Search results for: generalised linear model
16714 The Effectiveness of Environmental Policy Instruments for Promoting Renewable Energy Consumption: Command-and-Control Policies versus Market-Based Policies
Authors: Mahmoud Hassan
Abstract:
Understanding the impact of market- and non-market-based environmental policy instruments on renewable energy consumption (REC) is crucial for the design and choice of policy packages. This study aims to empirically investigate the effect of environmental policy stringency index (EPS) and its components on REC in 27 OECD countries over the period from 1990 to 2015, and then use the results to identify what the appropriate environmental policy mix should look like. By relying on the two-step system GMM estimator, we provide evidence that increasing environmental policy stringency as a whole promotes renewable energy consumption in these 27 developed economies. Moreover, policymakers are able, through the market- and non-market-based environmental policy instruments, to increase the use of renewable energy. However, not all of these instruments are effective for achieving this goal. The results indicate that R&D subsidies and trading schemes have a positive and significant impact on REC, while taxes, feed-in tariff and emission standards have not a significant effect. Furthermore, R&D subsidies are more effective than trading schemes for stimulating the use of clean energy. These findings proved to be robust across the three alternative panel techniques used.Keywords: environmental policy stringency, renewable energy consumption, two-step system-GMM estimation, linear dynamic panel data model
Procedia PDF Downloads 18016713 Optimizing Mechanical Behavior of Middle Ear Prosthesis Using Finite Element Method with Material Degradation Functionally Graded Materials in Three Functions
Authors: Khatir Omar, Fekih Sidi Mohamed, Sahli Abderahmene, Benkhettou Abdelkader, Boudjemaa Ismail
Abstract:
Advancements in technology have revolutionized healthcare, with notable impacts on auditory health. This study introduces an approach aimed at optimizing materials for middle ear prostheses to enhance auditory performance. We have developed a finite element (FE) model of the ear incorporating a pure titanium TORP prosthesis, validated against experimental data. Subsequently, we applied the Functionally Graded Materials (FGM) methodology, utilizing linear, exponential, and logarithmic degradation functions to modify prosthesis materials. Biocompatible materials suitable for auditory prostheses, including Stainless Steel, titanium, and Hydroxyapatite, were investigated. The findings indicate that combinations such as Stainless Steel with titanium and Hydroxyapatite offer improved outcomes compared to pure titanium and Hydroxyapatite ceramic in terms of both displacement and stress. Additionally, personalized prostheses tailored to individual patient needs are feasible, underscoring the potential for further advancements in auditory healthcare.Keywords: middle ear, prosthesis, ossicles, FGM, vibration analysis, finite-element method
Procedia PDF Downloads 8416712 Static Properties of Ge and Sr Isotopes in the Cluster Model
Authors: Mohammad Reza Shojaei, Mahdeih Mirzaeinia
Abstract:
We have studied the cluster structure of even-even stable isotopes of Ge and Sr. The Schrodinger equation has been solved using the generalized parametric Nikiforov-Uvarov method with a phenomenological potential. This potential is the sum of the attractive Yukawa-like potential, a Manning-Rosen-type potential, and the repulsive Yukawa potential for interaction between the cluster and the core. We have shown that the available experimental data of the first rotational band energies can be well described by assuming a binary system of the α cluster and the core and using an analytical solution. Our results were consistent with experimental values. Hence, this model can be applied to study the other even-even isotopesKeywords: cluser model, NU method, ge and Sr, potential central
Procedia PDF Downloads 7616711 Using Simulation Modeling Approach to Predict USMLE Steps 1 and 2 Performances
Authors: Chau-Kuang Chen, John Hughes, Jr., A. Dexter Samuels
Abstract:
The prediction models for the United States Medical Licensure Examination (USMLE) Steps 1 and 2 performances were constructed by the Monte Carlo simulation modeling approach via linear regression. The purpose of this study was to build robust simulation models to accurately identify the most important predictors and yield the valid range estimations of the Steps 1 and 2 scores. The application of simulation modeling approach was deemed an effective way in predicting student performances on licensure examinations. Also, sensitivity analysis (a/k/a what-if analysis) in the simulation models was used to predict the magnitudes of Steps 1 and 2 affected by changes in the National Board of Medical Examiners (NBME) Basic Science Subject Board scores. In addition, the study results indicated that the Medical College Admission Test (MCAT) Verbal Reasoning score and Step 1 score were significant predictors of the Step 2 performance. Hence, institutions could screen qualified student applicants for interviews and document the effectiveness of basic science education program based on the simulation results.Keywords: prediction model, sensitivity analysis, simulation method, USMLE
Procedia PDF Downloads 33916710 Conceptual Model for Logistics Information System
Authors: Ana María Rojas Chaparro, Cristian Camilo Sarmiento Chaves
Abstract:
Given the growing importance of logistics as a discipline for efficient management of materials flow and information, the adoption of tools that permit to create facilities in making decisions based on a global perspective of the system studied has been essential. The article shows how from a concepts-based model is possible to organize and represent in appropriate way the reality, showing accurate and timely information, features that make this kind of models an ideal component to support an information system, recognizing that information as relevant to establish particularities that allow get a better performance about the evaluated sector.Keywords: system, information, conceptual model, logistics
Procedia PDF Downloads 49616709 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region
Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan
Abstract:
Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.Keywords: flood, HEC-HMS, prediction, rainfall, runoff
Procedia PDF Downloads 39516708 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior
Authors: Nazli Uren, Ayse Okur
Abstract:
Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort
Procedia PDF Downloads 30216707 Implementation of IWA-ASM1 Model for Simulating the Wastewater Treatment Plant of Beja by GPS-X 5.1
Authors: Fezzani Boubaker
Abstract:
The modified activated sludge model (ASM1 or Mantis) is a generic structured model and a common platform for dynamic simulation of varieties of aerobic processes for optimization and upgrading of existing plants and for new facilities design. In this study, the modified ASM1 included in the GPS-X software was used to simulate the wastewater treatment plant (WWTP) of Beja treating domestic sewage mixed with baker‘s yeast factory effluent. The results of daily measurements and operating records were used to calibrate the model. A sensitivity and an automatic optimization analysis were conducted to determine the most sensitive and optimal parameters. The results indicated that the ASM1 model could simulate with good accuracy: the COD concentration of effluents from the WWTP of Beja for all months of the year 2012. In addition, it prevents the disruption observed at the output of the plant by injecting the baker‘s yeast factory effluent at high concentrations varied between 20 and 80 g/l.Keywords: ASM1, activated sludge, baker’s yeast effluent, modelling, simulation, GPS-X 5.1 software
Procedia PDF Downloads 34316706 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model
Authors: A. Clementking, C. Jothi Venkateswaran
Abstract:
Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining
Procedia PDF Downloads 47716705 The Future of Insurance: P2P Innovation versus Traditional Business Model
Authors: Ivan Sosa Gomez
Abstract:
Digitalization has impacted the entire insurance value chain, and the growing movement towards P2P platforms and the collaborative economy is also beginning to have a significant impact. P2P insurance is defined as innovation, enabling policyholders to pool their capital, self-organize, and self-manage their own insurance. In this context, new InsurTech start-ups are emerging as peer-to-peer (P2P) providers, based on a model that differs from traditional insurance. As a result, although P2P platforms do not change the fundamental basis of insurance, they do enable potentially more efficient business models to be established in terms of ensuring the coverage of risk. It is therefore relevant to determine whether p2p innovation can have substantial effects on the future of the insurance sector. For this purpose, it is considered necessary to develop P2P innovation from a business perspective, as well as to build a comparison between a traditional model and a P2P model from an actuarial perspective. Objectives: The objectives are (1) to represent P2P innovation in the business model compared to the traditional insurance model and (2) to establish a comparison between a traditional model and a P2P model from an actuarial perspective. Methodology: The research design is defined as action research in terms of understanding and solving the problems of a collectivity linked to an environment, applying theory and best practices according to the approach. For this purpose, the study is carried out through the participatory variant, which involves the collaboration of the participants, given that in this design, participants are considered experts. For this purpose, prolonged immersion in the field is carried out as the main instrument for data collection. Finally, an actuarial model is developed relating to the calculation of premiums that allows for the establishment of projections of future scenarios and the generation of conclusions between the two models. Main Contributions: From an actuarial and business perspective, we aim to contribute by developing a comparison of the two models in the coverage of risk in order to determine whether P2P innovation can have substantial effects on the future of the insurance sector.Keywords: Insurtech, innovation, business model, P2P, insurance
Procedia PDF Downloads 9216704 Modelling Enablers of Service Using ISM: Implications for Quality Improvements in Healthcare Sector of UAE
Authors: Flevy Lasrado
Abstract:
Purpose: The purpose of this paper is to show the relationship between the service quality dimensions and model them to propose quality improvements using interpretive structural modelling (ISM). Methodology: This paper used an interpretive structural modelling (ISM). The data was collected from the expert opinions that included a questionnaire. The detailed method of using ISM is discussed in the paper. Findings: The present research work provides an ISM based model to understand the relationships among the service quality dimensions. Practical implications or Original Value: An ISM based model has been developed for healthcare facility for improving customer satisfaction and increasing market share. Although there is lot of research on SERVQUAL model adapted to healthcare sector, no study has been done to understand the interactions among these dimensions. So the major contribution of this research work is the development of contextual relationships among identified variables through a systematic framework. The present research work provides an ISM based model to understand the relationships among the service quality dimensions.Keywords: SERQUAL, healthcare, quality, service quality
Procedia PDF Downloads 40516703 Predicting Financial Distress in South Africa
Authors: Nikki Berrange, Gizelle Willows
Abstract:
Business rescue has become increasingly popular since its inclusion in the Companies Act of South Africa in May 2011. The Alternate Exchange (AltX) of the Johannesburg Stock Exchange has experienced a marked increase in the number of companies entering business rescue. This study sampled twenty companies listed on the AltX to determine whether Altman’s Z-score model for emerging markets (ZEM) or Taffler’s Z-score model is a more accurate model in predicting financial distress for small to medium size companies in South Africa. The study was performed over three different time horizons; one, two and three years prior to the event of financial distress, in order to determine how many companies each model predicted would be unlikely to succeed as well as the predictive ability and accuracy of the respective models. The study found that Taffler’s Z-score model had a greater ability at predicting financial distress from all three-time horizons.Keywords: Altman’s ZEM-score, Altman’s Z-score, AltX, business rescue, Taffler’s Z-score
Procedia PDF Downloads 37216702 A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission
Authors: Bo Wang
Abstract:
As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM.Keywords: ZY-3 satellite imagery, DEM, SRTM, refinement
Procedia PDF Downloads 34316701 Interconnected Market Hypothesis: A Conceptual Model of Individualistic, Information-Based Interconnectedness
Authors: James Kinsella
Abstract:
There is currently very little understanding of how the interaction between in- vestors, consumers, the firms (agents) affect a) the transmission of information, and b) the creation and transfer of value and wealth between these two groups. Employing scholarly ideas from multiple research areas (behavioural finance, emotional finance, econo-biology, and game theory) we develop a conceptual the- oretic model (the ‘bow-tie’ model) as a framework for considering this interaction. Our bow-tie model views information transfer, value and wealth creation, and transfer through the lens of “investor-consumer connection facilitated through the communicative medium of the ‘firm’ (agents)”. We confront our bow-tie model with theoretical and practical examples. Next, we utilise consumer and business confidence data alongside index data, to conduct quantitative analy- sis, to support our bow-tie concept, and to introduce the concept of “investor- consumer connection”. We highlight the importance of information persuasiveness, knowledge, and emotional categorization of characteristics in facilitating a communicative relationship between investors, consumers, and the firm (agents), forming academic and practical applications of the conceptual bow-tie model, alongside applications to wider instances, such as those seen within the Covid-19 pandemic.Keywords: behavioral finance, emotional finance, economy-biology, social mood
Procedia PDF Downloads 12716700 Academic Staff Recruitment in Islamic University: A Proposed Holistic Model
Authors: Syahruddin Sumardi, Indra Fajar Alamsyah, Junaidah Hashim
Abstract:
This study attempts to explore and presents a proposed recruitment model in Islamic university which aligned with holistic role. It is a conceptual paper in nature. In turn, this study is designed to utilize exploratory approach. Literature and document review that related to this topic are used as the methods to analyse the content found. Recruitment for any organization is fundamental to achieve its goal effectively. Staffing in universities is vital due to the importance role of lecturers. Currently, Islamic universities still adopt the common process of recruitment for their academic staffs. Whereas, they have own characteristics which are embedded in their institutions. Furthermore, the FCWC (Foundation, Capability, Worldview and Commitment) model of recruitment proposes to suit the holistic character of Islamic university. Further studies are required to empirically validate the concept through systematic investigations. Additionally, measuring this model by a designed means is appreciated. The model provides the map and alternative tool of recruitment for Islamic universities to determine the process of recruitment which can appropriate their institutions. In addition, it also allows stakeholders and policy makers to consider regarding Islamic values that should inculcate in the Islamic higher learning institutions. This study initiates a foundational contribution for an early sequence of research.Keywords: academic staff, Islamic values, recruitment model, university
Procedia PDF Downloads 17016699 Traditional Knowledge on Living Fences in Andean Linear Plantations
Authors: German Marino Rivera
Abstract:
Linear plantations are a common practice in several countries as living fences (LF) delimiting agroecosystems. They are composed of multipurpose perennial woods that provide assets, protection, and supply services. However, not much is known in some traditional communities like the Andean region, including the species composition and the social and ecological benefits of the species used. In the High Andean Colombian region, LF seems to be very typical and diverse. This study aimed to analyze the traditional knowledge about LF systems, including the species composition and their uses in rural communities of Alto Casanare, Colombia. Field measurements, interviews, guided tours, and species sampling were carried out in order to describe traditional practices and the species used in the LF systems. The use values were estimated through the Coefficient of Importance of the Species (CIS). A total of 26 farms engage in LF practices, covering an area of 9283.3 m. In these systems, 30 species were identified, belonging to 23 families. Alnus acuminata was the specie with the highest CIS. The species presented multipurpose uses for both economic and ecological purposes. The transmission of knowledge (TEK) about the used species is very heterogeneous among the farmers. Many species used were not documented, with reciprocal gaps between the literature and traditional species uses. Exchanging this information would increase the species' versatility, the socioeconomic aspects of these communities, increases the agrobiodiversity and ecological services provided by LF. The description of the TEK on LF provides a better understanding of the relationship of these communities with the natural resources, pointing out creative approaches to achieve local environment conservation in these agroecosystems and promoting socioeconomic development.Keywords: ethnobotany, living fences, traditional communities, agroecology
Procedia PDF Downloads 9316698 Leadership Process Model: A Way to Provide Guidance in Dealing with the Key Challenges Within the Organisation
Authors: Rawaa El Ayoubi
Abstract:
Many researchers, academics and practitioners have developed leadership theories during the 20th century. This substantial effort has built more leadership theories, generating considerable organisational research on leadership models in contemporary literature. This paper explores the stages and drivers of leadership theory evolution based on the researcher’s personal conclusions and review of leadership theories. The purpose of this paper is to create a Leadership Process Model (LPM) that can provide guidance in dealing with the key challenges within the organisation. This integrative model of organisational leadership is based on inner meaning, leader values and vision. It further addresses the relationships between leadership theory, practice and development, exploring why challenges exist within the field of leadership theory and how these challenges can be mitigated.Keywords: leadership challenges, leadership process model, leadership |theories, organisational leadership, paradigm development
Procedia PDF Downloads 7816697 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models
Authors: A. Shebani, C. Pislaru
Abstract:
Wear of materials is an everyday experience and has been observed and studied for long time. The prediction of wear is a fundamental problem in the industrial field, mainly correlated to the planning of maintenance interventions and economy. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, and the alicona was used to measure the volume loss for pin and disc. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling and the simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation.Keywords: wear modelling, Archard Model, ASTM Model, Neural Networks Model, Pin-on-disc Test, Talysurf, digital microscope, Alicona
Procedia PDF Downloads 45616696 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation
Procedia PDF Downloads 43516695 The Non-Uniqueness of Partial Differential Equations Options Price Valuation Formula for Heston Stochastic Volatility Model
Authors: H. D. Ibrahim, H. C. Chinwenyi, T. Danjuma
Abstract:
An option is defined as a financial contract that provides the holder the right but not the obligation to buy or sell a specified quantity of an underlying asset in the future at a fixed price (called a strike price) on or before the expiration date of the option. This paper examined two approaches for derivation of Partial Differential Equation (PDE) options price valuation formula for the Heston stochastic volatility model. We obtained various PDE option price valuation formulas using the riskless portfolio method and the application of Feynman-Kac theorem respectively. From the results obtained, we see that the two derived PDEs for Heston model are distinct and non-unique. This establishes the fact of incompleteness in the model for option price valuation.Keywords: Black-Scholes partial differential equations, Ito process, option price valuation, partial differential equations
Procedia PDF Downloads 14516694 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets
Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can
Abstract:
This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.Keywords: tri-metallic, upsetting, copper, brass, steel, aluminum
Procedia PDF Downloads 34216693 Development of Terrorist Threat Prediction Model in Indonesia by Using Bayesian Network
Authors: Hilya Mudrika Arini, Nur Aini Masruroh, Budi Hartono
Abstract:
There are more than 20 terrorist threats from 2002 to 2012 in Indonesia. Despite of this fact, preventive solution through studies in the field of national security in Indonesia has not been conducted comprehensively. This study aims to provide a preventive solution by developing prediction model of the terrorist threat in Indonesia by using Bayesian network. There are eight stages to build the model, started from literature review, build and verify Bayesian belief network to what-if scenario. In order to build the model, four experts from different perspectives are utilized. This study finds several significant findings. First, news and the readiness of terrorist group are the most influent factor. Second, according to several scenarios of the news portion, it can be concluded that the higher positive news proportion, the higher probability of terrorist threat will occur. Therefore, the preventive solution to reduce the terrorist threat in Indonesia based on the model is by keeping the positive news portion to a maximum of 38%.Keywords: Bayesian network, decision analysis, national security system, text mining
Procedia PDF Downloads 39216692 Electro-Hydrodynamic Analysis of Low-Pressure DC Glow Discharge by Lattice Boltzmann Method
Authors: Ji-Hyok Kim, Il-Gyong Paek, Yong-Jun Kim
Abstract:
We propose a numerical model based on drift-diffusion theory and lattice Boltzmann method (LBM) to analyze the electro-hydrodynamic behavior in low-pressure direct current (DC) glow discharge plasmas. We apply the drift-diffusion theory for 4-species and employ the standard lattice Boltzmann model (SLBM) for the electron, the finite difference-lattice Boltzmann model (FD-LBM) for heavy particles, and the finite difference model (FDM) for the electric potential, respectively. Our results are compared with those of other methods, and emphasize the necessity of a two-dimensional analysis for glow discharge.Keywords: glow discharge, lattice Boltzmann method, numerical analysis, plasma simulation, electro-hydrodynamic
Procedia PDF Downloads 12016691 TELUM Land Use Model: An Investigation of Data Requirements and Calibration Results for Chittenden County MPO, U.S.A.
Authors: Georgia Pozoukidou
Abstract:
TELUM software is a land use model designed specifically to help metropolitan planning organizations (MPOs) prepare their transportation improvement programs and fulfill their numerous planning responsibilities. In this context obtaining, preparing, and validating socioeconomic forecasts are becoming fundamental tasks for an MPO in order to ensure that consistent population and employment data are provided to travel demand models. Chittenden County Metropolitan Planning Organization of Vermont State was used as a case study to test the applicability of TELUM land use model. The technical insights and lessons learned from the land use model application have transferable value for all MPOs faced with land use forecasting development and transportation modelling.Keywords: calibration data requirements, land use models, land use planning, metropolitan planning organizations
Procedia PDF Downloads 29216690 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data
Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou
Abstract:
In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution
Procedia PDF Downloads 10816689 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK
Authors: Mais Khader, Xingjie Wei
Abstract:
This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.Keywords: company survival, entrepreneurship, females, machine learning, SMEs
Procedia PDF Downloads 10116688 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 12916687 Factors of Social Network Platform Usage and Privacy Risk: A Unified Theory of Acceptance and Use of Technology2 Model
Abstract:
The trust and use of social network platforms by users are instrumental factors that contribute to the platform’s sustainable development. Studying the influential factors of the use of social network platforms is beneficial for developing and maintaining a large user base. This study constructed an extended unified theory of acceptance and use of technology (UTAUT2) moderating model with perceived privacy risks to analyze the factors affecting the trust and use of social network platforms. 444 participants completed our 35 surveys, and we verified the survey results by structural equation model. Empirical results reveal the influencing factors that affect the trust and use of social network platforms, and the extended UTAUT2 model with perceived privacy risks increases the applicability of UTAUT2 in social network scenarios. Social networking platforms can increase their use rate by increasing the economics, functionality, entertainment, and privacy security of the platform.Keywords: perceived privacy risk, social network, trust, use, UTAUT2 model
Procedia PDF Downloads 9816686 Circadian Disruption in Polycystic Ovary Syndrome Model Rats
Authors: Fangfang Wang, Fan Qu
Abstract:
Polycystic ovary syndrome (PCOS), the most common endocrinopathy among women of reproductive age, is characterized by ovarian dysfunction, hyperandrogenism and reduced fecundity. The aim of this study is to investigate whether the circadian disruption is involved in pathogenesis of PCOS in androgen-induced animal model. We established a rat model of PCOS using single subcutaneous injection with testosterone propionate on the ninth day after birth, and confirmed their PCOS-like phenotypes with vaginal smears, ovarian hematoxylin and eosin (HE) staining and serum androgen measurement. The control group rats received the vehicle only. Gene expression was detected by real-time quantitative PCR. (1) Compared with control group, PCOS model rats of 10-week group showed persistently keratinized vaginal cells, while all the control rats showed at least two consecutive estrous cycles. (2) Ovarian HE staining and histological examination showed that PCOS model rats of 10-week group presented many cystic follicles with decreased numbers of granulosa cells and corpora lutea in their ovaries, while the control rats had follicles with normal layers of granulosa cells at various stages of development and several generations of corpora lutea. (3) In the 10-week group, serum free androgen index was notably higher in PCOS model rats than controls. (4) Disturbed mRNA expression patterns of core clock genes were found in ovaries of PCOS model rats of 10-week group. Abnormal expression of key genes associated with circadian rhythm in ovary may be one of the mechanisms for ovarian dysfunction in PCOS model rats induced by androgen.Keywords: polycystic ovary syndrome, androgen, animal model, circadian disruption
Procedia PDF Downloads 23016685 Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation
Authors: Amir Jalalian-Khakshour, T. N. Croft
Abstract:
Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.Keywords: power generation, renewable energy, rotordynamics, wind energy
Procedia PDF Downloads 304