Search results for: bubble points
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2596

Search results for: bubble points

496 Management of Innovations in the Context of Overcoming Destructive Work Motivation and Anomie

Authors: Naira Hakobyan, Shant Bagratyan

Abstract:

This paper explores the phenomenon of management of innovations from the standpoint of work motivation. The main purpose of the theoretical research is to reveal the role of management of innovations to overcome the destructive work motivation and anomie. Systematization of the theoretical approaches and the literary sources indicates connections between destructive forms of work motivation and anomie. These connections allow an understanding of the role of innovations dedicated to decrease the motivational destructiveness of the employees. It is important to note that, in general, the presence of destructive motivation among employees can lead to work anomie. At the same time, issues related to the influence of destructive motivation on innovative processes in the management of an organization are not sufficiently studied. Exploring the factors leading to destructive work motivation and anomie manages toolkit and innovative ways of solution of the motivational destructiveness. The relevance of this scientific issue is that motivational destructiveness and work anomie are widespread phenomena in modern society. It means that previous forms of management become unusable and the way to introduce the innovations seems unclear for the employees. Investigation of the phenomenon of management of innovations is carried out in the following logical sequence: firstly, the issues of destructive work motivation and leadership are considered, and then the key points of work anomie are presented. Finally, there are explored the modern trends in the management of innovations aimed at overcoming motivational destructiveness and work anomie. The issue of management of innovations is explored by two levels: external-social and internal-organizational levels. Considering the phenomenon of management of innovations, the motivational role of the innovations is emphasized. The object of the research is the phenomenon of management of innovations in the context of overcoming motivational and anomic destructiveness. The paper presents the results of the theoretical analysis of the main factors of destructive motivation and work anomie among employees: an excessive dependence of employees on the manager, ignorance of one’s own work functions or unreasonable change by the manager, prevalence of formalism in assessing work comparing with the content and quality of work, lack of adaptive interaction among employees and low self-esteem of work activity. The paper theoretically proves that unclearly formulated innovative strategies for the development of the organization, lack of feedback from the manager to employees regarding the discussion of innovative technologies, non-compliance of working conditions with declared norms and standards, and formalism in management of innovations lead to destructiveness in a management system. The results of the research can be useful for managers, sociologists, economists, and psychologists.

Keywords: management of innovations, destructive motivation, work anomie, leadership, workaholism

Procedia PDF Downloads 22
495 Logistical Optimization of Nuclear Waste Flows during Decommissioning

Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. Ladier, S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet

Abstract:

An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.

Keywords: nuclear decommissioning, logistical optimization, decision-support framework, waste management

Procedia PDF Downloads 324
494 Empirical Orthogonal Functions Analysis of Hydrophysical Characteristics in the Shira Lake in Southern Siberia

Authors: Olga S. Volodko, Lidiya A. Kompaniets, Ludmila V. Gavrilova

Abstract:

The method of empirical orthogonal functions is the method of data analysis with a complex spatial-temporal structure. This method allows us to decompose the data into a finite number of modes determined by empirically finding the eigenfunctions of data correlation matrix. The modes have different scales and can be associated with various physical processes. The empirical orthogonal function method has been widely used for the analysis of hydrophysical characteristics, for example, the analysis of sea surface temperatures in the Western North Atlantic, ocean surface currents in the North Carolina, the study of tropical wave disturbances etc. The method used in this study has been applied to the analysis of temperature and velocity measurements in saline Lake Shira (Southern Siberia, Russia). Shira is a shallow lake with the maximum depth of 25 m. The lake Shira can be considered as a closed water site because of it has one small river providing inflow and but it has no outflows. The main factor that causes the motion of fluid is variable wind flows. In summer the lake is strongly stratified by temperature and saline. Long-term measurements of the temperatures and currents were conducted at several points during summer 2014-2015. The temperature has been measured with an accuracy of 0.1 ºC. The data were analyzed using the empirical orthogonal function method in the real version. The first empirical eigenmode accounts for 70-80 % of the energy and can be interpreted as temperature distribution with a thermocline. A thermocline is a thermal layer where the temperature decreases rapidly from the mixed upper layer of the lake to much colder deep water. The higher order modes can be interpreted as oscillations induced by internal waves. The currents measurements were recorded using Acoustic Doppler Current Profilers 600 kHz and 1200 kHz. The data were analyzed using the empirical orthogonal function method in the complex version. The first empirical eigenmode accounts for about 40 % of the energy and corresponds to the Ekman spiral occurring in the case of a stationary homogeneous fluid. Other modes describe the effects associated with the stratification of fluids. The second and next empirical eigenmodes were associated with dynamical modes. These modes were obtained for a simplified model of inhomogeneous three-level fluid at a water site with a flat bottom.

Keywords: Ekman spiral, empirical orthogonal functions, data analysis, stratified fluid, thermocline

Procedia PDF Downloads 136
493 School Belongingness and Coping with Bullying: Greek Adolescent Students' Experiences

Authors: E. Didaskalou, C. Roussi-Vergou, E. Andreou, G. Skrzypiec, P. Slee

Abstract:

There has been growing interest lately, in the study of victimization among adolescent students in Greece and elsewhere with a view to improve school policies concerning anti-bullying practices. Researchers have recently focused on investigating the relationships between the extent of students’ victimization and the distinct mechanisms that they employ for coping with this particular problem. In particular, the emphasis has been placed on exploring the relationship between the coping strategies students use to counteract bullying, their sense of belonging at school, and extent of their victimization. Methods: Within the research framework outlined above, we set out to: a) examine the frequency of self-reported victimization among secondary school students, b) investigate the coping strategies employed by students when confronted with school bullying and c) explore any differences between bullied and non-bullied students with regard to coping strategies and school belongingness. The sample consisted of 860 from fifteen secondary public schools in central Greece. The schools were typical Greek secondary schools and the principals volunteered to participate in this study. Participants’ age ranged from 12 to 16 years. Measures: a) Exposure to Victimization: The frequency of victimization was directly located by asking students the question: ‘Over the last term, how often have you been bullied or harassed by a student or students at this high school?’ b) Coping Strategies: The ‘Living and Learning at School: Bullying at School’ was administered to students, c) School belongingness was assessed by the Psychological Sense of School Membership Scale, that students completed. Results: Regarding the frequency of self-reported victimization, 1.5% of the students reported being victimized every day, 2.8% most days of the week, 2.1% one or more days a week, 2.9% about once a week, 22.6% less than once a week and 68.1% never. The coping strategies that the participants employed for terminating their victimization included: a) adult support seeking, b) emotional coping/keep away from school, c) keeping healthy and fit, d) demonstrating a positive attitude towards the bully, d) peer support seeking, e) emotional out bursting, f) wishful thinking and self-blaming, g) pretending as if it is not happening, h) displaying assertive behaviors and i) getting away from the bullies. Bullied from non-bullied children did not differ as much in coping, as in feelings of being rejected in school. Discussion: The findings are in accordance with accumulated research evidence which points to a strong relationship between student perceptions of school belongingness and their involvement in bullying behaviors. We agree with the view that a positive school climate is likely to serve as a buffer that mitigates wider adverse societal influences and institutional attitudes which favor violence and harassment among peers.

Keywords: school bullying, school belonging, student coping strategies, victimization

Procedia PDF Downloads 249
492 Demarcating Wetting States in Pressure-Driven Flows by Poiseuille Number

Authors: Anvesh Gaddam, Amit Agrawal, Suhas Joshi, Mark Thompson

Abstract:

An increase in surface area to volume ratio with a decrease in characteristic length scale, leads to a rapid increase in pressure drop across the microchannel. Texturing the microchannel surfaces reduce the effective surface area, thereby decreasing the pressured drop. Surface texturing introduces two wetting states: a metastable Cassie-Baxter state and stable Wenzel state. Predicting wetting transition in textured microchannels is essential for identifying optimal parameters leading to maximum drag reduction. Optical methods allow visualization only in confined areas, therefore, obtaining whole-field information on wetting transition is challenging. In this work, we propose a non-invasive method to capture wetting transitions in textured microchannels under flow conditions. To this end, we tracked the behavior of the Poiseuille number Po = f.Re, (with f the friction factor and Re the Reynolds number), for a range of flow rates (5 < Re < 50), and different wetting states were qualitatively demarcated by observing the inflection points in the f.Re curve. Microchannels with both longitudinal and transverse ribs with a fixed gas fraction (δ, a ratio of shear-free area to total area) and at a different confinement ratios (ε, a ratio of rib height to channel height) were fabricated. The measured pressure drop values for all the flow rates across the textured microchannels were converted into Poiseuille number. Transient behavior of the pressure drop across the textured microchannels revealed the collapse of liquid-gas interface into the gas cavities. Three wetting states were observed at ε = 0.65 for both longitudinal and transverse ribs, whereas, an early transition occurred at Re ~ 35 for longitudinal ribs at ε = 0.5, due to spontaneous flooding of the gas cavities as the liquid-gas interface ruptured at the inlet. In addition, the pressure drop in the Wenzel state was found to be less than the Cassie-Baxter state. Three-dimensional numerical simulations confirmed the initiation of the completely wetted Wenzel state in the textured microchannels. Furthermore, laser confocal microscopy was employed to identify the location of the liquid-gas interface in the Cassie-Baxter state. In conclusion, the present method can overcome the limitations posed by existing techniques, to conveniently capture wetting transition in textured microchannels.

Keywords: drag reduction, Poiseuille number, textured surfaces, wetting transition

Procedia PDF Downloads 161
491 Market Solvency Capital Requirement Minimization: How Non-linear Solvers Provide Portfolios Complying with Solvency II Regulation

Authors: Abraham Castellanos, Christophe Durville, Sophie Echenim

Abstract:

In this article, a portfolio optimization problem is performed in a Solvency II context: it illustrates how advanced optimization techniques can help to tackle complex operational pain points around the monitoring, control, and stability of Solvency Capital Requirement (SCR). The market SCR of a portfolio is calculated as a combination of SCR sub-modules. These sub-modules are the results of stress-tests on interest rate, equity, property, credit and FX factors, as well as concentration on counter-parties. The market SCR is non convex and non differentiable, which does not make it a natural optimization criteria candidate. In the SCR formulation, correlations between sub-modules are fixed, whereas risk-driven portfolio allocation is usually driven by the dynamics of the actual correlations. Implementing a portfolio construction approach that is efficient on both a regulatory and economic standpoint is not straightforward. Moreover, the challenge for insurance portfolio managers is not only to achieve a minimal SCR to reduce non-invested capital but also to ensure stability of the SCR. Some optimizations have already been performed in the literature, simplifying the standard formula into a quadratic function. But to our knowledge, it is the first time that the standard formula of the market SCR is used in an optimization problem. Two solvers are combined: a bundle algorithm for convex non- differentiable problems, and a BFGS (Broyden-Fletcher-Goldfarb- Shanno)-SQP (Sequential Quadratic Programming) algorithm, to cope with non-convex cases. A market SCR minimization is then performed with historical data. This approach results in significant reduction of the capital requirement, compared to a classical Markowitz approach based on the historical volatility. A comparative analysis of different optimization models (equi-risk-contribution portfolio, minimizing volatility portfolio and minimizing value-at-risk portfolio) is performed and the impact of these strategies on risk measures including market SCR and its sub-modules is evaluated. A lack of diversification of market SCR is observed, specially for equities. This was expected since the market SCR strongly penalizes this type of financial instrument. It was shown that this direct effect of the regulation can be attenuated by implementing constraints in the optimization process or minimizing the market SCR together with the historical volatility, proving the interest of having a portfolio construction approach that can incorporate such features. The present results are further explained by the Market SCR modelling.

Keywords: financial risk, numerical optimization, portfolio management, solvency capital requirement

Procedia PDF Downloads 117
490 Improving the Dielectric Strength of Transformer Oil for High Health Index: An FEM Based Approach Using Nanofluids

Authors: Fatima Khurshid, Noor Ul Ain, Syed Abdul Rehman Kashif, Zainab Riaz, Abdullah Usman Khan, Muhammad Imran

Abstract:

As the world is moving towards extra-high voltage (EHV) and ultra-high voltage (UHV) power systems, the performance requirements of power transformers are becoming crucial to the system reliability and security. With the transformers being an essential component of a power system, low health index of transformers poses greater risks for safe and reliable operation. Therefore, to meet the rising demands of the power system and transformer performance, researchers are being prompted to provide solutions for enhanced thermal and electrical properties of transformers. This paper proposes an approach to improve the health index of a transformer by using nano-technology in conjunction with bio-degradable oils. Vegetable oils can serve as potential dielectric fluid alternatives to the conventional mineral oils, owing to their numerous inherent benefits; namely, higher fire and flashpoints, and being environment-friendly in nature. Moreover, the addition of nanoparticles in the dielectric fluid further serves to improve the dielectric strength of the insulation medium. In this research, using the finite element method (FEM) in COMSOL Multiphysics environment, and a 2D space dimension, three different oil samples have been modelled, and the electric field distribution is computed for each sample at various electric potentials, i.e., 90 kV, 100 kV, 150 kV, and 200 kV. Furthermore, each sample has been modified with the addition of nanoparticles of different radii (50 nm and 100 nm) and at different interparticle distance (5 mm and 10 mm), considering an instant of time. The nanoparticles used are non-conductive and have been modelled as alumina (Al₂O₃). The geometry has been modelled according to IEC standard 60897, with a standard electrode gap distance of 25 mm. For an input supply voltage of 100 kV, the maximum electric field stresses obtained for the samples of synthetic vegetable oil, olive oil, and mineral oil are 5.08 ×10⁶ V/m, 5.11×10⁶ V/m and 5.62×10⁶ V/m, respectively. It is observed that for the unmodified samples, vegetable oils have a greater dielectric strength as compared to the conventionally used mineral oils because of their higher flash points and higher values of relative permittivity. Also, for the modified samples, the addition of nanoparticles inhibits the streamer propagation inside the dielectric medium and hence, serves to improve the dielectric properties of the medium.

Keywords: dielectric strength, finite element method, health index, nanotechnology, streamer propagation

Procedia PDF Downloads 142
489 A Cooperative, Autonomous, and Continuously Operating Drone System Offered to Railway and Bridge Industry: The Business Model Behind

Authors: Paolo Guzzini, Emad Samuel M. Ebeid

Abstract:

Bridges and Railways are critical infrastructures. Ensuring safety for transports using such assets is a primary goal as it directly impacts the lives of people. By the way, improving safety could require increased investments in O&M, and therefore optimizing resource usage for asset maintenance becomes crucial. Drones4Safety (D4S), a European project funded under the H2020 Research and Innovation Action (RIA) program, aims to increase the safety of the European civil transport by building a system that relies on 3 main pillars: • Drones operating autonomously in swarm mode; • Drones able to recharge themselves using inductive phenomena produced by transmission lines in the nearby of bridges and railways assets to be inspected; • Data acquired that are analyzed with AI-empowered algorithms for defect detection This paper describes the business model behind this disruptive project. The Business Model is structured in 2 parts: • The first part is focused on the design of the business model Canvas, to explain the value provided by the Drone4safety project; • The second part aims at defining a detailed financial analysis, with the target of calculating the IRR (Internal Return rate) and the NPV (Net Present Value) of the investment in a 7 years plan (2 years to run the project + 5 years post-implementation). As to the financial analysis 2 different points of view are assumed: • Point of view of the Drones4safety company in charge of designing, producing, and selling the new system; • Point of view of the Utility company that will adopt the new system in its O&M practices; Assuming the point of view of the Drones4safety company 3 scenarios were considered: • Selling the drones > revenues will be produced by the drones’ sales; • Renting the drones > revenues will be produced by the rental of the drones (with a time-based model); • Selling the data acquisition service > revenues will be produced by the sales of pictures acquired by drones; Assuming the point of view of a utility adopting the D4S system, a 4th scenario was analyzed taking into account the decremental costs related to the change of operation and maintenance practices. The paper will show, for both companies, what are the key parameters affecting most of the business model and which are the sustainable scenarios.

Keywords: a swarm of drones, AI, bridges, railways, drones4safety company, utility companies

Procedia PDF Downloads 141
488 The Emergence of Memory at the Nanoscale

Authors: Victor Lopez-Richard, Rafael Schio Wengenroth Silva, Fabian Hartmann

Abstract:

Memcomputing is a computational paradigm that combines information processing and storage on the same physical platform. Key elements for this topic are devices with an inherent memory, such as memristors, memcapacitors, and meminductors. Despite the widespread emergence of memory effects in various solid systems, a clear understanding of the basic microscopic mechanisms that trigger them is still a puzzling task. We report basic ingredients of the theory of solid-state transport, intrinsic to a wide range of mechanisms, as sufficient conditions for a memristive response that points to the natural emergence of memory. This emergence should be discernible under an adequate set of driving inputs, as highlighted by our theoretical prediction and general common trends can be thus listed that become a rule and not the exception, with contrasting signatures according to symmetry constraints, either built-in or induced by external factors at the microscopic level. Explicit analytical figures of merit for the memory modulation of the conductance are presented, unveiling very concise and accessible correlations between general intrinsic microscopic parameters such as relaxation times, activation energies, and efficiencies (encountered throughout various fields in Physics) with external drives: voltage pulses, temperature, illumination, etc. These building blocks of memory can be extended to a vast universe of materials and devices, with combinations of parallel and independent transport channels, providing an efficient and unified physical explanation for a wide class of resistive memory devices that have emerged in recent years. Its simplicity and practicality have also allowed a direct correlation with reported experimental observations with the potential of pointing out the optimal driving configurations. The main methodological tools used to combine three quantum transport approaches, Drude-like model, Landauer-Buttiker formalism, and field-effect transistor emulators, with the microscopic characterization of nonequilibrium dynamics. Both qualitative and quantitative agreements with available experimental responses are provided for validating the main hypothesis. This analysis also shades light on the basic universality of complex natural impedances of systems out of equilibrium and might help pave the way for new trends in the area of memory formation as well as in its technological applications.

Keywords: memories, memdevices, memristors, nonequilibrium states

Procedia PDF Downloads 99
487 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM

Authors: Fazli Rahim Shinwari, Ulrich Dittmer

Abstract:

Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.

Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage

Procedia PDF Downloads 153
486 Riverine Urban Heritage: A Basis for Green Infrastructure

Authors: Ioanna H. Lioliou, Despoina D. Zavraka

Abstract:

The radical reformation that Greek urban space, has undergone over the last century, due to the socio-historical developments, technological development and political–geographic factors, has left its imprint on the urban landscape. While the big cities struggle to regain urban landscape balance, small towns are considered to offer high quality lifescapes, ensuring sustainable development potential. However, their unplanned urbanization process led to the loss of significant areas of nature, lack of essential infrastructure, chaotic built environment, incompatible land uses and urban cohesiveness. Natural environment reference points, such as springs, streams, rivers, forests, suburban greenbelts, and etc.; seems to be detached from urban space, while the public, open and green spaces, unequally distributed in the built environment, they are no longer able to offer a complete experience of nature in the city. This study focuses on Greek mainland, a small town Elassona, and aims to restore spatial coherence between the city’s homonymous river and its urban space surroundings. The existence of a linear aquatic ecosystem, is considered a precious greenway, also referred as blueway, able to initiate natural penetrations and ecosystems empowering. The integration of disconnected natural ecosystems forms the basis of a strategic intervention scheme, where the river becomes the urban integration tool / feature, constituting the main urban corridor and an indispensible part of a wider green network that connects open and green spaces, ensuring the function of all the established networks (transportation, commercial, social) of the town. The proposed intervention, introduces a green network highlighting the old stone bridge at the ‘entrance’ of the river in the town and expanding throughout the town with strategic uses and activities, providing accessibility for all the users. The methodology used, is based on the collection of design tools used in related urban river-design interventions around the world. The reinstallation/reactivation of the balance between natural and urban landscape, besides the environmental benefits, contributes decisively to the illustration/projection of urban green identity and re-enhancement of the quality of lifescape qualities and social interaction.

Keywords: green network, rehabilitation scheme, urban landscape, urban streams

Procedia PDF Downloads 281
485 Fillet Chemical Composition of Sharpsnout Seabream (Diplodus puntazzo) from Wild and Cage-Cultured Conditions

Authors: Oğuz Taşbozan, Celal Erbaş, Şefik Surhan Tabakoğlu, Mahmut Ali Gökçe

Abstract:

Polyunsaturated fatty acids (PUFAs) and particularly the levels and ratios of ω-3 and ω-6 fatty acids are important for biological functions in humans and recognized as essential components of human diet. According to the terms of many different points of view, the nutritional composition of fish in culture conditions and caught from wild are wondered by the consumers. Therefore the aim of this study was to investigate the chemical composition of cage-cultured and wild sharpsnout seabream which has been preferred by the consumers as an economical important fish species in Turkey. The fish were caught from wild and obtained from cage-cultured commercial companies. Eight fish were obtained for each group, and their average weights of the samples were 245.8±13.5 g for cultured, 149.4±13.3 g for wild samples. All samples were stored in freezer (-18 °C) and analyses were carried out in triplicates, using homogenized boneless fish fillets. Proximate compositions (protein, ash, moisture and lipid) were determined. The fatty acid composition was analyzed by a GC Clarous 500 with auto sampler (Perkin–Elmer, USA). Proximate compositions of cage-cultured and wild samples of sharpsnout seabream were found statistical differences in terms of proximate composition between the groups. The saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and PUFA amounts of cultured and wild sharpsnout seabream were significantly different. ω3/ω6 ratio was higher in the cultured group. Especially in protein level and lipid level of cultured samples was significantly higher than wild counterparts. One of the reasons for this, cultured species exposed to continuous feeding. This situation had a direct effect on their body lipid content. The fatty acid composition of fish differs depending on a variety of factors including species, diet, environmental factors and whether they are farmed or wild. The higher levels of MUFA in the cultured fish may be explained with the high content of monoenoic fatty acids in the feed of cultured fish as in some other species. The ω3/ω6 ratio is a good index for comparing the relative nutritional value of fish oils. In our study, the cultured sharpsnout seabream appears to be better nutritious in terms of ω3/ω6. Acknowledgement: This work was supported by the Scientific Research Project Unit of the University of Cukurova, Turkey under grant no FBA-2016-5780.

Keywords: Diplodus puntazo, cage cultured, PUFA, fatty acid

Procedia PDF Downloads 267
484 Terrestrial Laser Scans to Assess Aerial LiDAR Data

Authors: J. F. Reinoso-Gordo, F. J. Ariza-López, A. Mozas-Calvache, J. L. García-Balboa, S. Eddargani

Abstract:

The DEMs quality may depend on several factors such as data source, capture method, processing type used to derive them, or the cell size of the DEM. The two most important capture methods to produce regional-sized DEMs are photogrammetry and LiDAR; DEMs covering entire countries have been obtained with these methods. The quality of these DEMs has traditionally been evaluated by the national cartographic agencies through punctual sampling that focused on its vertical component. For this type of evaluation there are standards such as NMAS and ASPRS Positional Accuracy Standards for Digital Geospatial Data. However, it seems more appropriate to carry out this evaluation by means of a method that takes into account the superficial nature of the DEM and, therefore, its sampling is superficial and not punctual. This work is part of the Research Project "Functional Quality of Digital Elevation Models in Engineering" where it is necessary to control the quality of a DEM whose data source is an experimental LiDAR flight with a density of 14 points per square meter to which we call Point Cloud Product (PCpro). In the present work it is described the capture data on the ground and the postprocessing tasks until getting the point cloud that will be used as reference (PCref) to evaluate the PCpro quality. Each PCref consists of a patch 50x50 m size coming from a registration of 4 different scan stations. The area studied was the Spanish region of Navarra that covers an area of 10,391 km2; 30 patches homogeneously distributed were necessary to sample the entire surface. The patches have been captured using a Leica BLK360 terrestrial laser scanner mounted on a pole that reached heights of up to 7 meters; the position of the scanner was inverted so that the characteristic shadow circle does not exist when the scanner is in direct position. To ensure that the accuracy of the PCref is greater than that of the PCpro, the georeferencing of the PCref has been carried out with real-time GNSS, and its accuracy positioning was better than 4 cm; this accuracy is much better than the altimetric mean square error estimated for the PCpro (<15 cm); The kind of DEM of interest is the corresponding to the bare earth, so that it was necessary to apply a filter to eliminate vegetation and auxiliary elements such as poles, tripods, etc. After the postprocessing tasks the PCref is ready to be compared with the PCpro using different techniques: cloud to cloud or after a resampling process DEM to DEM.

Keywords: data quality, DEM, LiDAR, terrestrial laser scanner, accuracy

Procedia PDF Downloads 101
483 Particle Gradient Generation in a Microchannel Using a Single IDT

Authors: Florian Kiebert, Hagen Schmidt

Abstract:

Standing surface acoustic waves (sSAWs) have already been used to manipulate particles in a microfluidic channel made of polydimethylsiloxan (PDMS). Usually two identical facing interdigital transducers (IDTs) are exploited to form an sSAW. Further, it has been reported that an sSAW can be generated by a single IDT using a superstrate resonating cavity or a PDMS post. Nevertheless, both setups utilising a traveling surface acoustic wave (tSAW) to create an sSAW for particle manipulation are costly. We present a simplified setup with a tSAW and a PDMS channel to form an sSAW. The incident tSAW is reflected at the rear PDMS channel wall and superimposed with the reflected tSAW. This superpositioned waves generates an sSAW but only at regions where the distance to the rear channel wall is smaller as the attenuation length of the tSAW minus the channel width. Therefore in a channel of 500µm width a tSAW with a wavelength λ = 120 µm causes a sSAW over the whole channel, whereas a tSAW with λ = 60 µm only forms an sSAW next to the rear wall of the channel, taken into account the attenuation length of a tSAW in water. Hence, it is possible to concentrate and trap particles in a defined region of the channel by adjusting the relation between the channel width and tSAW wavelength. Moreover, it is possible to generate a particle gradient over the channel width by picking the right ratio between channel wall and wavelength. The particles are moved towards the rear wall by the acoustic streaming force (ASF) and the acoustic radiation force (ARF) caused by the tSAW generated bulk acoustic wave (BAW). At regions in the channel were the sSAW is dominating the ARF focuses the particles in the pressure nodes formed by the sSAW caused BAW. On the one side the ARF generated by the sSAW traps the particle at the center of the tSAW beam, i. e. of the IDT aperture. On the other side, the ASF leads to two vortices, one on the left and on the right side of the focus region, deflecting the particles out of it. Through variation of the applied power it is possible to vary the number of particles trapped in the focus points, because near to the rear wall the amplitude of the reflected tSAW is higher and, therefore, the ARF of the sSAW is stronger. So in the vicinity of the rear wall the concentration of particles is higher but decreases with increasing distance to the wall, forming a gradient of particles. The particle gradient depends on the applied power as well as on the flow rate. Thus by variation of these two parameters it is possible to change the particle gradient. Furthermore, we show that the particle gradient can be modified by changing the relation between the channel width and tSAW wavelength. Concluding a single IDT generates an sSAW in a PDMS microchannel enables particle gradient generation in a well-defined microfluidic flow system utilising the ARF and ASF of a tSAW and an sSAW.

Keywords: ARF, ASF, particle manipulation, sSAW, tSAW

Procedia PDF Downloads 336
482 Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities

Authors: Sven Borén, Lisiana Nurhadi, Henrik Ny

Abstract:

From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.

Keywords: sustainability, electric, bus, noise, greencharge

Procedia PDF Downloads 344
481 Sub-Optimum Safety Performance of a Construction Project: A Multilevel Exploration

Authors: Tas Yong Koh, Steve Rowlinson, Yuzhong Shen

Abstract:

In construction safety management, safety climate has long been linked to workers' safety behaviors and performance. For this reason, safety climate concept and tools have been used as heuristics to diagnose a range of safety-related issues by some progressive contractors in Hong Kong and elsewhere. However, as a diagnostic tool, safety climate tends to treat the different components of the climate construct in a linear fashion. Safety management in construction projects, in reality, is a multi-faceted and multilevel phenomenon that resembles a complex system. Hence, understanding safety management in construction projects requires not only the understanding of safety climate but also the organizational-systemic nature of the phenomenon. Our involvement, diagnoses, and interpretations of a range of safety climate-related issues which culminated in the project’s sub-optimum safety performance in an infrastructure construction project have brought about such revelation. In this study, a range of data types had been collected from various hierarchies of the project site organization. These include the frontline workers and supervisors from the main and sub-contractors, and the client supervisory personnel. Data collection was performed through the administration of safety climate questionnaire, interviews, observation, and document study. The findings collectively indicate that what had emerged in parallel of the seemingly linear climate-based exploration is the exposition of the organization-systemic nature of the phenomenon. The results indicate the negative impacts of climate perceptions mismatch, insufficient work planning, and risk management, mixed safety leadership, workforce negative attributes, lapsed safety enforcement and resources shortages collectively give rise to the project sub-optimum safety performance. From the dynamic causation and multilevel perspective, the analyses show that the individual, group, and organizational levels issues are interrelated and these interrelationships are linked to negative safety climate. Hence the adoption of both perspectives has enabled a fuller understanding of the phenomenon of safety management that point to the need for an organizational-systemic intervention strategy. The core message points to the fact that intervention at an individual level will only meet with limited success if the risks embedded in the higher levels in group and project organization are not addressed. The findings can be used to guide the effective development of safety infrastructure by linking different levels of systems in a construction project organization.

Keywords: construction safety management, dynamic causation, multilevel analysis, safety climate

Procedia PDF Downloads 176
480 Petrographic Properties of Sedimentary-Exhalative Type Ores of Filizchay Polymetallic Deposit

Authors: Samir Verdiyev, Fuad Huseynov, Islam Guliyev, Coşqun İsmayıl

Abstract:

The Filizchay polymetallic deposit is located on the southern slope of the Greater Caucasus Mountain Range, northwest of Azerbaijan in the Balaken district. Filizchay is the largest polymetallic deposit in the region and the second-largest polymetallic deposit in Europe. The mineral deposits in the region are associated with two different geodynamic evolutions that began with the Mesozoic collision along the Eurasian continent and the formation of a magmatic arc after the collision and continued with subduction in the Cenozoic. The bedrocks associated with Filizchay mineralization are Early Jurassic aged. The stratigraphic sequence of the deposit is consisting of black metamorphic clay shales, sandstones, and ore layers. Shales, sandstones, and siltstones are encountered in the upper and middle sections of the ore body, while only shales are observed at the lowest ranges. The ore body is mainly layered by the geometric structure of the bedrock; folding can be observed in the ore layers along with the bedrock foliation, and just in few points indirect laying due to the metamorphism. This suggests that the Filizchay ore mineralization is syngenetic, which is proved by the mineralization by the bedrock. To determine the ore petrography properties of the Filizchay deposit, samples were collected from the region where the ore is concentrated, and a polished section was prepared. These collected samples were examined under the mineralogical microscope to reveal the paragenesis of the mineralization and to explain the relation of ore minerals to each other. In this study, macroscopically observed minerals and textures of these minerals were used in the cores revealed during drilling exploration made by AzerGold CJS company. As a result of all these studies, it has been determined that there are three main mineralization types in the Filizchay deposit: banded, massive, and veinlet ores. The mineralization is in the massive pyrite; furthermore, the basis of the ore-mass contains pyrite, chalcopyrite, sphalerite, and galena. The pyrite in some parts of the ore body transformed to pyrrhotite as a result of metamorphism. Pyrite-chalcopyrite, pyrite-sphalerite-galena, pyrite-pyrrhotite mineral assemblages were determined during microscopic studies of mineralization. The replacement texture is more developed in Filizchay ores. The banded polymetallic type mineralization and near bedrocks are cut by quartz-carbonate veins. The geotectonic position and lithological conditions of the Filizchay deposit, the texture, and interrelationship of the sulfide mineralization indicate that it is a sedimentary-exhalative type of Au-Cu-Ag-Zn-Pb polymetallic deposit that is genetically related to the massive sulfide deposits.

Keywords: Balaken, Filizchay, metamorphism, polymetallic mineralization

Procedia PDF Downloads 212
479 Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach

Authors: Xin Jiao, Xin Zhang, Jian Fan, Zhenwei Cai, Yiming Xu

Abstract:

Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time.

Keywords: tower crane, inspection, unmanned aerial vehicle (UAV), intelligent inspection app system, safety management

Procedia PDF Downloads 43
478 A Discussion on Urban Planning Methods after Globalization within the Context of Anticipatory Systems

Authors: Ceylan Sozer, Ece Ceylan Baba

Abstract:

The reforms and changes that began with industrialization in cities and continued with globalization in 1980’s, created many changes in urban environments. City centers which are desolated due to industrialization, began to get crowded with globalization and became the heart of technology, commerce and social activities. While the immediate and intense alterations are planned around rigorous visions in developed countries, several urban areas where the processes were underestimated and not taken precaution faced with irrevocable situations. When the effects of the globalization in the cities are examined, it is seen that there are some anticipatory system plans in the cities about the future problems. Several cities such as New York, London and Tokyo have planned to resolve probable future problems in a systematic scheme to decrease possible side effects during globalization. The decisions in urban planning and their applications are the main points in terms of sustainability and livability in such mega-cities. This article examines the effects of globalization on urban planning through 3 mega cities and the applications. When the applications of urban plannings of the three mega-cities are investigated, it is seen that the city plans are generated under light of past experiences and predictions of a certain future. In urban planning, past and present experiences of a city should have been examined and then future projections could be predicted together with current world dynamics by a systematic way. In this study, methods used in urban planning will be discussed and ‘Anticipatory System’ model will be explained and relations with global-urban planning will be discussed. The concept of ‘anticipation’ is a phenomenon that means creating foresights and predictions about the future by combining past, present and future within an action plan. The main distinctive feature that separates anticipatory systems from other systems is the combination of past, present and future and concluding with an act. Urban plans that consist of various parameters and interactions together are identified as ‘live’ and they have systematic integrities. Urban planning with an anticipatory system might be alive and can foresight some ‘side effects’ in design processes. After globalization, cities became more complex and should be designed within an anticipatory system model. These cities can be more livable and can have sustainable urban conditions for today and future.In this study, urban planning of Istanbul city is going to be analyzed with comparisons of New York, Tokyo and London city plans in terms of anticipatory system models. The lack of a system in İstanbul and its side effects will be discussed. When past and present actions in urban planning are approached through an anticipatory system, it can give more accurate and sustainable results in the future.

Keywords: globalization, urban planning, anticipatory system, New York, London, Tokyo, Istanbul

Procedia PDF Downloads 144
477 Data Analytics in Hospitality Industry

Authors: Tammy Wee, Detlev Remy, Arif Perdana

Abstract:

In the recent years, data analytics has become the buzzword in the hospitality industry. The hospitality industry is another example of a data-rich industry that has yet fully benefited from the insights of data analytics. Effective use of data analytics can change how hotels operate, market and position themselves competitively in the hospitality industry. However, at the moment, the data obtained by individual hotels remain under-utilized. This research is a preliminary research on data analytics in the hospitality industry, using an in-depth face-to-face interview on one hotel as a start to a multi-level research. The main case study of this research, hotel A, is a chain brand of international hotel that has been systematically gathering and collecting data on its own customer for the past five years. The data collection points begin from the moment a guest book a room until the guest leave the hotel premises, which includes room reservation, spa booking, and catering. Although hotel A has been gathering data intelligence on its customer for some time, they have yet utilized the data to its fullest potential, and they are aware of their limitation as well as the potential of data analytics. Currently, the utilization of data analytics in hotel A is limited in the area of customer service improvement, namely to enhance the personalization of service for each individual customer. Hotel A is able to utilize the data to improve and enhance their service which in turn, encourage repeated customers. According to hotel A, 50% of their guests returned to their hotel, and 70% extended nights because of the personalized service. Apart from using the data analytics for enhancing customer service, hotel A also uses the data in marketing. Hotel A uses the data analytics to predict or forecast the change in consumer behavior and demand, by tracking their guest’s booking preference, payment preference and demand shift between properties. However, hotel A admitted that the data they have been collecting was not fully utilized due to two challenges. The first challenge of using data analytics in hotel A is the data is not clean. At the moment, the data collection of one guest profile is meaningful only for one department in the hotel but meaningless for another department. Cleaning up the data and getting standards correctly for usage by different departments are some of the main concerns of hotel A. The second challenge of using data analytics in hotel A is the non-integral internal system. At the moment, the internal system used by hotel A do not integrate with each other well, limiting the ability to collect data systematically. Hotel A is considering another system to replace the current one for more comprehensive data collection. Hotel proprietors recognized the potential of data analytics as reported in this research, however, the current challenges of implementing a system to collect data come with a cost. This research has identified the current utilization of data analytics and the challenges faced when it comes to implementing data analytics.

Keywords: data analytics, hospitality industry, customer relationship management, hotel marketing

Procedia PDF Downloads 181
476 Just a Heads Up: Approach to Head Shape Abnormalities

Authors: Noreen Pulte

Abstract:

Prior to the 'Back to Sleep' Campaign in 1992, 1 of every 300 infants seen by Advanced Practice Providers had plagiocephaly. Insufficient attention is given to plagiocephaly and brachycephaly diagnoses in practice and pediatric education. In this talk, Nurse Practitioners and Pediatric Providers will be able to: (1) identify red flags associated with head shape abnormalities, (2) learn techniques they can teach parents to prevent head shape abnormalities, and (3) differentiate between plagiocephaly, brachycephaly, and craniosynostosis. The presenter is a Primary Care Pediatric Nurse Practitioner at Ann & Robert H. Lurie Children's Hospital of Chicago and the primary provider for its head shape abnormality clinics. She will help participants translate key information obtained from birth history, review of systems, and developmental history to understand risk factors for head shape abnormalities and progression of deformities. Synostotic and non-synostotic head shapes will be explained to help participants differentiate plagiocephaly and brachycephaly from synostotic head shapes. This knowledge is critical for the prompt referral of infants with craniosynostosis for surgical evaluation and correction. Rapid referral for craniosynostosis can possibly direct the patient to a minimally invasive surgical procedure versus a craniectomy. As for plagiocephaly and brachycephaly, this timely referral can also aid in a physical therapy referral if necessitated, which treats torticollis and aids in improving head shape. A well-timed referral to a head shape clinic can possibly eliminate the need for a helmet and/or minimize the time in a helmet. Practitioners will learn the importance of obtaining head measurements using calipers. The presenter will explain head calculations and how the calculations are interpreted to determine the severity of the head shape abnormalities. Severity defines the treatment plan. Participants will learn when to refer patients to a head shape abnormality clinic and techniques they should teach parents to perform while waiting for the referral appointment. The purpose, mechanics, and logistics of helmet therapy, including optimal time to initiate helmet therapy, recommended helmet wear-time, and tips for helmet therapy compliance, will be described. Case scenarios will be incorporated into the presenter's presentation to support learning. The salient points of the case studies will be explained and discussed. Practitioners will be able to immediately translate the knowledge and skills gained in this presentation into their clinical practice.

Keywords: plagiocephaly, brachycephaly, craniosynostosis, red flags

Procedia PDF Downloads 98
475 Rangeland Monitoring by Computerized Technologies

Authors: H. Arzani, Z. Arzani

Abstract:

Every piece of rangeland has a different set of physical and biological characteristics. This requires the manager to synthesis various information for regular monitoring to define changes trend to get wright decision for sustainable management. So range managers need to use computerized technologies to monitor rangeland, and select. The best management practices. There are four examples of computerized technologies that can benefit sustainable management: (1) Photographic method for cover measurement: The method was tested in different vegetation communities in semi humid and arid regions. Interpretation of pictures of quadrats was done using Arc View software. Data analysis was done by SPSS software using paired t test. Based on the results, generally, photographic method can be used to measure ground cover in most vegetation communities. (2) GPS application for corresponding ground samples and satellite pixels: In two provinces of Tehran and Markazi, six reference points were selected and in each point, eight GPS models were tested. Significant relation among GPS model, time and location with accuracy of estimated coordinates was found. After selection of suitable method, in Markazi province coordinates of plots along four transects in each 6 sites of rangelands was recorded. The best time of GPS application was in the morning hours, Etrex Vista had less error than other models, and a significant relation among GPS model, time and location with accuracy of estimated coordinates was found. (3) Application of satellite data for rangeland monitoring: Focusing on the long term variation of vegetation parameters such as vegetation cover and production is essential. Our study in grass and shrub lands showed that there were significant correlations between quantitative vegetation characteristics and satellite data. So it is possible to monitor rangeland vegetation using digital data for sustainable utilization. (4) Rangeland suitability classification with GIS: Range suitability assessment can facilitate sustainable management planning. Three sub-models of sensitivity to erosion, water suitability and forage production out puts were entered to final range suitability classification model. GIS was facilitate classification of range suitability and produced suitability maps for sheep grazing. Generally digital computers assist range managers to interpret, modify, calibrate or integrating information for correct management.

Keywords: computer, GPS, GIS, remote sensing, photographic method, monitoring, rangeland ecosystem, management, suitability, sheep grazing

Procedia PDF Downloads 368
474 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles

Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli

Abstract:

Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.

Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system

Procedia PDF Downloads 58
473 Compact, Lightweight, Low Cost, Rectangular Core Power Transformers

Authors: Abidin Tortum, Kubra Kocabey

Abstract:

One of the sectors where the competition is experienced at the highest level in the world is the transformer sector, and sales can be made with a limited profit margin. For this reason, manufacturers must develop cost-cutting designs to achieve higher profits. The use of rectangular cores and coils in transformer design is one of the methods that can be used to reduce costs. According to the best knowledge we have obtained, we think that we are the first company producing rectangular core power transformers in our country. BETA, to reduce the cost of this project, more compact products to reveal, as we know it to increase the alleviate and competitiveness of the product, will perform cored coil design and production rectangle for the first-time power transformers in Turkey. The transformer to be designed shall be 16 MVA, 33/11 kV voltage level. With the rectangular design of the transformer core and windings, no-load losses can be reduced. Also, the least costly transformer type is rectangular. However, short-circuit forces on rectangular windings do not affect every point of the windings in the same way. Whereas more force is applied inwards to the mid-points of the low-voltage winding, the opposite occurs in the high-voltage winding. Therefore, the windings tend to deteriorate in the event of a short circuit. While trying to reach the project objectives, the difficulties in the design should be overcome. Rectangular core transformers to be produced in our country offer a more compact structure than conventional transformers. In other words, both height and width were smaller. Thus, the reducer takes up less space in the center. Because the transformer boiler is smaller, less oil is used, and its weight is lower. Biotemp natural ester fluid is used in rectangular transformer and the cooling performance of this oil is analyzed. The cost was also reduced with the reduction of dimensions. The decrease in the amount of oil used has also increased the environmental friendliness of the developed product. Transportation costs have been reduced by reducing the total weight. The amount of carbon emissions generated during the transportation process is reduced. Since the low-voltage winding is wound with a foil winding technique, a more resistant structure is obtained against short circuit forces. No-load losses were lower due to the use of a rectangular core. The project was handled in three phases. In the first stage, preliminary research and designs were carried out. In the second stage, the prototype manufacturing of the transformer whose designs have been completed has been started. The prototype developed in the last stage has been subjected to routine, type and special tests.

Keywords: rectangular core, power transformer, transformer, productivity

Procedia PDF Downloads 122
472 Polymeric Nanocarriers for Intranasal Delivery of Cannabidiol in Neurodevelopmental Disorders

Authors: Rania Awad, Avi Avital, Alejandro Sosnik

Abstract:

Neurodevelopmental disorders, including autism spectrum disorder (ASD), affect 5.9% of the global population. Recently, research indicated the potential therapeutic use of cannabidiol (CBD) to treat different neurodevelopmental disorders, including ASD. Intranasal drug delivery (IN) is a non-invasive and painless administration route that enhances drug bioavailability in the brain by bypassing the blood-brain barrier. However, IN has limited bioavailability due to the low nasal mucosa permeability. Various polymeric nanoparticles (NPs) have been investigated for IN delivery with different successes. In this study, we investigate the nanoencapsulation of CBD within self-assembled polymeric NPs for nose-to-brain delivery in ASD to increase the bioavailability of CBD in the brain. The nanoencapsulation of CBD within self-assembled polymeric NPs, namely poly (ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide) (PEO-PPO-PEO) polymeric micelles, was assessed. The CBD-loaded system was characterized by different methods. The compatibility was assessed in the nasal septum epithelium cell line Rpmi 2650. In vitro, permeability studies were conducted using Rpmi2650 cell monolayers cultured in semipermeable membranes 2650. The accumulation of CBD-loaded NPs labeled with near-infra-red fluorescent dye in the brain was measured after IN and oral administration after 20 and 45 min using IVIS spectrum CT imaging (IVIS-CT). Pharmacokinetic (PK) studies were conducted to assess the CBD concentration in rat plasma and brain tissues at different time points, PK parameters were measured and analyzed. Then, the effect of IN and oral administration of CBD-loaded NPs on a social cooperation test, which is a relevant behavioral test in the ASD model in rats, was investigated. Initially, we produced Pluronic® F127 polymeric micelles loaded with 25% w/w of CBD, with a size of 23 ± 1 nm, with suitable physical properties for IN administration. Then, Pluronic® F127 nanoparticles (F127 NPs) in the medium showed good compatibility and permeability in Rpmi 2650 cells. In the IVIS-CT study, the accumulation of IN administration of CBD-loaded F127 in the rat's brains was higher than the oral. Pharmacokinetic analysis of rat brain tissues revealed that, 20 minutes after administration, the concentration of CBD was higher following a 5 mg/kg nasal administration compared to a 15 mg/kg oral administration of CBD-loaded F127. Followed by IN administration of CBD-loaded F127 improved the social cooperation performance of the ASD model in rats as compared to oral and control groups.

Keywords: drug delivery to the brain, Intranasal drug delivery, nanoencapsulation, neurodevelopmental disorders, polymeric nanoparticles.

Procedia PDF Downloads 16
471 The Applications and Effects of the Career Courses of Taiwanese College Students with LEGO® SERIOUS PLAY®

Authors: Payling Harn

Abstract:

LEGO® SERIOUS PLAY® is a kind of facilitated workshop of thinking and problem-solving approach. Participants built symbolic and metaphorical brick models in response to tasks given by the facilitator and presented these models to other participants. LEGO® SERIOUS PLAY® applied the positive psychological mechanism of Flow and positive emotions to help participants perceiving self-experience and unknown fact and increasing the happiness of life by building bricks and narrating story. At present, LEGO® SERIOUS PLAY® is often utilized for facilitating professional identity and strategy development to assist workers in career development. The researcher desires to apply LEGO® SERIOUS PLAY® to the career courses of college students in order to promote their career ability. This study aimed to use the facilitative method of LEGO® SERIOUS PLAY® to develop the career courses of college students, then explore the effects of Taiwanese college students' positive and negative emotions, career adaptabilities, and career sense of hope by LEGO® SERIOUS PLAY® career courses. The researcher regarded strength as the core concept and use the facilitative mode of LEGO® SERIOUS PLAY® to develop the 8 weeks’ career courses, which including ‘emotion of college life’ ‘career highlights’, ‘career strengths’, ‘professional identity’, ‘business model’, ‘career coping’, ‘strength guiding principles’, ‘career visions’,’ career hope’, etc. The researcher will adopt problem-oriented teaching method to give tasks which according to the weekly theme, use the facilitative mode of LEGO® SERIOUS PLAY® to guide participants to respond tasks by building bricks. Then participants will conduct group discussions, reports, and writing reflection journals weekly. Participants will be 24 second-grade college students. They will attend LEGO® SERIOUS PLAY® career courses for 2 hours a week. The researcher used’ ‘Career Adaptability Scale’ and ‘Career Hope Scale’ to conduct pre-test and post-test. The time points of implementation testing will be one week before courses starting, one day after courses ending respectively. Then the researcher will adopt repeated measures one-way ANOVA for analyzing data. The results revealed that the participants significantly presented immediate positive effect in career adaptability and career hope. The researcher hopes to construct the mode of LEGO® SERIOUS PLAY® career courses by this study and to make a substantial contribution to the future career teaching and researches of LEGO® SERIOUS PLAY®.

Keywords: LEGO® SERIOUS PLAY®, career courses, strength, positive and negative affect, career hope

Procedia PDF Downloads 253
470 Analysis of the Statistical Characterization of Significant Wave Data Exceedances for Designing Offshore Structures

Authors: Rui Teixeira, Alan O’Connor, Maria Nogal

Abstract:

The statistical theory of extreme events is progressively a topic of growing interest in all the fields of science and engineering. The changes currently experienced by the world, economic and environmental, emphasized the importance of dealing with extreme occurrences with improved accuracy. When it comes to the design of offshore structures, particularly offshore wind turbines, the importance of efficiently characterizing extreme events is of major relevance. Extreme events are commonly characterized by extreme values theory. As an alternative, the accurate modeling of the tails of statistical distributions and the characterization of the low occurrence events can be achieved with the application of the Peak-Over-Threshold (POT) methodology. The POT methodology allows for a more refined fit of the statistical distribution by truncating the data with a minimum value of a predefined threshold u. For mathematically approximating the tail of the empirical statistical distribution the Generalised Pareto is widely used. Although, in the case of the exceedances of significant wave data (H_s) the 2 parameters Weibull and the Exponential distribution, which is a specific case of the Generalised Pareto distribution, are frequently used as an alternative. The Generalized Pareto, despite the existence of practical cases where it is applied, is not completely recognized as the adequate solution to model exceedances over a certain threshold u. References that set the Generalised Pareto distribution as a secondary solution in the case of significant wave data can be identified in the literature. In this framework, the current study intends to tackle the discussion of the application of statistical models to characterize exceedances of wave data. Comparison of the application of the Generalised Pareto, the 2 parameters Weibull and the Exponential distribution are presented for different values of the threshold u. Real wave data obtained in four buoys along the Irish coast was used in the comparative analysis. Results show that the application of the statistical distributions to characterize significant wave data needs to be addressed carefully and in each particular case one of the statistical models mentioned fits better the data than the others. Depending on the value of the threshold u different results are obtained. Other variables of the fit, as the number of points and the estimation of the model parameters, are analyzed and the respective conclusions were drawn. Some guidelines on the application of the POT method are presented. Modeling the tail of the distributions shows to be, for the present case, a highly non-linear task and, due to its growing importance, should be addressed carefully for an efficient estimation of very low occurrence events.

Keywords: extreme events, offshore structures, peak-over-threshold, significant wave data

Procedia PDF Downloads 274
469 Simulation Research of Diesel Aircraft Engine

Authors: Łukasz Grabowski, Michał Gęca, Mirosław Wendeker

Abstract:

This paper presents the simulation results of a new opposed piston diesel engine to power a light aircraft. Created in the AVL Boost, the model covers the entire charge passage, from the inlet up to the outlet. The model shows fuel injection into cylinders and combustion in cylinders. The calculation uses the module for two-stroke engines. The model was created using sub-models available in this software that structure the model. Each of the sub-models is complemented with parameters in line with the design premise. Since engine weight resulting from geometric dimensions is fundamental in aircraft engines, two configurations of stroke were studied. For each of the values, there were calculated selected operating conditions defined by crankshaft speed. The required power was achieved by changing air fuel ratio (AFR). There was also studied brake specific fuel consumption (BSFC). For stroke S1, the BSFC was lowest at all of the three operating points. This difference is approximately 1-2%, which means higher overall engine efficiency but the amount of fuel injected into cylinders is larger by several mg for S1. The cylinder maximum pressure is lower for S2 due to the fact that compressor gear driving remained the same and boost pressure was identical in the both cases. Calculations for various values of boost pressure were the next stage of the study. In each of the calculation case, the amount of fuel was changed to achieve the required engine power. In the former case, the intake system dimensions were modified, i.e. the duct connecting the compressor and the air cooler, so its diameter D = 40 mm was equal to the diameter of the compressor outlet duct. The impact of duct length was also examined to be able to reduce the flow pulsation during the operating cycle. For the so selected geometry of the intake system, there were calculations for various values of boost pressure. The boost pressure was changed by modifying the gear driving the compressor. To reach the required level of cruising power N = 68 kW. Due to the mechanical power consumed by the compressor, high pressure ratio results in a worsened overall engine efficiency. The figure on the change in BSFC from 210 g/kWh to nearly 270 g/kWh shows this correlation and the overall engine efficiency is reduced by about 8%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft, diesel, engine, simulation

Procedia PDF Downloads 208
468 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 301
467 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 311