ‘high’ account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results and assessments summarized in the study show clearly that the densest forest ecosystem in the southern part of the study site, which is characterized by mainly Mediterranean coniferous and some mixed forest and the maquis vegetation, will very likely be influenced by medium and high degrees of vulnerability to future environmental degradation, climate change and variability.

Keywords: forest ecosystem, Mediterranean climate, RCP scenarios, vulnerability analysis

Procedia PDF Downloads 353
28166 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 275
28165 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 89
28164 Study on 3D FE Analysis on Normal and Osteoporosis Mouse Models Based on 3-Point Bending Tests

Authors: Tae-min Byun, Chang-soo Chon, Dong-hyun Seo, Han-sung Kim, Bum-mo Ahn, Hui-suk Yun, Cheolwoong Ko

Abstract:

In this study, a 3-point bending computational analysis of normal and osteoporosis mouse models was performed based on the Micro-CT image information of the femurs. The finite element analysis (FEA) found 1.68 N (normal group) and 1.39 N (osteoporosis group) in the average maximum force, and 4.32 N/mm (normal group) and 3.56 N/mm (osteoporosis group) in the average stiffness. In the comparison of the 3-point bending test results, the maximum force and the stiffness were different about 9.4 times in the normal group and about 11.2 times in the osteoporosis group. The difference between the analysis and the test was greatly significant and this result demonstrated improvement points of the material properties applied to the computational analysis of this study. For the next study, the material properties of the mouse femur will be supplemented through additional computational analysis and test.

Keywords: 3-point bending test, mouse, osteoporosis, FEA

Procedia PDF Downloads 351
28163 Reasons to Redesign: Teacher Education for a Brighter Tomorrow

Authors: Deborah L. Smith

Abstract:

To review our program and determine the best redesign options, department members gathered feedback and input through focus groups, analysis of data, and a review of the current research to ensure that the changes proposed were not based solely on the state’s new professional standards. In designing course assignments and assessments, we listened to a variety of constituents, including students, other institutions of higher learning, MDE webinars, host teachers, literacy clinic personnel, and other disciplinary experts. As a result, we are designing a program that is more inclusive of a variety of field experiences for growth. We have determined ways to improve our program by connecting academic disciplinary knowledge, educational psychology, and community building both inside and outside the classroom for professional learning communities. The state’s release of new professional standards led my department members to question what is working and what needs improvement in our program. One aspect of our program that continues to be supported by research and data analysis is the function of supervised field experiences with meaningful feedback. We seek to expand in this area. Other data indicate that we have strengths in modeling a variety of approaches such as cooperative learning, discussions, literacy strategies, and workshops. In the new program, field assignments will be connected to multiple courses, and efforts to scaffold student learning to guide them toward best evidence-based practices will be continuous. Despite running a program that meets multiple sets of standards, there are areas of need that we directly address in our redesign proposal. Technology is ever-changing, so it’s inevitable that improving digital skills is a focus. In addition, scaffolding procedures for English Language Learners (ELL) or other students who struggle is imperative. Diversity, equity, and inclusion (DEI) has been an integral part of our curriculum, but the research indicates that more self-reflection and a deeper understanding of culturally relevant practices would help the program improve. Connections with professional learning communities will be expanded, as will leadership components, so that teacher candidates understand their role in changing the face of education. A pilot program will run in academic year 22/23, and additional data will be collected each semester through evaluations and continued program review.

Keywords: DEI, field experiences, program redesign, teacher preparation

Procedia PDF Downloads 170