Search results for: social network ties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13666

Search results for: social network ties

11596 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling

Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis

Abstract:

Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.

Keywords: green entrepreneurship, barriers, fuzzy Delphi method, interpretive structural modeling

Procedia PDF Downloads 166
11595 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study

Authors: Colin Smith, Linsey S Passarella

Abstract:

Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.

Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy

Procedia PDF Downloads 133
11594 Understanding the Qualities of Indian Neighborhoods: Understanding of Social Spaces

Authors: Venkata Ravi Kumar Veluru

Abstract:

Indian traditional neighborhoods are socially active and sometimes intrusive communities, which are losing their qualities due to western influences, undermining the traditional Indian values by blind adaptation of western neighborhood concepts since the scale is not suitable to the Indian context. This paper aims to understand the qualities of Indian traditional neighborhoods by evaluating a traditional neighborhood of Jaipur, comparing it with a modern planned neighborhood of Chandigarh, designed by a foreign planner, in the neighborhood concept of the western world, to find out the special qualities of traditional Indian neighborhoods as compared to western concepts in terms of social spaces, by way of physical observation of selected neighborhoods and residents structured questionnaire survey. The combined analysis found that social spaces are abundantly available in traditional neighborhoods, which are missing in modern neighborhoods, which are the main qualities where interactions happen, aiming towards the formation of social capital. The qualities of traditional neighborhoods have to be considered while designing new neighborhoods in India.

Keywords: Indian neighborhoods, modern neighborhoods, neighborhood planning, social spaces, traditional neighborhoods

Procedia PDF Downloads 121
11593 Working with Interpreters: Using Role Play to Teach Social Work Students

Authors: Yuet Wah Echo Yeung

Abstract:

Working with people from minority ethnic groups, refugees and asylum seeking communities who have limited proficiency in the language of the host country often presents a major challenge for social workers. Because of language differences, social workers need to work with interpreters to ensure accurate information is collected for their assessment and intervention. Drawing from social learning theory, this paper discusses how role play was used as an experiential learning exercise in a training session to help social work students develop skills when working with interpreters. Social learning theory posits that learning is a cognitive process that takes place in a social context when people observe, imitate and model others’ behaviours. The roleplay also helped students understand the role of the interpreter and the challenges they may face when they rely on interpreters to communicate with service users and their family. The first part of the session involved role play. A tutor played the role of social worker and deliberately behaved in an unprofessional manner and used inappropriate body language when working alongside the interpreter during a home visit. The purpose of the roleplay is not to provide a positive role model for students to ‘imitate’ social worker’s behaviours. Rather it aims to active and provoke internal thinking process and encourages students to critically consider the impacts of poor practice on relationship building and the intervention process. Having critically reflected on the implications for poor practice, students were then asked to play the role of social worker and demonstrate what good practice should look like. At the end of the session, students remarked that they learnt a lot by observing the good and bad example; it showed them what not to do. The exercise served to remind students how practitioners can easily slip into bad habits and of the importance of respect for the cultural difference when working with people from different cultural backgrounds.

Keywords: role play, social learning theory, social work practice, working with interpreters

Procedia PDF Downloads 180
11592 The Interplay between Autophagy and Macrophages' Polarization in Wound Healing: A Genetic Regulatory Network Analysis

Authors: Mayada Mazher, Ahmed Moustafa, Ahmed Abdellatif

Abstract:

Background: Autophagy is a eukaryotic, highly conserved catabolic process implicated in many pathophysiologies such as wound healing. Autophagy-associated genes serve as a scaffolding platform for signal transduction of macrophage polarization during the inflammatory phase of wound healing and tissue repair process. In the current study, we report a model for the interplay between autophagy-associated genes and macrophages polarization associated genes. Methods: In silico analysis was performed on 249 autophagy-related genes retrieved from the public autophagy database and gene expression data retrieved from Gene Expression Omnibus (GEO); GSE81922 and GSE69607 microarray data macrophages polarization 199 DEGS. An integrated protein-protein interaction network was constructed for autophagy and macrophage gene sets. The gene sets were then used for GO terms pathway enrichment analysis. Common transcription factors for autophagy and macrophages' polarization were identified. Finally, microRNAs enriched in both autophagy and macrophages were predicated. Results: In silico prediction of common transcription factors in DEGs macrophages and autophagy gene sets revealed a new role for the transcription factors, HOMEZ, GABPA, ELK1 and REL, that commonly regulate macrophages associated genes: IL6,IL1M, IL1B, NOS1, SOC3 and autophagy-related genes: Atg12, Rictor, Rb1cc1, Gaparab1, Atg16l1. Conclusions: Autophagy and macrophages' polarization are interdependent cellular processes, and both autophagy-related proteins and macrophages' polarization related proteins coordinate in tissue remodelling via transcription factors and microRNAs regulatory network. The current work highlights a potential new role for transcription factors HOMEZ, GABPA, ELK1 and REL in wound healing.

Keywords: autophagy related proteins, integrated network analysis, macrophages polarization M1 and M2, tissue remodelling

Procedia PDF Downloads 152
11591 Enactments of Global Citizenship Education: Social Justice in Public Spheres of Education

Authors: Sabrina Jafralie

Abstract:

This proposed chapter explains how civic religious literacy is a means to promote social justice in Canada. It will first present the specific conception of global citizenship education that will undergird the discussion in the chapter. Then, it will offer a conception of civic religious literacy that explains how it promotes social justice as a form of global citizenship education. To illustrate this point, I will list specific examples of social and political inequities in Canada, such as hate crime statistics from 2013-2018 across the country and in specific provinces and cities. I will also highlight different types of discrimination, such as that towards religious minorities, Indigenous peoples, and those that conflate race and religion, and other intersections of identity that civic religious literacy can address. To conclude this initial section of the chapter, I will cite international studies that discuss religious literacy as a means to promote characteristics and aims of global citizenship education.

Keywords: Civic Literacy, Pedagogy, Quebec, Social Justice

Procedia PDF Downloads 163
11590 Net-Trainer-ST: A Swiss Army Knife for Pentesting, Based on Single Board Computer, for Cybersecurity Professionals and Hobbyists

Authors: K. Hołda, D. Śliwa, K. Daniec, A. Nawrat

Abstract:

This article was created as part of the developed master's thesis. It attempts to present a newly developed device, which will support the work of specialists dealing with broadly understood cybersecurity terms. The device is contrived to automate security tests. In addition, it simulates potential cyberattacks in the most realistic way possible, without causing permanent damage to the network, in order to maximize the quality of the subsequent corrections to the tested network systems. The proposed solution is a fully operational prototype created from commonly available electronic components and a single board computer. The focus of the following article is not only put on the hardware part of the device but also on the theoretical and applicatory way in which implemented cybersecurity tests operate and examples of their results.

Keywords: Raspberry Pi, ethernet, automated cybersecurity tests, ARP, DNS, backdoor, TCP, password sniffing

Procedia PDF Downloads 125
11589 Attitudes toward Cultural Diversity: A Study of Russian Teachers

Authors: Rezeda Khairutdinova, Chulpan Gromova, Dina Birman

Abstract:

The paper presents results of an exploratory study of teachers’ social attitudes toward ethnic and religious diversity, and variables influencing such attitudes. The study was conducted in Russia and is focused on school teachers, given their special role in culturally diverse modern societies. Using the social distance scale (adapted from Bogardus, 1926), we sampled 355 school teachers from two Russian regions known for their high cultural diversity: Moscow and Moscow region, Kazan and Republic of Tatarstan, and measured teacher attitudes toward large religious and ethnic groups (including migrants). The findings showed that teachers hold mostly tolerant attitudes with respect to members belonging to culturally and religiously diverse groups. The social distance between respondents and native residents of their region was minimal. Social distance was larger with respect to such ethnic groups as migrants from the Caucasian and Central Asian countries. The analysis of perception of different religious groups also showed positive attitudes toward these groups and readiness to interact with them. Teacher attitudes were not related to their age or ethnicity. The findings indicated that there was a significant correlation between social distance and the region of residence on the one hand, and between social distance and the degree of social interaction on the other. The results of this study will be used to develop a large-scale study to contribute to a better understanding of teacher attitudes toward immigrant students in public schools.

Keywords: attitudes of teachers, cultural diversity, migrants, social distance

Procedia PDF Downloads 134
11588 Lessons from Implementation of a Network-Wide Safety Huddle in Behavioral Health

Authors: Deborah Weidner, Melissa Morgera

Abstract:

The model of care delivery in the Behavioral Health Network (BHN) is integrated across all five regions of Hartford Healthcare and thus spans the entirety of the state of Connecticut, with care provided in seven inpatient settings and over 30 ambulatory outpatient locations. While safety has been a core priority of the BHN in alignment with High Reliability practices, safety initiatives have historically been facilitated locally in each region or within each entity, with interventions implemented locally as opposed to throughout the network. To address this, the BHN introduced a network wide Safety Huddle during 2022. Launched in January, the BHN Safety Huddle brought together internal stakeholders, including medical and administrative leaders, along with executive institute leadership, quality, and risk management. By bringing leaders together and introducing a network-wide safety huddle into the way we work, the benefit has been an increase in awareness of safety events occurring in behavioral health areas as well as increased systemization of countermeasures to prevent future events. One significant discussion topic presented in huddles has pertained to environmental design and patient access to potentially dangerous items, addressing some of the most relevant factors resulting in harm to patients in inpatient and emergency settings for behavioral health patients. The safety huddle has improved visibility of potential environmental safety risks through the generation of over 15 safety alerts cascaded throughout the BHN and also spurred a rapid improvement project focused on standardization of patient belonging searches to reduce patient access to potentially dangerous items on inpatient units. Safety events pertaining to potentially dangerous items decreased by 31% as a result of standardized interventions implemented across the network and as a result of increased awareness. A second positive outcome originating from the BHN Safety Huddle was implementation of a recommendation to increase the emergency Narcan®(naloxone) supply on hand in ambulatory settings of the BHN after incidents involving accidental overdose resulted in higher doses of naloxone administration. By increasing the emergency supply of naloxone on hand in all ambulatory and residential settings, colleagues are better prepared to respond in an emergency situation should a patient experience an overdose while on site. Lastly, discussions in safety huddle spurred a new initiative within the BHN to improve responsiveness to assaultive incidents through a consultation service. This consult service, aligned with one of the network’s improvement priorities to reduce harm events related to assaultive incidents, was borne out of discussion in huddle in which it was identified that additional interventions may be needed in providing clinical care to patients who are experiencing multiple and/ or frequent safety events.

Keywords: quality, safety, behavioral health, risk management

Procedia PDF Downloads 83
11587 Costa and Mccrae's Neo-Pi Factor and Early Adolescents School Social Adjustment in Cross River State Nigeria

Authors: Peter Unoh Bassey

Abstract:

The study examined the influence of Costa and McCrae’s Neo-PI Factor and early adolescent’s school social adjustment in Cross River State, Nigeria. The research adopted the causal-comparative design also known as the ex-post facto with about one thousand and eighteen (1,018) students who were randomly selected from one stream of JSS 1 classes in 19 schools out of seventy-three (73) in the study area. Data were collected using two instruments one is the NEO-PI scale, and students school social adjustment questionnaire. Three research questions and three research hypotheses were postulated and tested at 0.05 level of significance. The analysis of data was carried out using both the independent t-test statistics and the one-way analysis of variance (ANOVA). The analyzed result indicated that the five dimensions had a significant influence on students school social adjustment. A post hoc was equally carried out to show the relative significant difference among the study variables. In view of the above, it was recommended that teachers, parents and educational psychologists should be involved to enhance students the confidence to overcome their social adjustment problem.

Keywords: Costa and McCrae’s NEO-PI Factor, early adolescents, school, social adjustment

Procedia PDF Downloads 147
11586 Secure Proxy Signature Based on Factoring and Discrete Logarithm

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

A digital signature is an electronic signature form used by an original signer to sign a specific document. When the original signer is not in his office or when he/she travels outside, he/she delegates his signing capability to a proxy signer and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on factoring and discrete logarithm problem.

Keywords: discrete logarithm, factoring, proxy signature, key agreement

Procedia PDF Downloads 308
11585 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.

Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction

Procedia PDF Downloads 513
11584 Elevating Healthcare Social Work: Implementing and Evaluating the (Introduction, Subjective, Objective, Assessment, Plan, Summary) Documentation Model

Authors: Shir Daphna-Tekoah, Nurit Eitan-Gutman, Uri Balla

Abstract:

Background: Systemic documentation is essential in social work practice. Collaboration between an institution of higher education and social work health care services enabled adaptation of the medical documentation model of SOAP in the field of social work, by creating the ISOAPS model (Introduction, Subjective, Objective, Assessment, Plan, Summary) model. Aims: The article describes the ISOAPS model and its implementation in the field of social work, as a tool for standardization of documentation and the enhancement of multidisciplinary collaboration. Methods: We examined the changes in standardization using a mixed methods study, both before and after implementation of the model. A review of social workers’ documentation was carried out by medical staff and social workers in the Clalit Healthcare Services, the largest provider of public and semi-private health services in Israel. After implementation of the model, semi-structured qualitative interviews were undertaken. Main findings: The percentage of reviewers who evaluated their documentation as correct increased from 46%, prior to implementation, to 61% after implementation. After implementation, 81% of the social workers noted that their documentation had become standardized. The training process prepared them for the change in documentation and most of them (83%) started using the model on a regular basis. The qualitative data indicate that the use of the ISOAPS model creates uniform documentation, improves standards and is important to teach social work students. Conclusions: The ISOAPS model standardizes documentation and promotes communication between social workers and medical staffs. Implications for practice: In the intricate realm of healthcare, efficient documentation systems are pivotal to ensuring coherent interdisciplinary communication and patient care. The ISOAPS model emerges as a quintessential instrument, meticulously tailored to the nuances of social work documentation. While it extends its utility across the broad spectrum of social work, its specificity is most pronounced in the medical domain. This model not only exemplifies rigorous academic and professional standards but also serves as a testament to the potential of contextualized documentation systems in elevating the overall stature of social work within healthcare. Such a strategic documentation tool can not only streamline the intricate processes inherent in medical social work but also underscore the indispensable role that social workers play in the broader healthcare ecosystem.

Keywords: ISOAPS, professional documentation, medial social-work, social work

Procedia PDF Downloads 70
11583 ATC in Competitive Electricity Market Using TCSC

Authors: S. K. Gupta, Richa Bansal

Abstract:

In a deregulated power system structure, power producers, and customers share a common transmission network for wheeling power from the point of generation to the point of consumption. All parties in this open access environment may try to purchase the energy from the cheaper source for greater profit margins, which may lead to overloading and congestion of certain corridors of the transmission network. This may result in violation of line flow, voltage and stability limits and thereby undermine the system security. Utilities therefore need to determine adequately their Available Transfer Capability (ATC) to ensure that system reliability is maintained while serving a wide range of bilateral and multilateral transactions. This paper presents power transfer distribution factor based on AC load flow for the determination and enhancement of ATC. The study has been carried out for IEEE 24 bus Reliability Test System.

Keywords: available transfer capability, FACTS devices, power transfer distribution factors, electric

Procedia PDF Downloads 497
11582 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 125
11581 Legal Framework of Islamic Social Finance to Support M40 Income Group in Malaysia

Authors: Azlin Suzana Salim

Abstract:

The 12th Malaysian Plan 2021-2025, issued by the Economic Planning Unit in 2021, outlined one of the six important priorities to support M40 towards equitable society. The Financial Sector Blueprint 2022-2026, released by Bank Negara Malaysia in 2022, further outlined the fifth key thrust focusing on Islamic Social Finance. The purpose of this research is to examine the Legal Framework of bridging Islamic Social Finance to support M40 Income Group in Malaysia. This study adopts a doctrinal legal research method to examine the laws and regulations governing Islamic Social Finance in Malaysia and a qualitative method to examine the Islamic Social Finance Instrument to support the M40 income group. The implication of this study is important to propose the legal framework and bridge the Islamic Social Finance instrument to support the M40 income group in Malaysia. The significance of this study is to realign between priorities of the 12th Malaysian Plan 2021-2025 and the Financial Sector Blueprint 2022-2026.

Keywords: legal framework, Islamic social finance, m40 income group, law and regulation

Procedia PDF Downloads 70
11580 Envisioning Process in Medium Enterprises: An Exploratory Study of Cambodian Living Arts

Authors: Alexandre Bédard, Caroline Coulombe, Jonathan Harvey

Abstract:

Envisioning process (EP) in medium enterprises is treated equally in very small enterprises. Building on the concept of social construction, this study aims to explore how envisioning is constructed in a medium enterprise in which stakeholders are involved and how it is influenced. We use a unique case method based on qualitative data collected through 11 interviews representing various members of the organization. Through the discussion of the findings, we were able to confirm the social construction of the EP and to identify three main stakeholders responsible for the construction of the vision, mainly political and social powers, actors of the organization, and financial providers. Moreover, EP is influenced by external factors; in this case, the history of the organization and the value and importance of the art and the culture for Cambodians.

Keywords: envisioning process, social constructivism, medium enterprise, legitimacy

Procedia PDF Downloads 119
11579 Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder

Authors: Muhamad Aris Burhanudin, Angga Firmansyas, Bagus Jaya Santosa

Abstract:

Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction.

Keywords: earthquake, fuzzy TOPSIS, neural network, tsunami

Procedia PDF Downloads 495
11578 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems

Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu

Abstract:

In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.

Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP

Procedia PDF Downloads 39
11577 An Approach to Analyze Testing of Nano On-Chip Networks

Authors: Farnaz Fotovvatikhah, Javad Akbari

Abstract:

Test time of a test architecture is an important factor which depends on the architecture's delay and test patterns. Here a new architecture to store the test results based on network on chip is presented. In addition, simple analytical model is proposed to calculate link test time for built in self-tester (BIST) and external tester (Ext) in multiprocessor systems. The results extracted from the model are verified using FPGA implementation and experimental measurements. Systems consisting 16, 25, and 36 processors are implemented and simulated and test time is calculated. In addition, BIST and Ext are compared in terms of test time at different conditions such as at different number of test patterns and nodes. Using the model the maximum frequency of testing could be calculated and the test structure could be optimized for high speed testing.

Keywords: test, nano on-chip network, JTAG, modelling

Procedia PDF Downloads 488
11576 Preschoolers’ Involvement in Indoor and Outdoor Learning Activities as Predictors of Social Learning Skills in Niger State, Nigeria

Authors: Okoh Charity N.

Abstract:

This study investigated the predictive power of preschoolers’ involvement in indoor and outdoor learning activities on their social learning skills in Niger state, Nigeria. Two research questions and two null hypotheses guided the study. Correlational research design was employed in the study. The population of the study consisted of 8,568 Nursery III preschoolers across the 549 preschools in the five Local Education Authorities in Niger State. A sample of 390 preschoolers drawn through multistage sampling procedure. Two instruments; Preschoolers’ Learning Activities Rating Scale (PLARS) and Preschoolers’ Social Learning Skills Rating Scale (PSLSRS) developed by the researcher were used for data collection. The reliability coefficients obtained for the PLARS and PSLSRS were 0.83 and 0.82, respectively. Data collected were analyzed using simple linear regression. Results showed that 37% of preschoolers’ social learning skills are predicted by their involvement in indoor learning activities, which is statistically significant (p < 0.05). It also shows that 11% of preschoolers’ social learning skills are predicted by their involvement in outdoor learning activities, which is statistically significant (p < 0.05). Therefore, it was recommended among others, that government and school administrators should employ qualified teachers who will stand as role models for preschoolers’ social skills development and provide indoor and outdoor activities and materials for preschoolers in schools.

Keywords: preschooler, social learning, indoor activities, outdoor activities

Procedia PDF Downloads 130
11575 The Modern Paradigm Features of Social Management Based on Postindustrial Theory

Authors: Yulia Totskaya

Abstract:

Nowadays, society is in a postindustrial/informational phase of its development. Certain changes have occurred in different parts of society life as a result of the social reality transformations due to the influence of changes in the productive forces. As a result, the personality has received autonomy and independence, as in her or his hands appeared new means of production–information, knowledge, creativity. In such a society, there is a new middle class, which is called meritocratic. It consists of personalities, who are engaged in highly intelligent, creative work; who independently pursue their own well-being and status; who are active in the economic and social spheres. At the forefront there are such qualities as independence, commitment and self-actualization. This modern, intellectual and sovereign personality is no longer in need of care. The role of management has transformed from a paternalistic to the "service", which is aimed at creating the conditions for citizens’ self-realization to meet their needs through the rendering of public services. Such society alterations motivate the need to change the key parameters of social management, which are identified in this article on the basis of the postindustrial society key features.

Keywords: informational society, postindustrial society, postindustrial sociality, public services, social management

Procedia PDF Downloads 275
11574 Using Historical Data for Stock Prediction

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: finance, machine learning, opening price, stock market

Procedia PDF Downloads 189
11573 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 371
11572 Innovative Communication for Promoting Tourism in Southern Thailand

Authors: Pitimanus Bunlue

Abstract:

This research aim (1) to determine the content of communication, social capital and cultural capital to promote tourism in the province to create awareness, motivation and desire to tourists visiting Thailand (2) to evaluate the performance of innovation communication social capital and cultural capital to promote tourism southern of Thailand. This research is a qualitative research. A research synthesis projects on social capital and cultural capital by use focus group discussions with media professionals and academics to communicate using a random sample specific. The result show that (1) Innovative communication, social capital and cultural capital and effective communication innovations after everyone wants to travel to Ranong province is the very highest level. (2) Information and experience about Ranong at a high level. (3) The data shows the strengths of each of the attractions at a high level. (4) The data shows a lifestyle that is unique to the province is moderate.

Keywords: innovative communication, promoting tourism, southern of Thailand, social capital

Procedia PDF Downloads 275
11571 Impact of Hashtags in Tweets Regarding COVID-19 on the Psyche of Pakistanis: A Critical Discourse Analytical Study

Authors: Muhammad Hamza

Abstract:

This study attempts to analyze the social media reports regarding Covid-19 that impacted the psyche of Pakistanis. This Study is delimited to hashtags from Tweets on a social media platform. During Covid-19, it has been observed that it affected the psychological conditions of Pakistanis. With the application of the three-dimensional model presented by Fairclough, together with a data analytic software “FireAnt” i.e., social media and data analysis toolkit, which is used to filter, identify, report and export data from social media accurately. A detailed and explicit exploration of the various hashtags by users from different fields was conducted. This study conducted a quantitative as well as qualitative methods of analysis. The study examined the perspectives of the Pakistanis behind the use of various hashtags with the lenses of Critical Discourse Analysis (CDA). While conducting this research, CDA was helpful to reveal the connection between the psyche of the people and the Covid-19 pandemic. It was found that how different Pakistanis used social media and how Covid-19 impacted their psyche. After collecting and analyzing the hashtags from twitter it was concluded that majority of people received negative impact from social media reports, while, some people used their hashtags positively and were found positive during Covid-19, and some people were found neutral.

Keywords: Covid, Covid-19, psyche, Covid Pakistan

Procedia PDF Downloads 59
11570 The Ethical and Social Implications of Using AI in Healthcare: A Literature Review

Authors: Deepak Singh

Abstract:

AI technology is rapidly being integrated into the healthcare system, bringing many ethical and social implications. This literature review examines the various aspects of this phenomenon, focusing on the ethical considerations of using AI in healthcare, such as how it might affect patient autonomy, privacy, and doctor-patient relationships. Furthermore, the review considers the potential social implications of AI in Healthcare, such as the potential for automation to reduce the availability of healthcare jobs and the potential to widen existing health inequalities. The literature suggests potential benefits and drawbacks to using AI in healthcare, and it is essential to consider the ethical and social implications before implementation. It is concluded that more research is needed to understand the full implications of using AI in healthcare and that ethical regulations must be in place to ensure patient safety and the technology's responsible use.

Keywords: AI, healthcare, telemedicine, telehealth, ethics, security, privacy, patient, rights, safety

Procedia PDF Downloads 140
11569 UniFi: Universal Filter Model for Image Enhancement

Authors: Aleksei Samarin, Artyom Nazarenko, Valentin Malykh

Abstract:

Image enhancement is becoming more and more popular, especially on mobile devices. Nowadays, it is a common approach to enhance an image using a convolutional neural network (CNN). Such a network should be of significant size; otherwise, a possibility for the artifacts to occur is overgrowing. The existing large CNNs are computationally expensive, which could be crucial for mobile devices. Another important flaw of such models is they are poorly interpretable. There is another approach to image enhancement, namely, the usage of predefined filters in combination with the prediction of their applicability. We present an approach following this paradigm, which outperforms both existing CNN-based and filter-based approaches in the image enhancement task. It is easily adaptable for mobile devices since it has only 47 thousand parameters. It shows the best SSIM 0.919 on RANDOM250 (MIT Adobe FiveK) among small models and is thrice faster than previous models.

Keywords: universal filter, image enhancement, neural networks, computer vision

Procedia PDF Downloads 101
11568 Bi-objective Network Optimization in Disaster Relief Logistics

Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann

Abstract:

Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.

Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks

Procedia PDF Downloads 79
11567 Green Closed-Loop Supply Chain Network Design Considering Different Production Technologies Levels and Transportation Modes

Authors: Mahsa Oroojeni Mohammad Javad

Abstract:

Globalization of economic activity and rapid growth of information technology has resulted in shorter product lifecycles, reduced transport capacity, dynamic and changing customer behaviors, and an increased focus on supply chain design in recent years. The design of the supply chain network is one of the most important supply chain management decisions. These decisions will have a long-term impact on the efficacy and efficiency of the supply chain. In this paper, a two-objective mixed-integer linear programming (MILP) model is developed for designing and optimizing a closed-loop green supply chain network that, to the greatest extent possible, includes all real-world assumptions such as multi-level supply chain, the multiplicity of production technologies, and multiple modes of transportation, with the goals of minimizing the total cost of the chain (first objective) and minimizing total emissions of emissions (second objective). The ε-constraint and CPLEX Solver have been used to solve the problem as a single-objective problem and validate the problem. Finally, the sensitivity analysis is applied to study the effect of the real-world parameters’ changes on the objective function. The optimal management suggestions and policies are presented.

Keywords: closed-loop supply chain, multi-level green supply chain, mixed-integer programming, transportation modes

Procedia PDF Downloads 80