Search results for: Spatial Data Analyses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28628

Search results for: Spatial Data Analyses

26528 Productive Engagements and Psychological Wellbeing of Older Adults; An Analysis of HRS Dataset

Authors: Mohammad Didar Hossain

Abstract:

Background/Purpose: The purpose of this study was to examine the associations between productive engagements and the psychological well-being of older adults in the U.S by analyzing cross-sectional data from a secondary dataset. Specifically, this paper analyzed the associations of 4 different types of productive engagements, including current work status, caregiving to the family members, volunteering and religious strengths with the psychological well-being as an outcome variable. Methods: Data and sample: The study used the data from the Health and Retirement Study (HRS). The HRS is a nationally representative prospective longitudinal cohort study that has been conducting biennial surveys since 1992 to community-dwelling individuals 50 years of age or older on diverse issues. This analysis was based on the 2016 wave (cross-sectional) of the HRS dataset and the data collection period was April 2016 through August 2017. The samples were recruited from a multistage, national area-clustered probability sampling frame. Measures: Four different variables were considered as the predicting variables in this analysis. Firstly, current working status was a binary variable that measured by 0=Yes and 1= No. The second and third variables were respectively caregiving and volunteering, and both of them were measured by; 0=Regularly, 1= Irregularly. Finally, find in strength was measured by 0= Agree and 1= Disagree. Outcome (Wellbeing) variable was measured by 0= High level of well-being, 1= Low level of well-being. Control variables including age were measured in years, education in the categories of 0=Low level of education, 1= Higher level of education and sex r in the categories 0=male, 1= female. Analysis and Results: Besides the descriptive statistics, binary logistic regression analyses were applied to examine the association between independent and dependent variables. The results showed that among the four independent variables, three of them including working status (OR: .392, p<.001), volunteering (OR: .471, p<.003) and strengths in religion (OR .588, p<.003), were significantly associated with psychological well-being while controlling for age, gender and education factors. Also, no significant association was found between the caregiving engagement of older adults and their psychological well-being outcome. Conclusions and Implications: The findings of this study are mostly consistent with the previous studies except for the caregiving engagements and their impact on older adults’ well-being outcomes. Therefore, the findings support the proactive initiatives from different micro to macro levels to facilitate opportunities for productive engagements for the older adults, and all of these may ultimately benefit their psychological well-being and life satisfaction in later life.

Keywords: productive engagements, older adults, psychological wellbeing, productive aging

Procedia PDF Downloads 155
26527 Synthesis of New 2-(Methylthio) Benzo[g]-[1,2,4] Triazolo [1,5a] Quinazolines

Authors: Rashad A. Al-Salahi, Mohamed S. Marzouk

Abstract:

Aiming to the synthesis of bioactive triazoloquinazolines, a new series of 2-(methylthio)benzo [g]-[1,2,4] triazolo [1,5-a] quinazolin-5(4H)-ones was synthesized from 2-(methylthio)benzo [g]-[1,2,4] triazolo [1,5-a] quinazolin-5(4H)-one. All synthesized derivatives based on N-alkylation and chlorination of the parent compound and its salfonyl derivative. The success of the reactions was proved by NMR, IR, and HREI-MS analyses for all products.

Keywords: triazoloquinazoline, alkylation, thionation, quinazolin

Procedia PDF Downloads 358
26526 Mobile WiMAX Network based Wireless Communication on Rail: An Analysis

Authors: Vinod Kumar Jatav, Dr. Vrijendra Singh

Abstract:

WiMAX is an emerging wireless technology designed by WiMAX forum. WiMAX technology delivers broadband internet access with QoS, mobility and robust security. WiMAX is among the prominent mobile broadband wireless technology which laid the foundation for the next generation networks (NGN). The next-generation communication system for railway should facilitate high level network availability, fast mobility for high speed trains with reliability, high handover rate, the firmness of train operations, and high QoS. The system should also be capable to provide various railway services by transmitting big data efficiently. One of the most promising technologies for the next generation railway wireless communication is Mobile WiMAX. This paper analyses some of the network architectures for railway wireless communication and considers the elementary concepts to facilitate the users with broadband internet access on trains. The paper aims to recognize the suitability of Mobile WiMAX technology for the special requirements of broadband internet facilities and wireless telecommunication services of Railways.

Keywords: Broadband internet, IEEE 802.16e, mobile WiMAX, Railway wireless communication

Procedia PDF Downloads 524
26525 Understanding Personal Well-Being among Entrepreneurial Breadwinners: Bibliographic and Empirical Analyses of Relative Resource Theory

Authors: E. Fredrick Rice

Abstract:

Over the past three decades, a substantial body of academic literature has asserted that the pressure to maintain household income can negatively affect the personal well-being of breadwinners. Given that scholars have failed to thoroughly explore this phenomenon with breadwinners who are also business owners, theory has been underdeveloped in the entrepreneurial context. To identify the most appropriate theories to apply to entrepreneurs, the current paper utilized two approaches. First, a comprehensive bibliographic analysis was conducted focusing on works at the intersection of breadwinner status and well-being. Co-authorship and journal citation patterns highlighted relative resource theory as a boundary spanning approach with promising applications in the entrepreneurial space. To build upon this theory, regression analysis was performed using data from the Panel Study of Entrepreneurial Dynamics (PSED). Empirical results showed evidence for the effects of breadwinner status and household income on entrepreneurial well-being. Further, the findings suggest that it is not merely income or job status that predicts well-being, but one’s relative financial contribution compared to that of one’s non-breadwinning organizationally employed partner. This paper offers insight into how breadwinner status can be studied in relation to the entrepreneurial personality.

Keywords: breadwinner, entrepreneurship, household income, well-being.

Procedia PDF Downloads 170
26524 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: software metrics, fault prediction, cross project, within project.

Procedia PDF Downloads 344
26523 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser

Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua

Abstract:

In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.

Keywords: energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis

Procedia PDF Downloads 384
26522 Occupational Diseases in the Automotive Industry in Czechia

Authors: J. Jarolímek, P. Urban, P. Pavlínek, D. Dzúrová

Abstract:

The industry constitutes a dominant economic sector in Czechia. The automotive industry represents the most important industrial sector in terms of gross value added and the number of employees. The objective of this study was to analyse the occurrence of occupational diseases (OD) in the automotive industry in Czechia during the 2001-2014 period. Whereas the occurrence of OD in other sectors has generally been decreasing, it has been increasing in the automotive industry, including growing spatial discrepancies. Data on OD cases were retrieved from the National Registry of Occupational Diseases. Further, we conducted a survey in automotive companies with a focus on occupational health services and positions of the companies in global production networks (GPNs). An analysis of OD distribution in the automotive industry was performed (age, gender, company size and its role in GPNs, regional distribution of studied companies, and regional unemployment rate), and was accompanied by an assessment of the quality and range of occupational health services. The employees older than 40 years had nearly 2.5 times higher probability of OD occurrence compared with employees younger than 40 years (OR 2.41; 95% CI: 2.05-2.85). The OD occurrence probability was 3 times higher for women than for men (OR 3.01; 95 % CI: 2.55-3.55). The OD incidence rate was increasing with the size of the company. An association between the OD incidence and the unemployment rate was not confirmed.

Keywords: occupational diseases, automotive industry, health geography, unemployment

Procedia PDF Downloads 250
26521 Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls

Authors: Muhammad Naseem Baig, Abdul Qudoos Khan, Jamal Ali

Abstract:

Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of 64ft deep excavation in mixed stiff soil conditions supported by a cantilever pile wall. A series of finite element analyses have been carried out in Plaxis 2D by varying pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of wall. The finite element analysis results are compared with field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly.

Keywords: excavations, support systems, wall stiffness, cantilever walls

Procedia PDF Downloads 210
26520 Quantitative Comparisons of Different Approaches for Rotor Identification

Authors: Elizabeth M. Annoni, Elena G. Tolkacheva

Abstract:

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.

Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors

Procedia PDF Downloads 324
26519 Digitalization: The Uneven Geography of Information and Communication Technology (ICTS) CTSoss Four Major States in India

Authors: Sanchari Mukhopadhyay

Abstract:

Today, almost the entire realm of human activities are becoming increasingly dependent on the power of information, where through ICTs it is now possible to cater distances and avail various services at a few clicks. In principle, ICTs are thus expected to blur location-specific differences and affiliations of development and bring in an inclusive society at the wake of globalization. However, eventually researchers and policy analysts realized that ICTs are also generating inequality in spite of the hope for an integrated world and widespread social well-being. Regarding this unevenness, location plays a major role as often ICT development is seen to be concentrated into pockets, leaving behind large tracks as underprivileged. Thus, understanding the spatial pattern of ICT development and distribution is significant in relation to exploring the extent to which ICTs are fulfilling the promises or reassuring the existing divisions. In addition, it is also profoundly crucial to investigate how regions are connecting and competing both locally and globally. The focus of the research paper is to evaluate the spatial structure of ICT led development in India. Thereby, it attempts to understand the state level (four selected states) pattern of ICT penetration, the pattern of diffusion across districts with respect to large urban centres and the rural-urban disparity of technology adoption. It also tries to assess the changes in access dynamisms of ICTs as one move away from a large metropolitan city towards the periphery. In brief, the analysis investigates into the tendency towards the uneven growth of development through the identification of the core areas of ICT advancement within the country and its diffusion from the core to the periphery. In order to assess the level of ICT development and rural-urban disparity across the districts of selected states, two indices named ICT Development Index and Rural-Urban Digital Divide Index have been constructed. The study mostly encompasses the latest Census (2011) of the country and TRAI (Telecom Regulatory Authority of India) in some cases.

Keywords: ICT development, diffusion, core-periphery, digital divide

Procedia PDF Downloads 333
26518 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 316
26517 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels

Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur

Abstract:

With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.

Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography

Procedia PDF Downloads 124
26516 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids

Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki

Abstract:

Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.

Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction

Procedia PDF Downloads 106
26515 Multi-Temporal Analysis of Vegetation Change within High Contaminated Watersheds by Superfund Sites in Wisconsin

Authors: Punwath Prum

Abstract:

Superfund site is recognized publicly to be a severe environmental problem to surrounding communities and biodiversity due to its hazardous chemical waste from industrial activities. It contaminates the soil and water but also is a leading potential point-source pollution affecting ecosystem in watershed areas from chemical substances. The risks of Superfund site on watershed can be effectively measured by utilizing publicly available data and geospatial analysis by free and open source application. This study analyzed the vegetation change within high risked contaminated watersheds in Wisconsin. The high risk watersheds were measured by which watershed contained high number Superfund sites. The study identified two potential risk watersheds in Lafayette and analyzed the temporal changes of vegetation within the areas based on Normalized difference vegetation index (NDVI) analysis. The raster statistic was used to compare the change of NDVI value over the period. The analysis results showed that the NDVI value within the Superfund sites’ boundary has a significant lower value than nearby surrounding and provides an analogy for environmental hazard affect by the chemical contamination in Superfund site.

Keywords: soil contamination, spatial analysis, watershed

Procedia PDF Downloads 140
26514 A Cooperative Signaling Scheme for Global Navigation Satellite Systems

Authors: Keunhong Chae, Seokho Yoon

Abstract:

Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.

Keywords: global navigation satellite network, cooperative signaling, data combining, nodes

Procedia PDF Downloads 280
26513 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 163
26512 Damping Optimal Design of Sandwich Beams Partially Covered with Damping Patches

Authors: Guerich Mohamed, Assaf Samir

Abstract:

The application of viscoelastic materials in the form of constrained layers in mechanical structures is an efficient and cost-effective technique for solving noise and vibration problems. This technique requires a design tool to select the best location, type, and thickness of the damping treatment. This paper presents a finite element model for the vibration of beams partially or fully covered with a constrained viscoelastic damping material. The model is based on Bernoulli-Euler theory for the faces and Timoshenko beam theory for the core. It uses four variables: the through-thickness constant deflection, the axial displacements of the faces, and the bending rotation of the beam. The sandwich beam finite element is compatible with the conventional C1 finite element for homogenous beams. To validate the proposed model, several free vibration analyses of fully or partially covered beams, with different locations of the damping patches and different percent coverage, are studied. The results show that the proposed approach can be used as an effective tool to study the influence of the location and treatment size on the natural frequencies and the associated modal loss factors. Then, a parametric study regarding the variation in the damping characteristics of partially covered beams has been conducted. In these studies, the effect of core shear modulus value, the effect of patch size variation, the thickness of constraining layer, and the core and the locations of the patches are considered. In partial coverage, the spatial distribution of additive damping by using viscoelastic material is as important as the thickness and material properties of the viscoelastic layer and the constraining layer. Indeed, to limit added mass and to attain maximum damping, the damping patches should be placed at optimum locations. These locations are often selected using the modal strain energy indicator. Following this approach, the damping patches are applied over regions of the base structure with the highest modal strain energy to target specific modes of vibration. In the present study, a more efficient indicator is proposed, which consists of placing the damping patches over regions of high energy dissipation through the viscoelastic layer of the fully covered sandwich beam. The presented approach is used in an optimization method to select the best location for the damping patches as well as the material thicknesses and material properties of the layers that will yield optimal damping with the minimum area of coverage.

Keywords: finite element model, damping treatment, viscoelastic materials, sandwich beam

Procedia PDF Downloads 147
26511 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 410
26510 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016

Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi

Abstract:

This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.

Keywords: big health data, data subject rights, GDPR, pandemic

Procedia PDF Downloads 129
26509 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems

Authors: Yong-Kyu Jung

Abstract:

The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).

Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity

Procedia PDF Downloads 78
26508 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman

Abstract:

With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.

Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation

Procedia PDF Downloads 354
26507 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 77
26506 Environment Management Practices at Oil and Natural Gas Corporation Hazira Gas Processing Complex

Authors: Ashish Agarwal, Vaibhav Singh

Abstract:

Harmful emissions from oil and gas processing facilities have long remained a matter of concern for governments and environmentalists throughout the world. This paper analyses Oil and Natural Gas Corporation (ONGC) gas processing plant in Hazira, Gujarat, India. It is the largest gas-processing complex in the country designed to process 41MMSCMD sour natural gas & associated sour condensate. The complex, sprawling over an area of approximate 705 hectares is the mother plant for almost all industries at Hazira and enroute Hazira Bijapur Jagdishpur pipeline. Various sources of pollution from each unit starting from Gas Terminal to Dew Point Depression unit and Caustic Wash unit along the processing chain were examined with the help of different emission data obtained from ONGC. Pollution discharged to the environment was classified into Water, Air, Hazardous Waste and Solid (Non-Hazardous) Waste so as to analyze each one of them efficiently. To protect air environment, Sulphur recovery unit along with automatic ambient air quality monitoring stations, automatic stack monitoring stations among numerous practices were adopted. To protect water environment different effluent treatment plants were used with due emphasis on aquaculture of the nearby area. Hazira plant has obtained the authorization for handling and disposal of five types of hazardous waste. Most of the hazardous waste were sold to authorized recyclers and the rest was given to Gujarat Pollution Control Board authorized vendors. Non-Hazardous waste was also handled with an overall objective of zero negative impact on the environment. The effect of methods adopted is evident from emission data of the plant which was found to be well under Gujarat Pollution Control Board limits.

Keywords: sulphur recovery unit, effluent treatment plant, hazardous waste, sour gas

Procedia PDF Downloads 226
26505 Sustainable Tourism and Heritage in Sığacık/Seferihisar

Authors: Sibel Ecemiş Kılıç, Muhammed Aydoğan

Abstract:

The rapid development of culture tourism has drawn attention to conserving cultural values especially by developing countries that would like to benefit from the economic contribution this type of tourism attracts. Tourism can have both positive and negative outcomes for historical settlements and their residents. The accommodation-purposed rehabilitation and revitalization project in “Sigacik Old City Zone” are to be discussed with spatial, economic, social and organizational dimensions. It is aimed to evaluate the relationship between the development of tourism and sustainable heritage conservation.

Keywords: Sığacık, urban conservation, sustainable tourism, Seferihisar

Procedia PDF Downloads 505
26504 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia

Authors: Yenni Anggrayni

Abstract:

The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.

Keywords: bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement

Procedia PDF Downloads 70
26503 Assessment of Spatial and Temporal Variations of Some Biological Water Quality Parameters in Mat River, Albania

Authors: Etleva Hamzaraj, Eva Kica, Anila Paparisto, Pranvera Lazo

Abstract:

Worldwide demographic developments of recent decades have been associated with negative environmental consequences. For this reason, there is a growing interest in assessing the state of natural ecosystems or assessing human impact on them. In this respect, this study aims to evaluate the change in water quality of the Mat River for a period of about ten years to highlight human impact. In one year, period of study, several biological and environmental parameters are determined to evaluate river water quality, and the data collected are compared with those of a similar study in 2007. Samples are collected every month in five stations evenly distributed along the river. Total coliform bacteria, the number of heterotrophic bacteria in water, and benthic macroinvertebrates are used as biological parameters of water quality. The most probable number index is used for evaluation of total coliform bacteria in water, while the number of heterotrophic bacteria is determined by counting colonies on plates with Plate Count Agar, cultivated with 0.1 ml sample after series dilutions. Benthic macroinvertebrates are analyzed by the number of individuals per taxa, the value of biotic index, EPT Richness Index value and tolerance value. Environmental parameters like pH, temperature, and electrical conductivity are measured onsite. As expected, the bacterial load was higher near urban areas, and the pollution increased with the course of the river. The maximum concentration of fecal coliforms was 1100 MPN/100 ml in summer and near the most urbanized area of the river. The data collected during this study show that after about ten years, there is a change in water quality of Mat River. According to a similar study carried out in 2007, the water of Mat River was of ‘excellent’ quality. But, according to this study, the water was classified as of ‘excellent’ quality only in one sampling site, near river source, while in all other stations was of ‘good’ quality. This result is based on biological and environmental parameters measured. The human impact on the quality of water of Mat River is more than evident.

Keywords: water quality, coliform bacteria, MPN index, benthic macroinvertebrates, biotic index

Procedia PDF Downloads 118
26502 Predicting Destination Station Based on Public Transit Passenger Profiling

Authors: Xuyang Song, Jun Yin

Abstract:

The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.

Keywords: travel behavior, destination prediction, public transit, passenger profiling

Procedia PDF Downloads 19
26501 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data

Authors: Sašo Pečnik, Borut Žalik

Abstract:

This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.

Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization

Procedia PDF Downloads 308
26500 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery

Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox

Abstract:

Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.

Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification

Procedia PDF Downloads 134
26499 Characterizing Multivariate Thresholds in Industrial Engineering

Authors: Ali E. Abbas

Abstract:

This paper highlights some of the normative issues that might result by setting independent thresholds in risk analyses and particularly with safety regions. A second objective is to explain how such regions can be specified appropriately in a meaningful way. We start with a review of the importance of setting deterministic trade-offs among target requirements. We then show how to determine safety regions for risk analysis appropriately using utility functions.

Keywords: decision analysis, thresholds, risk, reliability

Procedia PDF Downloads 312