Search results for: implicit neural representations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2450

Search results for: implicit neural representations

350 Multimodal Analysis of News Magazines' Front-Page Portrayals of the US, Germany, China, and Russia

Authors: Alena Radina

Abstract:

On the global stage, national image is shaped by historical memory of wars and alliances, government ideology and particularly media stereotypes which represent countries in positive or negative ways. News magazine covers are a key site for national representation. The object of analysis in this paper is the portrayals of the US, Germany, China, and Russia in the front pages and cover stories of “Time”, “Der Spiegel”, “Beijing Review”, and “Expert”. Political comedy helps people learn about current affairs even if politics is not their area of interest, and thus satire indirectly sets the public agenda. Coupled with satirical messages, cover images and the linguistic messages embedded in the covers become persuasive visual and verbal factors, known to drive about 80% of magazine sales. Preliminary analysis identified satirical elements in magazine covers, which are known to influence and frame understandings and attract younger audiences. Multimodal and transnational comparative framing analyses lay the groundwork to investigate why journalists, editors and designers deploy certain frames rather than others. This research investigates to what degree frames used in covers correlate with frames within the cover stories and what these framings can tell us about media professionals’ representations of their own and other nations. The study sample includes 32 covers consisting of two covers representing each of the four chosen countries from the four magazines. The sampling framework considers two time periods to compare countries’ representation with two different presidents, and between men and women when present. The countries selected for analysis represent each category of the international news flows model: the core nations are the US and Germany; China is a semi-peripheral country; and Russia is peripheral. Examining textual and visual design elements on the covers and images in the cover stories reveals not only what editors believe visually attracts the reader’s attention to the magazine but also how the magazines frame and construct national images and national leaders. The cover is the most powerful editorial and design page in a magazine because images incorporate less intrusive framing tools. Thus, covers require less cognitive effort of audiences who may therefore be more likely to accept the visual frame without question. Analysis of design and linguistic elements in magazine covers helps to understand how media outlets shape their audience’s perceptions and how magazines frame global issues. While previous multimodal research of covers has focused mostly on lifestyle magazines or newspapers, this paper examines the power of current affairs magazines’ covers to shape audience perception of national image.

Keywords: framing analysis, magazine covers, multimodality, national image, satire

Procedia PDF Downloads 103
349 Optimal-Based Structural Vibration Attenuation Using Nonlinear Tuned Vibration Absorbers

Authors: Pawel Martynowicz

Abstract:

Vibrations are a crucial problem for slender structures such as towers, masts, chimneys, wind turbines, bridges, high buildings, etc., that is why most of them are equipped with vibration attenuation or fatigue reduction solutions. In this work, a slender structure (i.e., wind turbine tower-nacelle model) equipped with nonlinear, semiactive tuned vibration absorber(s) is analyzed. For this study purposes, magnetorheological (MR) dampers are used as semiactive actuators. Several optimal-based approaches to structural vibration attenuation are investigated against the standard ‘ground-hook’ law and passive tuned vibration absorber(s) implementations. The common approach to optimal control of nonlinear systems is offline computation of the optimal solution, however, so determined open loop control suffers from lack of robustness to uncertainties (e.g., unmodelled dynamics, perturbations of external forces or initial conditions), and thus perturbation control techniques are often used. However, proper linearization may be an issue for highly nonlinear systems with implicit relations between state, co-state, and control. The main contribution of the author is the development as well as numerical and experimental verification of the Pontriagin maximum-principle-based vibration control concepts that produce directly actuator control input (not the demanded force), thus force tracking algorithm that results in control inaccuracy is entirely omitted. These concepts, including one-step optimal control, quasi-optimal control, and optimal-based modified ‘ground-hook’ law, can be directly implemented in online and real-time feedback control for periodic (or semi-periodic) disturbances with invariant or time-varying parameters, as well as for non-periodic, transient or random disturbances, what is a limitation for some other known solutions. No offline calculation, excitations/disturbances assumption or vibration frequency determination is necessary, moreover, all of the nonlinear actuator (MR damper) force constraints, i.e., no active forces, lower and upper saturation limits, hysteresis-type dynamics, etc., are embedded in the control technique, thus the solution is optimal or suboptimal for the assumed actuator, respecting its limitations. Depending on the selected method variant, a moderate or decisive reduction in the computational load is possible compared to other methods of nonlinear optimal control, while assuring the quality and robustness of the vibration reduction system, as well as considering multi-pronged operational aspects, such as possible minimization of the amplitude of the deflection and acceleration of the vibrating structure, its potential and/or kinetic energy, required actuator force, control input (e.g. electric current in the MR damper coil) and/or stroke amplitude. The developed solutions are characterized by high vibration reduction efficiency – the obtained maximum values of the dynamic amplification factor are close to 2.0, while for the best of the passive systems, these values exceed 3.5.

Keywords: magnetorheological damper, nonlinear tuned vibration absorber, optimal control, real-time structural vibration attenuation, wind turbines

Procedia PDF Downloads 128
348 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 277
347 A Taxonomy of Professional Engineering Attributes for Tackling Global Humanitarian Challenges

Authors: Georgia Kremmyda, Angelos Georgoulas, Yiannis Koumpouros, James T. Mottram

Abstract:

There is a growing interest in enhancing the creativity and problem-solving ability of engineering students by expanding their engagement to complex, interdisciplinary problems such as environmental issues, resilience to man-made and natural disasters, global health matters, water needs, increased energy demands, and other global humanitarian challenges. Tackling societal challenges requires knowledgeable and erudite engineers who can handle, combine, transform and create innovative, affordable and sustainable solutions. This view simultaneously complements and challenges current conceptions of an emerging educational movement that, almost without exception, are underpinned by calls for competitive economic growth and technological development. This article reveals a taxonomy of humanitarian attributes to be enabled to professional engineers, through reformed curricula and innovative pedagogies, which once implemented and integrated efficiently in higher engineering education, they will provide students and educators with opportunities to explore interdependencies and connections between resources, sustainable design, societal needs, and the natural environment and to critically engage with implicit and explicit facets of disciplinary identity. The research involves carrying out a study on (a) current practices, best practices and barriers in knowledge organisation, content, and hierarchy in graduate engineering programmes, (b) best practices associated with teaching and research in engineering education around the world, (c) opportunities inherent in general reforms of graduate engineering education and inherent in integrating the humanitarian context throughout engineering education programmes, and, (d) an overarching taxonomy of professional attributes for tackling humanitarian challenges. Research methods involve state-of-the-art literature review on engineering education and pedagogy to resource thematic findings on current status in engineering education worldwide, and qualitative research through three practice dialogue workshops, run in Asia (Vietnam, Indonesia and Bangladesh) involving a variety of national, international and local stakeholders (industries; NGOs, governmental organisations). Findings from this study provide evidence on: (a) what are the professional engineering attributes (skills, experience, knowledge) needed for tackling humanitarian challenges; (b) how we can integrate other disciplines and professions to engineering while defining the professional attributes of engineers who are capable of tackling humanitarian challenges. The attributes will be linked to those discipline(s) and profession(s) that are more likely to enforce the attributes (removing the assumption that engineering education as it stands at the moment can provide all attributes), and; (c) how these attributes shall be supplied; what kind of pedagogies or training shall take place beyond current practices. Acknowledgment: The study is currently in progress and is being undertaken in the framework of the project ENHANCE - ENabling Humanitarian Attributes for Nurturing Community-based Engineering (project No: 598502-EEP-1-2018-1-UK-EPPKA2-CBHE-JP (2018-2582/001-001), funded by the Erasmus + KA2 Cooperation for innovation and the exchange of good practices – Capacity building in the field of Higher Education.

Keywords: professional engineering attributes, engineering education, taxonomy, humanitarian challenges, humanitarian engineering

Procedia PDF Downloads 193
346 Young People’s Perceptions of Disability: The New Generation’s View of a Public Seen as Vulnerable and Marginalized

Authors: Ulysse Lecomte, Maryline Thenot

Abstract:

For a long time, disabled people lived in isolation within the family environment, with little interaction with the outside world and a high risk of social exclusion. However, in a number of countries, progress has been made thanks to changes in legislation on the social integration of disabled people, a significant change in attitudes, and the development of CSR. But the problem of their social, economic, and professional exclusion persists and has been further exacerbated by the COVID-19 pandemic. This societal phenomenon is sufficiently important to be the subject of management science research. We have therefore focused our work on society's current perception of people with disabilities and their possible integration. Our aim is to find out what levers could be put in place to bring about positive change in the situation. We have chosen to focus on the perception of young people in France, who are the new generation responsible for the future of our society and from whom tomorrow's decisionmakers, future employers, and stakeholders who can influence the living conditions of disabled people will be drawn. Our study sample corresponds to the 18-30 age group, which is the population of young adults likely to have sufficient experience and maturity. The aim of this study is not only to find out how this population currently perceives disability but also to identify the factors influencing this perception and the most effective levers for action to act positively on this phenomenon and thus promote better social integration of people with disabilities in the future. The methodology is based on theoretical and empirical research. The literature review includes a historical and etymological approach to disability, a definition of the different concepts of disability, an approach to disability as a vector of social exclusion, and the role of perception and representations in defining the social image of disability. This literature review is followed by an empirical part carried out by means of a questionnaire administered to 110 young people aged 18 to 30. Analysis of our results suggests that, despite a recent improvement, disabled people are still perceived as vulnerable and socially marginalised. The following factors stand out as having a significant influence (positive or negative) on the perception of disability: the individual's familiarity with the 'world of disability', cultural factors, the degree of 'visibility' of the disability and the empathy level of the disabled person him/herself. Others, on the other hand, such as socio-political and economic factors, have little impact on this perception. In addition, it is possible to classify the various levers of action likely to improve the social perception of disability according to their degree of effectiveness. Our study population prioritised training initiatives for the various players and stakeholders (teachers, students, disabled people themselves, companies, sports clubs, etc.). This was followed by communication, ecommunication and media campaigns in favour of disability. Lastly, the sample was judged as 'less effective' positive discrimination actions such as setting a minimum percentage for the representation of disabled people in various fields (studies, employment, politics ...).

Keywords: disability, perception, social image, young people, influencing factors, levers for action

Procedia PDF Downloads 36
345 R-Killer: An Email-Based Ransomware Protection Tool

Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena

Abstract:

Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.

Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine

Procedia PDF Downloads 217
344 Emotion and Risk Taking in a Casino Game

Authors: Yulia V. Krasavtseva, Tatiana V. Kornilova

Abstract:

Risk-taking behaviors are not only dictated by cognitive components but also involve emotional aspects. Anticipatory emotions, involving both cognitive and affective mechanisms, are involved in decision-making in general, and risk-taking in particular. Affective reactions are prompted when an expectation or prediction is either validated or invalidated in the achieved result. This study aimed to combine predictions, anticipatory emotions, affective reactions, and personality traits in the context of risk-taking behaviors. An experimental online method Emotion and Prediction In a Casino (EPIC) was used, based on a casino-like roulette game. In a series of choices, the participant is presented with progressively riskier roulette combinations, where the potential sums of wins and losses increase with each choice and the participant is given a choice: to 'walk away' with the current sum of money or to 'play' the displayed roulette, thus accepting the implicit risk. Before and after the result is displayed, participants also rate their emotions, using the Self-Assessment Mannequin [Bradley, Lang, 1994], picking a picture, representing the intensity of pleasure, arousal, and dominance. The following personality measures were used: 1) Personal Decision-Making Factors [Kornilova, 2003] assessing risk and rationality; 2) I7 – Impulsivity Questionnaire [Kornilova, 1995] assessing impulsiveness, risk readiness, and empathy and 3) Subjective Risk Intelligence Scale [Craparo et al., 2018] assessing negative attitude toward uncertainty, emotional stress vulnerability, imaginative capability, and problem-solving self-efficacy. Two groups of participants took part in the study: 1) 98 university students (Mage=19.71, SD=3.25; 72% female) and 2) 94 online participants (Mage=28.25, SD=8.25; 89% female). Online participants were recruited via social media. Students with high rationality rated their pleasure and dominance before and after choices as lower (ρ from -2.6 to -2.7, p < 0.05). Those with high levels of impulsivity rated their arousal lower before finding out their result (ρ from 2.5 - 3.7, p < 0.05), while also rating their dominance as low (ρ from -3 to -3.7, p < 0.05). Students prone to risk-rated their pleasure and arousal before and after higher (ρ from 2.5 - 3.6, p < 0.05). High empathy was positively correlated with arousal after learning the result. High emotional stress vulnerability positively correlates with arousal and pleasure after the choice (ρ from 3.9 - 5.7, p < 0.05). Negative attitude to uncertainty is correlated with high anticipatory and reactive arousal (ρ from 2.7 - 5.7, p < 0.05). High imaginative capability correlates negatively with anticipatory and reactive dominance (ρ from - 3.4 to - 4.3, p < 0.05). Pleasure (.492), arousal (.590), and dominance (.551) before and after the result were positively correlated. Higher predictions positively correlated with reactive pleasure and arousal. In a riskier scenario (6/8 chances to win), anticipatory arousal was negatively correlated with the pleasure emotion (-.326) and vice versa (-.265). Correlations occur regardless of the roulette outcome. In conclusion, risk-taking behaviors are linked not only to personality traits but also to anticipatory emotions and affect in a modeled casino setting. Acknowledgment: The study was supported by the Russian Foundation for Basic Research, project 19-29-07069.

Keywords: anticipatory emotions, casino game, risk taking, impulsiveness

Procedia PDF Downloads 135
343 Re-Presenting the Egyptian Informal Urbanism in Films between 1994 and 2014

Authors: R. Mofeed, N. Elgendy

Abstract:

Cinema constructs mind-spaces that reflect inherent human thoughts and emotions. As a representational art, Cinema would introduce comprehensive images of life phenomena in different ways. The term “represent” suggests verity of meanings; bring into presence, replace or typify. In that sense, Cinema may present a phenomenon through direct embodiment, or introduce a substitute image that replaces the original phenomena, or typify it by relating the produced image to a more general category through a process of abstraction. This research is interested in questioning the type of images that Egyptian Cinema introduces to informal urbanism and how these images were conditioned and reshaped in the last twenty years. The informalities/slums phenomenon first appeared in Egypt and, particularly, Cairo in the early sixties, however, this phenomenon was completely ignored by the state and society until the eighties, and furthermore, its evident representation in Cinema was by the mid-nineties. The Informal City represents the illegal housing developments, and it is a fast growing form of urbanization in Cairo. Yet, this expanding phenomenon is still depicted as the minority, exceptional and marginal through the Cinematic lenses. This paper aims at tracing the forms of representations of the urban informalities in the Egyptian Cinema between 1994 and 2014, and how did that affect the popular mind and its perception of these areas. The paper runs two main lines of inquiry; the first traces the phenomena through a chronological and geographical mapping of the informal urbanism has been portrayed in films. This analysis is based on an academic research work at Cairo University in Fall 2014. The visual tracing through maps and timelines allowed a reading of the phases of ignorance, presence, typifying and repetition in the representation of this huge sector of the city through more than 50 films that has been investigated. The analysis clearly revealed the “portrayed image” of informality by the Cinema through the examined period. However, the second part of the paper explores the “perceived image”. A designed questionnaire is applied to highlight the main features of that image that is perceived by both inhabitants of informalities and other Cairenes based on watching selected films. The questionnaire covers the different images of informalities proposed in the Cinema whether in a comic or a melodramatic background and highlight the descriptive terms used, to see which of them resonate with the mass perceptions and affected their mental images. The two images; “portrayed” and “perceived” are then to be encountered to reflect on issues of repetitions, stereotyping and reality. The formulated stereotype of informal urbanism is finally outlined and justified in relation to both production consumption mechanisms of films and the State official vision of informalities.

Keywords: cinema, informal urbanism, popular mind, representation

Procedia PDF Downloads 299
342 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 355
341 Cross-Language Variation and the ‘Fused’ Zone in Bilingual Mental Lexicon: An Experimental Research

Authors: Yuliya E. Leshchenko, Tatyana S. Ostapenko

Abstract:

Language variation is a widespread linguistic phenomenon which can affect different levels of a language system: phonological, morphological, lexical, syntactic, etc. It is obvious that the scope of possible standard alternations within a particular language is limited by a variety of its norms and regulations which set more or less clear boundaries for what is possible and what is not possible for the speakers. The possibility of lexical variation (alternate usage of lexical items within the same contexts) is based on the fact that the meanings of words are not clearly and rigidly defined in the consciousness of the speakers. Therefore, lexical variation is usually connected with unstable relationship between words and their referents: a case when a particular lexical item refers to different types of referents, or when a particular referent can be named by various lexical items. We assume that the scope of lexical variation in bilingual speech is generally wider than that observed in monolingual speech due to the fact that, besides ‘lexical item – referent’ relations it involves the possibility of cross-language variation of L1 and L2 lexical items. We use the term ‘cross-language variation’ to denote a case when two equivalent words of different languages are treated by a bilingual speaker as freely interchangeable within the common linguistic context. As distinct from code-switching which is traditionally defined as the conscious use of more than one language within one communicative act, in case of cross-language lexical variation the speaker does not perceive the alternate lexical items as belonging to different languages and, therefore, does not realize the change of language code. In the paper, the authors present research of lexical variation of adult Komi-Permyak – Russian bilingual speakers. The two languages co-exist on the territory of the Komi-Permyak District in Russia (Komi-Permyak as the ethnic language and Russian as the official state language), are usually acquired from birth in natural linguistic environment and, according to the data of sociolinguistic surveys, are both identified by the speakers as coordinate mother tongues. The experimental research demonstrated that alternation of Komi-Permyak and Russian words within one utterance/phrase is highly frequent both in speech perception and production. Moreover, our participants estimated cross-language word combinations like ‘маленькая /Russian/ нывка /Komi-Permyak/’ (‘a little girl’) or ‘мунны /Komi-Permyak/ домой /Russian/’ (‘go home’) as regular/habitual, containing no violation of any linguistic rules and being equally possible in speech as the equivalent intra-language word combinations (‘учöтик нывка’ /Komi-Permyak/ or ‘идти домой’ /Russian/). All the facts considered, we claim that constant concurrent use of the two languages results in the fact that a large number of their words tend to be intuitively interpreted by the speakers as lexical variants not only related to the same referent, but also referring to both languages or, more precisely, to none of them in particular. Consequently, we can suppose that bilingual mental lexicon includes an extensive ‘fused’ zone of lexical representations that provide the basis for cross-language variation in bilingual speech.

Keywords: bilingualism, bilingual mental lexicon, code-switching, lexical variation

Procedia PDF Downloads 150
340 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 70
339 Qualitative Narrative Framework as Tool for Reduction of Stigma and Prejudice

Authors: Anastasia Schnitzer, Oliver Rehren

Abstract:

Mental health has become an increasingly important topic in society in recent years, not least due to the challenges posed by the corona pandemic. Along with this, the public has become more and more aware that a lack of enlightenment and proper coping mechanisms may result in a notable risk to develop mental disorders. Yet, there are still many biases against those affected, which are further connected to issues of stigmatization and societal exclusion. One of the main strategies to combat these forms of prejudice and stigma is to induce intergroup contact. More specifically, the Intergroup Contact Theory states engaging in certain types of contact with members of marginalized groups may be an effective way to improve attitudes towards these groups. However, due to the persistent prejudice and stigmatization, affected individuals often do not dare to speak openly about their mental disorders, so that intergroup contact often goes unnoticed. As a result, many people only experience conscious contact with individuals with a mental disorder through media. As an analogy to the Intergroup Contact Theory, the Parasocial Contact Hypothesis proposes that repeatedly being exposed to positive media representations of outgroup members can lead to a reduction of negative prejudices and attitudes towards this outgroup. While there is a growing body of research on the merit of this mechanism, measurements often only consist of 'positive' or 'negative' parasocial contact conditions (or examine the valence or quality of the previous contact with the outgroup); meanwhile, more specific conditions are often neglected. The current study aims to tackle this shortcoming. By scrutinizing the potential of contemporary series as a narrative framework of high quality, we strive to elucidate more detailed aspects of beneficial parasocial contact -for the sake of reducing prejudice and stigma towards individuals with mental disorders. Thus, a two-factorial between-subject online panel study with three measurement points was conducted (N = 95). Participants were randomly assigned to one of two groups, having to watch episodes of either a series with a narrative framework of high (Quality-TV) or low quality (Continental-TV), with one-week interval in-between the episodes. Suitable series were determined with the help of a pretest. Prejudice and stigma towards people with mental disorders were measured at the beginning of the study, before and after each episode, and in a final follow-up one week after the last two episodes. Additionally, parasocial interaction (PSI), quality of contact (QoC), and transportation were measured several times. Based on these data, multivariate multilevel analyses were performed in R using the lavaan package. Latent growth models showed moderate to high increases in QoC and PSI as well as small to moderate decreases in stigma and prejudice over time. Multilevel path analysis with individual and group levels further revealed that a qualitative narrative framework leads to a higher quality of contact experience, which then leads to lower prejudice and stigma, with effects ranging from moderate to high.

Keywords: prejudice, quality of contact, parasocial contact, narrative framework

Procedia PDF Downloads 85
338 Health Trajectory Clustering Using Deep Belief Networks

Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour

Abstract:

We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.

Keywords: health trajectory, clustering, deep learning, DBN

Procedia PDF Downloads 375
337 Linguistic Cyberbullying, a Legislative Approach

Authors: Simona Maria Ignat

Abstract:

Bullying online has been an increasing studied topic during the last years. Different approaches, psychological, linguistic, or computational, have been applied. To our best knowledge, a definition and a set of characteristics of phenomenon agreed internationally as a common framework are still waiting for answers. Thus, the objectives of this paper are the identification of bullying utterances on Twitter and their algorithms. This research paper is focused on the identification of words or groups of words, categorized as “utterances”, with bullying effect, from Twitter platform, extracted on a set of legislative criteria. This set is the result of analysis followed by synthesis of law documents on bullying(online) from United States of America, European Union, and Ireland. The outcome is a linguistic corpus with approximatively 10,000 entries. The methods applied to the first objective have been the following. The discourse analysis has been applied in identification of keywords with bullying effect in texts from Google search engine, Images link. Transcription and anonymization have been applied on texts grouped in CL1 (Corpus linguistics 1). The keywords search method and the legislative criteria have been used for identifying bullying utterances from Twitter. The texts with at least 30 representations on Twitter have been grouped. They form the second corpus linguistics, Bullying utterances from Twitter (CL2). The entries have been identified by using the legislative criteria on the the BoW method principle. The BoW is a method of extracting words or group of words with same meaning in any context. The methods applied for reaching the second objective is the conversion of parts of speech to alphabetical and numerical symbols and writing the bullying utterances as algorithms. The converted form of parts of speech has been chosen on the criterion of relevance within bullying message. The inductive reasoning approach has been applied in sampling and identifying the algorithms. The results are groups with interchangeable elements. The outcomes convey two aspects of bullying: the form and the content or meaning. The form conveys the intentional intimidation against somebody, expressed at the level of texts by grammatical and lexical marks. This outcome has applicability in the forensic linguistics for establishing the intentionality of an action. Another outcome of form is a complex of graphemic variations essential in detecting harmful texts online. This research enriches the lexicon already known on the topic. The second aspect, the content, revealed the topics like threat, harassment, assault, or suicide. They are subcategories of a broader harmful content which is a constant concern for task forces and legislators at national and international levels. These topic – outcomes of the dataset are a valuable source of detection. The analysis of content revealed algorithms and lexicons which could be applied to other harmful contents. A third outcome of content are the conveyances of Stylistics, which is a rich source of discourse analysis of social media platforms. In conclusion, this corpus linguistics is structured on legislative criteria and could be used in various fields.

Keywords: corpus linguistics, cyberbullying, legislation, natural language processing, twitter

Procedia PDF Downloads 87
336 The Classification Accuracy of Finance Data through Holder Functions

Authors: Yeliz Karaca, Carlo Cattani

Abstract:

This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).

Keywords: artificial neural networks, finance data, Holder regularity, multifractals

Procedia PDF Downloads 248
335 Newly Designed Ecological Task to Assess Cognitive Map Reading Ability: Behavioral Neuro-Anatomic Correlates of Mental Navigation

Authors: Igor Faulmann, Arnaud Saj, Roland Maurer

Abstract:

Spatial cognition consists in a plethora of high level cognitive abilities: among them, the ability to learn and to navigate in large scale environments is probably one of the most complex skills. Navigation is thought to rely on the ability to read a cognitive map, defined as an allocentric representation of ones environment. Those representations are of course intimately related to the two geometrical primitives of the environment: distance and direction. Also, many recent studies point to a predominant hippocampal and para-hippocampal role in spatial cognition, as well as in the more specific cluster of navigational skills. In a previous study in humans, we used a newly validated test assessing cognitive map processing by evaluating the ability to judge relative distances and directions: the CMRT (Cognitive Map Recall Test). This study identified in topographically disorientated patients (1) behavioral differences between the evaluation of distances and of directions, and (2) distinct causality patterns assessed via VLSM (i.e., distinct cerebral lesions cause distinct response patterns depending on the modality (distance vs direction questions). Thus, we hypothesized that: (1) if the CMRT really taps into the same resources as real navigation, there would be hippocampal, parahippocampal, and parietal activation, and (2) there exists underlying neuroanatomical and functional differences between the processing of this two modalities. Aiming toward a better understanding of the neuroanatomical correlates of the CMRT in humans, and more generally toward a better understanding of how the brain processes the cognitive map, we adapted the CMRT as an fMRI procedure. 23 healthy subjects (11 women, 12 men), all living in Geneva for at least 2 years, underwent the CMRT in fMRI. Results show, for distance and direction taken together, than the most active brain regions are the parietal, frontal and cerebellar parts. Additionally, and as expected, patterns of brain activation differ when comparing the two modalities. Furthermore, distance processing seems to rely more on parietal regions (compared to other brain regions in the same modality and also to direction). It is interesting to notice that no significant activity was observed in the hippocampal or parahippocampal areas. Direction processing seems to tap more into frontal and cerebellar brain regions (compared to other brain regions in the same modality and also to distance). Significant hippocampal and parahippocampal activity has been shown only in this modality. This results demonstrated a complex interaction of structures which are compatible with response patterns observed in other navigational tasks, thus showing that the CMRT taps at least partially into the same brain resources as real navigation. Additionally, differences between the processing of distances and directions leads to the conclusion that the human brain processes each modality distinctly. Further research should focus on the dynamics of this processing, allowing a clearer understanding between the two sub-processes.

Keywords: cognitive map, navigation, fMRI, spatial cognition

Procedia PDF Downloads 296
334 The Development of Modernist Chinese Architecture from the Perspective of Cultural Regionalism in Taiwan: Spatial Practice by the Fieldoffice Architects

Authors: Yilei Yu

Abstract:

Modernism, emerging in the Western world of the 20th century, attempted to create a universal international style, which pulled the architectural and social systems created by classicism back to an initial pure state. However, out of the introspection of the Modernism, Regionalism attempted to restore a humanistic environment and create flexible buildings during the 1950s. Meanwhile, as the first generation of architects came back, the wind of the Regionalism blew to Taiwan. However, with the increasing of political influence and the tightening of free creative space, from the second half of the 1950s to the 1980s, the "real" Regional Architecture, which should have taken roots in Taiwan, becomes the "fake" Regional Architecture filled with the oriental charm. Through the Comparative Method, which includes description, interpretation, juxtaposition, and comparison, this study analyses the difference of the style of the Modernist Chinese Architecture between the period before the 1980s and the after. The paper aims at exploring the development of Regionalism Architecture in Taiwan, which includes three parts. First, the burgeoning period of the "modernist Chinese architecture" in Taiwan was the beginning of the Chinese Nationalist Party's coming to Taiwan to consolidate political power. The architecture of the "Ming and Qing Dynasty Palace Revival Style" dominated the architectural circles in Taiwan. These superficial "regional buildings" have nearly no combination with the local customs of Taiwan, which is difficult to evoke the social identity. Second, in the late 1970s, the second generation of architects headed by Baode Han began focusing on the research and preservation of traditional Taiwanese architecture, and creating buildings combined the terroirs of Taiwan through the imitation of styles. However, some scholars have expressed regret that very few regionalist architectural works that appeared in the 1980s can respond specifically to regional conditions and forms of construction. Instead, most of them are vocabulary-led representations. Third, during the 1990s, by the end of the period of martial law, community building gradually emerged, which made the object of Taiwan's architectural concern gradually extended to the folk and ethnic groups. In the Yilan area, there are many architects who care about the local environment, such as the Field office Architects. Compared with the hollow regionality of the passionate national spirits that emerged during the martial law period, the local practice of the architect team in Yilan can better link the real local environmental life and reflect the true regionality. In conclusion, with the local practice case of the huge construction team in Yilan area, this paper focuses on the Spatial Practice by the Field office Architects to explore the spatial representation of the space and the practical enlightenment in the process of modernist Chinese architecture development in Taiwan.

Keywords: regionalism, modernism, Chinese architecture, political landscape, spatial representation

Procedia PDF Downloads 131
333 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011

Authors: S. Abera, T. Gidey, W. Terefe

Abstract:

Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.

Keywords: data mining, HIV, testing, ethiopia

Procedia PDF Downloads 500
332 Supporting a Moral Growth Mindset Among College Students

Authors: Kate Allman, Heather Maranges, Elise Dykhuis

Abstract:

Moral Growth Mindset (MGM) is the belief that one has the capacity to become a more moral person, as opposed to a fixed conception of one’s moral ability and capacity (Han et al., 2018). Building from Dweck’s work in incremental implicit theories of intelligence (2008), Moral Growth Mindset (Han et al., 2020) extends growth mindsets into the moral dimension. The concept of MGM has the potential to help researchers understand how both mindsets and interventions can impact character development, and it has even been shown to have connections to voluntary service engagement (Han et al., 2018). Understanding the contexts in which MGM might be cultivated could help to promote the further cultivation of character, in addition to prosocial behaviors like service engagement, which may, in turn, promote larger scale engagement in social justice-oriented thoughts, feelings, and behaviors. In particular, college may be a place to intentionally cultivate a growth mindset toward moral capacities, given the unique developmental and maturational components of the college experience, including contextual opportunity (Lapsley & Narvaez, 2006) and independence requiring the constant consideration, revision, and internalization of personal values (Lapsley & Woodbury, 2016). In a semester-long, quasi-experimental study, we examined the impact of a pedagogical approach designed to cultivate college student character development on participants’ MGM. With an intervention (n=69) and a control group (n=97; Pre-course: 27% Men; 66% Women; 68% White; 18% Asian; 2% Black; <1% Hispanic/Latino), we investigated whether college courses that intentionally incorporate character education pedagogy (Lamb, Brant, Brooks, 2021) affect a variety of psychosocial variables associated with moral thoughts, feelings, identity, and behavior (e.g. moral growth mindset, honesty, compassion, etc.). The intervention group consisted of 69 undergraduate students (Pre-course: 40% Men; 52% Women; 68% White; 10.5% Black; 7.4% Asian; 4.2% Hispanic/Latino) that voluntarily enrolled in five undergraduate courses that encouraged students to engage with key concepts and methods of character development through the application of research-based strategies and personal reflection on goals and experiences. Moral Growth Mindset was measured using the four-item Moral Growth Mindset scale (Han et al., 2020), with items such as You can improve your basic morals and character considerably on a six-point Likert scale from 1 (strongly disagree) to 6 (strongly agree). Higher scores of MGM indicate a stronger belief that one can become a more moral person with personal effort. Reliability at Time 1 was Cronbach’s ɑ= .833, and at Time 2 Cronbach’s ɑ= .772. An Analysis of Covariance (ANCOVA) was conducted to explore whether post-course MGM scores were different between the intervention and control when controlling for pre-course MGM scores. The ANCOVA indicated significant differences in MGM between groups post-course, F(1,163) = 8.073, p = .005, R² = .11, where descriptive statistics indicate that intervention scores were higher than the control group at post-course. Results indicate that intentional character development pedagogy can be leveraged to support the development of Moral Growth Mindset and related capacities in undergraduate settings.

Keywords: moral personality, character education, incremental theories of personality, growth mindset

Procedia PDF Downloads 150
331 Wind Speed Forecasting Based on Historical Data Using Modern Prediction Methods in Selected Sites of Geba Catchment, Ethiopia

Authors: Halefom Kidane

Abstract:

This study aims to assess the wind resource potential and characterize the urban area wind patterns in Hawassa City, Ethiopia. The estimation and characterization of wind resources are crucial for sustainable urban planning, renewable energy development, and climate change mitigation strategies. A secondary data collection method was used to carry out the study. The collected data at 2 meters was analyzed statistically and extrapolated to the standard heights of 10-meter and 30-meter heights using the power law equation. The standard deviation method was used to calculate the value of scale and shape factors. From the analysis presented, the maximum and minimum mean daily wind speed at 2 meters in 2016 was 1.33 m/s and 0.05 m/s in 2017, 1.67 m/s and 0.14 m/s in 2018, 1.61m and 0.07 m/s, respectively. The maximum monthly average wind speed of Hawassa City in 2016 at 2 meters was noticed in the month of December, which is around 0.78 m/s, while in 2017, the maximum wind speed was recorded in the month of January with a wind speed magnitude of 0.80 m/s and in 2018 June was maximum speed which is 0.76 m/s. On the other hand, October was the month with the minimum mean wind speed in all years, with a value of 0.47 m/s in 2016,0.47 in 2017 and 0.34 in 2018. The annual mean wind speed was 0.61 m/s in 2016,0.64, m/s in 2017 and 0.57 m/s in 2018 at a height of 2 meters. From extrapolation, the annual mean wind speeds for the years 2016,2017 and 2018 at 10 heights were 1.17 m/s,1.22 m/s, and 1.11 m/s, and at the height of 30 meters, were 3.34m/s,3.78 m/s, and 3.01 m/s respectively/Thus, the site consists mainly primarily classes-I of wind speed even at the extrapolated heights.

Keywords: artificial neural networks, forecasting, min-max normalization, wind speed

Procedia PDF Downloads 78
330 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model

Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero

Abstract:

Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.

Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods

Procedia PDF Downloads 28
329 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking

Authors: Jonas Colin

Abstract:

Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.

Keywords: chatbot, GPT 3.5, metacognition, symbiose

Procedia PDF Downloads 74
328 Development of Fault Diagnosis Technology for Power System Based on Smart Meter

Authors: Chih-Chieh Yang, Chung-Neng Huang

Abstract:

In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.

Keywords: ANFIS, fault diagnosis, power system, smart meter

Procedia PDF Downloads 141
327 MIMIC: A Multi Input Micro-Influencers Classifier

Authors: Simone Leonardi, Luca Ardito

Abstract:

Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.

Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media

Procedia PDF Downloads 185
326 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads

Authors: Riaan Kleyn

Abstract:

Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.

Keywords: computer vision, wine grapes, machine learning, machine harvested grapes

Procedia PDF Downloads 100
325 A Lexicographic Approach to Obstacles Identified in the Ontological Representation of the Tree of Life

Authors: Sandra Young

Abstract:

The biodiversity literature is vast and heterogeneous. In today’s data age, numbers of data integration and standardisation initiatives aim to facilitate simultaneous access to all the literature across biodiversity domains for research and forecasting purposes. Ontologies are being used increasingly to organise this information, but the rationalisation intrinsic to ontologies can hit obstacles when faced with the intrinsic fluidity and inconsistency found in the domains comprising biodiversity. Essentially the problem is a conceptual one: biological taxonomies are formed on the basis of specific, physical specimens yet nomenclatural rules are used to provide labels to describe these physical objects. These labels are ambiguous representations of the physical specimen. An example of this is with the genus Melpomene, the scientific nomenclatural representation of a genus of ferns, but also for a genus of spiders. The physical specimens for each of these are vastly different, but they have been assigned the same nomenclatural reference. While there is much research into the conceptual stability of the taxonomic concept versus the nomenclature used, to the best of our knowledge as yet no research has looked empirically at the literature to see the conceptual plurality or singularity of the use of these species’ names, the linguistic representation of a physical entity. Language itself uses words as symbols to represent real world concepts, whether physical entities or otherwise, and as such lexicography has a well-founded history in the conceptual mapping of words in context for dictionary making. This makes it an ideal candidate to explore this problem. The lexicographic approach uses corpus-based analysis to look at word use in context, with a specific focus on collocated word frequencies (the frequencies of words used in specific grammatical and collocational contexts). It allows for inconsistencies and contradictions in the source data and in fact includes these in the word characterisation so that 100% of the available evidence is counted. Corpus analysis is indeed suggested as one of the ways to identify concepts for ontology building, because of its ability to look empirically at data and show patterns in language usage, which can indicate conceptual ideas which go beyond words themselves. In this sense it could potentially be used to identify if the hierarchical structures present within the empirical body of literature match those which have been identified in ontologies created to represent them. The first stages of this research have revealed a hierarchical structure that becomes apparent in the biodiversity literature when annotating scientific species’ names, common names and more general names as classes, which will be the focus of this paper. The next step in the research is focusing on a larger corpus in which specific words can be analysed and then compared with existing ontological structures looking at the same material, to evaluate the methods by means of an alternative perspective. This research aims to provide evidence as to the validity of the current methods in knowledge representation for biological entities, and also shed light on the way that scientific nomenclature is used within the literature.

Keywords: ontology, biodiversity, lexicography, knowledge representation, corpus linguistics

Procedia PDF Downloads 138
324 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation

Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam

Abstract:

Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.

Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model

Procedia PDF Downloads 113
323 Exploring the Use of Augmented Reality for Laboratory Lectures in Distance Learning

Authors: Michele Gattullo, Vito M. Manghisi, Alessandro Evangelista, Enricoandrea Laviola

Abstract:

In this work, we explored the use of Augmented Reality (AR) to support students in laboratory lectures in Distance Learning (DL), designing an application that proved to be ready for use next semester. AR could help students in the understanding of complex concepts as well as increase their motivation in the learning process. However, despite many prototypes in the literature, it is still less used in schools and universities. This is mainly due to the perceived limited advantages to the investment costs, especially regarding changes needed in the teaching modalities. However, with the spread of epidemiological emergency due to SARS-CoV-2, schools and universities were forced to a very rapid redefinition of consolidated processes towards forms of Distance Learning. Despite its many advantages, it suffers from the impossibility to carry out practical activities that are of crucial importance in STEM ("Science, Technology, Engineering e Math") didactics. In this context, AR perceived advantages increased a lot since teachers are more prepared for new teaching modalities, exploiting AR that allows students to carry on practical activities on their own instead of being physically present in laboratories. In this work, we designed an AR application for the support of engineering students in the understanding of assembly drawings of complex machines. Traditionally, this skill is acquired in the first years of the bachelor's degree in industrial engineering, through laboratory activities where the teacher shows the corresponding components (e.g., bearings, screws, shafts) in a real machine and their representation in the assembly drawing. This research aims to explore the effectiveness of AR to allow students to acquire this skill on their own without physically being in the laboratory. In a preliminary phase, we interviewed students to understand the main issues in the learning of this subject. This survey revealed that students had difficulty identifying machine components in an assembly drawing, matching between the 2D representation of a component and its real shape, and understanding the functionality of a component within the machine. We developed a mobile application using Unity3D, aiming to solve the mentioned issues. We designed the application in collaboration with the course professors. Natural feature tracking was used to associate the 2D printed assembly drawing with the corresponding 3D virtual model. The application can be displayed on students’ tablets or smartphones. Users could interact with selecting a component from a part list on the device. Then, 3D representations of components appear on the printed drawing, coupled with 3D virtual labels for their location and identification. Users could also interact with watching a 3D animation to learn how components are assembled. Students evaluated the application through a questionnaire based on the System Usability Scale (SUS). The survey was provided to 15 students selected among those we participated in the preliminary interview. The mean SUS score was 83 (SD 12.9) over a maximum of 100, allowing teachers to use the AR application in their courses. Another important finding is that almost all the students revealed that this application would provide significant power for comprehension on their own.

Keywords: augmented reality, distance learning, STEM didactics, technology in education

Procedia PDF Downloads 131
322 Contraceptives: Experiences of Agency and Coercion of Young People Living in Colombia

Authors: Paola Montenegro, Maria de los Angeles Balaguera Villa

Abstract:

Contraceptive methods play a fundamental role in preventing unwanted pregnancies and protecting users from sexually transmitted infections (STIs). Despite being known to almost the entire population of reproductive age living in Colombia, there are barriers, practices and complex notions about contraceptives that affect their desired mass use and effectiveness. This work aims to analyse some of the perceptions and practices discussed with young people (13-28 years old) living in Colombia regarding the use of contraceptives in their daily lives, preferences, needs and perceived side effects. This research also examines the perceived paradox in autonomy that young people experience regarding contraceptive use: in one hand, its use (or lack of it) is interpreted as an act of self-determination and primary example of reproductive agency, on the other hand, it was frequently associated with coercion and limited autonomy derived from the gaps in reliable information available for young people, the difficulty of accessing certain preferred methods, and sometimes the experienced coercion exercise by doctors, partners and/or family members. The data and analysis discussed in this work stems from a research project whose objective was to provide information about needs and preferences in sexual and reproductive health of young people living in Colombia in relation to a possible telehealth service that could close the gap in access to quality care and safe information. Through a mixed methods approach, this study collected 5.736 responses to a virtual survey disseminated nationwide in Colombia and 47 inperson interviews (24 of them with people who were assigned female at birth and 21 with local key stakeholders in the abortion ecosystem). Quantitative data was analyzed using Stata SE Version 16.0 and qualitative analysis was completed through NVivo using thematic analysis. Key findings on contraception use in young people living in Colombia reveal that 85,8% of participants had used a contraceptive method in the last two years, and that the most commonly used methods were condoms, contraceptive pills, the morning-after pill and the method of interruption. The remaining 14,2% of respondents who declared to not have used contraceptives in the last two years expressed that the main four barriers to access were: "Lack of knowledge about contraceptive methods and where to obtain information and/or access them (13.9%)", "Have had sex with people who have vaginas (10.2%)", "Cost of contraceptive method (8.4%)" and "Difficulties in obtaining medical authorisations (7.6%)". These barriers coincided with the ones used to explain the non-use of contraceptives in young people, which reveals that limitations in information, cost, and quality care represent structural issues that need to be address in programmes, services, and public policy. Finally, interviews showed that young people perceive contraceptive use and non-use as an example of reaffirming reproductive agency and limitations to this can be explained through the widespread incomplete knowledge about how methods work and the prevalence of other social representations of contraception associated with trust, fidelity, and partner preferences, that in the end create limitations to young people’s autonomy.

Keywords: contraception, family planning, premarital fertility, unplanned pregnancy

Procedia PDF Downloads 78
321 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 313