Search results for: ordinary differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3447

Search results for: ordinary differential equations

1377 Effect of Viscosity on Void Structure in Dusty Plasma

Authors: El Amine Nebbat

Abstract:

A void is a dust-free region in dusty plasma, a medium formed of electrons, ions, and charged dust (grain). This structure appears in multiple experimental works. Several researchers have developed models to understand it. Recently, Nebbat and Annou proposed a nonlinear model that describes the void in non-viscos plasma, where the particles of the dusty plasma are treated as a fluid. In fact, the void appears even in dense dusty plasma where viscosity exists through the strong interaction between grains, so in this work, we augment the nonlinear model of Nebbat and Annou by introducing viscosity into the fluid equations. The analysis of the data of the numerical resolution confirms the important effect of this parameter (viscosity). The study revealed that the viscosity increases the dimension of the void for certain dimensions of the grains, and its effect on the value of the density of the grains at the boundary of the void is inversely proportional to their radii, i.e., this density increase for submicron grains and decrease for others. Finally, this parameter reduces the rings of dust density which surround the void.

Keywords: voids, dusty plasmas, variable charge, density, viscosity

Procedia PDF Downloads 57
1376 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images

Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav

Abstract:

Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.

Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining

Procedia PDF Downloads 163
1375 Crystal Nucleation in 3D Printed Polymer Scaffolds in Tissue Engineering

Authors: Amani Alotaibi

Abstract:

3D printing has emerged as a pivotal technique for scaffold development, particularly in the field of bone tissue regeneration, due to its ability to customize scaffolds to fit complex geometries of bone defects. Among the various methods available, fused deposition modeling (FDM) is particularly promising as it avoids the use of solvents or toxic chemicals during fabrication. This study investigates the effects of three key parameters, extrusion temperature, screw rotational speed, and deposition speed, on the crystallization and mechanical properties of polycaprolactone (PCL) scaffolds. Three extrusion temperatures (70°C, 80°C, and 90°C), three screw speeds (10 RPM, 15 RPM, and 20 RPM), and three deposition speeds (8 mm/s, 10 mm/s, and 12 mm/s) were evaluated. The scaffolds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile testing to assess changes in crystallinity and mechanical properties. Additionally, the scaffolds were analyzed for crystal size and biocompatibility. The results demonstrated that increasing the extrusion temperature to 80°C, combined with a screw speed of 15 RPM and a deposition speed of 10 mm/s, significantly improved the crystallinity, compressive modulus, and thermal resistance of the PCL scaffolds. These findings suggest that by fine-tuning basic 3D printing parameters, it is possible to modulate the structural and mechanical properties of the scaffold, thereby enhancing its suitability for bone tissue regeneration.

Keywords: 3D printing, polymer, scaffolds, tissue engineering, crystallization

Procedia PDF Downloads 7
1374 Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam

Authors: Geeta Partap, Nitika Chugh

Abstract:

The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators.

Keywords: microstretch, deflection, exponential load, Laplace transforms, residue theorem, simply supported

Procedia PDF Downloads 311
1373 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma

Authors: Jyoti Wadhwa, Arvinder Singh

Abstract:

This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.

Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.

Procedia PDF Downloads 180
1372 The Impact of Model Specification Decisions on the Teacher ValuE-added Effectiveness: Choosing the Correct Predictors

Authors: Ismail Aslantas

Abstract:

Value-Added Models (VAMs), the statistical methods for evaluating the effectiveness of teachers and schools based on student achievement growth, has attracted decision-makers’ and researchers’ attention over the last decades. As a result of this attention, many studies have conducted in recent years to discuss these statistical models from different aspects. This research focused on the importance of conceptual variables in VAM estimations; therefor, this research was undertaken to examine the extent to which value-added effectiveness estimates for teachers can be affected by using context predictions. Using longitudinal data over three years from the international school context, value-added teacher effectiveness was estimated by ordinary least-square value-added models, and the effectiveness of the teachers was examined. The longitudinal dataset in this study consisted of three major sources: students’ attainment scores up to three years and their characteristics, teacher background information, and school characteristics. A total of 1,027 teachers and their 35,355 students who were in eighth grade were examined for understanding the impact of model specifications on the value-added teacher effectiveness evaluation. Models were created using selection methods that adding a predictor on each step, then removing it and adding another one on a subsequent step and evaluating changes in model fit was checked by reviewing changes in R² values. Cohen’s effect size statistics were also employed in order to find out the degree of the relationship between teacher characteristics and their effectiveness. Overall, the results indicated that prior attainment score is the most powerful predictor of the current attainment score. 47.1 percent of the variation in grade 8 math score can be explained by the prior attainment score in grade 7. The research findings raise issues to be considered in VAM implementations for teacher evaluations and make suggestions to researchers and practitioners.

Keywords: model specification, teacher effectiveness, teacher performance evaluation, value-added model

Procedia PDF Downloads 135
1371 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.

Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing

Procedia PDF Downloads 175
1370 A Contrastive Analysis on Hausa and Yoruba Adjectival Phrases

Authors: Abubakar Maikudi

Abstract:

Contrastive analysis is the method of analyzing the structure of any two languages with a view to determining the possible differential aspects of their systems irrespective of their genetic affinity or level of development. Contrastive analysis of two languages becomes useful when it is adequately describing the sound structure and grammatical structure of two languages, with comparative statements giving emphasis to the compatible items in the two systems. This research work uses comparative analysis theory to analyze adjective and adjectival phrases in Hausa and Yorùbá languages. The Hausa language belongs to the Chadic family of the Afro-Asiatic phylum, while the Yorùbá language belongs to the Benue-Congo family of the Niger-Congo phylum. The findings of the research clearly demonstrated that there are significant similarities in the adjectival phrase constructions of the two languages, i.e., nominal (Head) and post-nominal (Post-Head) use of the adjective, predicative function of an adjective, use of the reduplicative adjective, use of the comparative and superlative adjective, etc. However, there are dissimilarities in the adjectival phrase of the two languages in gender/number agreement and pre-nominal (Post-Head) use of adjectives.

Keywords: genetic affinity, contrastive analysis, phylum, pre-head, post-head

Procedia PDF Downloads 231
1369 Urbanization and Income Inequality in Thailand

Authors: Acumsiri Tantikarnpanit

Abstract:

This paper aims to examine the relationship between urbanization and income inequality in Thailand during the period 2002–2020. Using a panel of data for 76 provinces collected from Thailand’s National Statistical Office (Labor Force Survey: LFS), as well as geospatial data from the U.S. Air Force Defense Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer Suite Day/Night band (VIIRS-DNB) satellite for nineteen selected years. This paper employs two different definitions to identify urban areas: 1) Urban areas defined by Thailand's National Statistical Office (Labor Force Survey: LFS), and 2) Urban areas estimated using nighttime light data from the DMSP and VIIRS-DNB satellite. The second method includes two sub-categories: 2.1) Determining urban areas by calculating nighttime light density with a population density of 300 people per square kilometer, and 2.2) Calculating urban areas based on nighttime light density corresponding to a population density of 1,500 people per square kilometer. The empirical analysis based on Ordinary Least Squares (OLS), fixed effects, and random effects models reveals a consistent U-shaped relationship between income inequality and urbanization. The findings from the econometric analysis demonstrate that urbanization or population density has a significant and negative impact on income inequality. Moreover, the square of urbanization shows a statistically significant positive impact on income inequality. Additionally, there is a negative association between logarithmically transformed income and income inequality. This paper also proposes the inclusion of satellite imagery, geospatial data, and spatial econometric techniques in future studies to conduct quantitative analysis of spatial relationships.

Keywords: income inequality, nighttime light, population density, Thailand, urbanization

Procedia PDF Downloads 76
1368 Aerodynamic Performance of a Pitching Bio-Inspired Corrugated Airfoil

Authors: Hadi Zarafshani, Shidvash Vakilipour, Shahin Teimori, Sara Barati

Abstract:

In the present study, the aerodynamic performance of a rigid two-dimensional pitching bio-inspired corrugate airfoil was numerically investigated at Reynolds number of 14000. The Open Field Operations And Manipulations (OpenFOAM) computational fluid dynamic tool is used to solve flow governing equations numerically. The k-ω SST turbulence model with low Reynolds correction (k-ω SST LRC) and the pimpleDyMFOAM solver are utilized to simulate the flow field around pitching bio-airfoil. The lift and drag coefficients of the airfoil are calculated at reduced frequencies k=1.24-4.96 and the angular amplitude of A=5°-20°. Results show that in a fixed reduced frequency, the absolute value of the sectional lift and drag coefficients increase with increasing pitching amplitude. In a fixed angular amplitude, the absolute value of the lift and drag coefficients increase as the pitching reduced frequency increases.

Keywords: bio-inspired pitching airfoils, OpenFOAM, low Reynolds k-ω SST model, lift and drag coefficients

Procedia PDF Downloads 190
1367 An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles

Authors: Jafar Razmi

Abstract:

Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model.

Keywords: integral abutment bridges, piles, thermo-mechanical stress, stress and strains

Procedia PDF Downloads 240
1366 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber

Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He

Abstract:

As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.

Keywords: 3D printed, carbon fiber, fiber content, recycling

Procedia PDF Downloads 190
1365 The Role of Institutions in Community Wildlife Conservation in Zimbabwe

Authors: Herbert Ntuli, Edwin Muchapondwa

Abstract:

This study used a sample of 336 households and community level data from 30 communities around the Gonarezhou National Park in Zimbabwe to analyse the association between ability to self-organize or cooperation and institutions on one hand and the relationship between success of biodiversity outcomes and cooperation on the other hand. Using both the ordinary least squares and instrumental variables estimation with heteroskedasticity-based instruments, our results confirmed that sound institutions are indeed an important ingredient for cooperation in the respective communities and cooperation positively and significantly affects biodiversity outcomes. Group size, community level trust, the number of stakeholders and punishment were found to be important variables explaining cooperation. From a policy perspective, our results show that external enforcement of rules and regulations does not necessarily translate into sound ecological outcomes but better outcomes are attainable when punishment is rather endogenized by local communities. This seems to suggest that communities should rather be supported in such a way that robust institutions that are tailor made to suit the needs of local condition will emerge that will in turn facilitate good environmental husbandry. Cooperation, training, benefits, distance from the nearest urban canter, distance from the fence, social capital average age of household head, fence and information sharing were found to be very important variables explaining the success of biodiversity outcomes ceteris paribus. Government programmes should target capacity building in terms of institutional capacity and skills development in order to have a positive impact on biodiversity. Hence, the role of stakeholders (e.g., NGOs) in capacity building and government effort should complement each other to ensure that the necessary resources are mobilized and all communities receive the necessary training and resources.

Keywords: institutions, self-organize, common pool resources, wildlife, conservation, Zimbabwe

Procedia PDF Downloads 281
1364 Improving Gas Separation Performance of Poly(Vinylidene Fluoride) Based Membranes Containing Ionic Liquid

Authors: S. Al-Enezi, J. Samuel, A. Al-Banna

Abstract:

Polymer based membranes are one of the low-cost technologies available for the gas separation. Three major elements required for a commercial gas separating membrane are high permeability, high selectivity, and good mechanical strength. Poly(vinylidene fluoride) (PVDF) is a commercially available fluoropolymer and a widely used membrane material in gas separation devices since it possesses remarkable thermal, chemical stability, and excellent mechanical strength. The PVDF membrane was chemically modified by soaking in different ionic liquids and dried. The thermal behavior of modified membranes was investigated by differential scanning calorimetry (DSC), and thermogravimetry (TGA), and the results clearly show the best affinity between the ionic liquid and the polymer support. The porous structure of the PVDF membranes was clearly seen in the scanning electron microscopy (SEM) images. The CO₂ permeability of blended membranes was explored in comparison with the unmodified matrix. The ionic liquid immobilized in the hydrophobic PVDF support exhibited good performance for separations of CO₂/N₂. The improved permeability of modified membrane (PVDF-IL) is attributed to the high concentration of nitrogen rich imidazolium moieties.

Keywords: PVDF, polymer membrane, gas permeability, CO₂ separation, nanotubes

Procedia PDF Downloads 284
1363 A Study of Evolutional Control Systems

Authors: Ti-Jun Xiao, Zhe Xu

Abstract:

Controllability is one of the fundamental issues in control systems. In this paper, we study the controllability of second order evolutional control systems in Hilbert spaces with memory and boundary controls, which model dynamic behaviors of some viscoelastic materials. Transferring the control problem into a moment problem and showing the Riesz property of a family of functions related to Cauchy problems for some integrodifferential equations, we obtain a general boundary controllability theorem for these second order evolutional control systems. This controllability theorem is applicable to various concrete 1D viscoelastic systems and recovers some previous related results. It is worth noting that Riesz sequences can be used for numerical computations of the control functions and the identification of new Riesz sequence is of independent interest for the basis-function theory. Moreover, using the Riesz sequences, we obtain the existence and uniqueness of (weak) solutions to these second order evolutional control systems in Hilbert spaces. Finally, we derive the exact boundary controllability of a viscoelastic beam equation, as an application of our abstract theorem.

Keywords: evolutional control system, controllability, boundary control, existence and uniqueness

Procedia PDF Downloads 222
1362 Application of FT-NIR Spectroscopy and Electronic Nose in On-line Monitoring of Dough Proofing

Authors: Madhuresh Dwivedi, Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

FT-NIR spectroscopy and electronic nose was used to study the kinetics of dough proofing. Spectroscopy was conducted with an optic probe in the diffuse reflectance mode. The dough leavening was carried out at different temperatures (25 and 35°C) and constant RH (80%). Spectra were collected in the range of wave numbers from 12,000 to 4,000 cm-1 directly on the samples, every 5 min during proofing, up to 2 hours. NIR spectra were corrected for scatter effect and second order derivatization was done to transform the spectra. Principal component analysis (PCA) was applied for the leavening process and process kinetics was calculated. PCA was performed on data set and loadings were calculated. For leavening, four absorption zones (8,950-8,850, 7,200-6,800, 5,250-5,150 and 4,700-4,250 cm-1) were involved in describing the process. Simultaneously electronic nose was also used for understanding the development of odour compounds during fermentation. The electronic nose was able to differential the sample on the basis of aroma generation at different time during fermentation. In order to rapidly differentiate samples based on odor, a Principal component analysis is performed and successfully demonstrated in this study. The result suggests that electronic nose and FT-NIR spectroscopy can be utilized for the online quality control of the fermentation process during leavening of bread dough.

Keywords: FT-NIR, dough, e-nose, proofing, principal component analysis

Procedia PDF Downloads 391
1361 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots

Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu

Abstract:

The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.

Keywords: deep reinforcement learning, interpretation, motion control, legged robots

Procedia PDF Downloads 21
1360 Heat Transfer and Turbulent Fluid Flow over Vertical Double Forward-Facing Step

Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, A. Badarudin, N. M. Adam, S. Masuri

Abstract:

Numerical study of heat transfer and fluid flow over vertical double forward facing step were presented. The k-w model with finite volume method was employed to solve continuity, momentum, and energy equations. Different step heights were adopted for range of Reynolds number varied from 10000 to 40000, and range of temperature varied from 310K to 340 K. The straight side of duct is insulated while the side of double forward facing step is heated. The result shows augmentation of heat transfer due to the recirculation region created after and before steps. Effect of step length and Reynolds number observed on increase of local Nusselt number particularly at recirculation regions. Contour of streamline velocity is plotted to show recirculation regions after and before steps. Numerical simulation in this paper done by used ANSYS Fluent 14.

Keywords: turbulent flow, double forward, heat transfer, separation flow

Procedia PDF Downloads 461
1359 Development and Utilization of Keratin-Fibrin-Gelatin Composite Films as Potential Material for Skin Tissue Engineering Application

Authors: Sivakumar Singaravelu, Giriprasath Ramanathan, M. D. Raja, Uma Tirichurapalli Sivagnanam

Abstract:

The goal of the present study was to develop and evaluate composite film for tissue engineering application. The keratin was extracted from bovine horn and used for preparation of keratin (HK), physiologically clotted fibrin (PCF) and gelatin (G) blend films in different stoichiometric ratios (1:1:1, 1:1:2 and 1:1:3) by using solvent casting method. The composite films (HK-PCF-G) were characterized physiochemically using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The mechanical properties of the composite films were analyzed. The results of tensile strength show that ultimate strength and elongation were 10.72 Mpa and 4.83 MPA respectively for 1:1:3 ratio combination. The SEM image showed a slight smooth surface for 1:1:3 ratio combination compared to other films. In order to impart antibacterial activities, the composite films were loaded with Mupirocin (MP) to act against infection. The composite films acted as a suitable carrier to protect and release the drug in a controlled manner. This developed composite film would be a suitable alternative material for tissue engineering application.

Keywords: bovine horn, keratin, fibrin, gelatin, tensile strength

Procedia PDF Downloads 449
1358 An Investigation on Hybrid Composite Drive Shaft for Automotive Industry

Authors: Gizem Arslan Özgen, Kutay Yücetürk, Metin Tanoğlu, Engin Aktaş

Abstract:

Power transmitted from the engine to the final drive where useful work is applied through a system consisting of a gearbox, clutch, drive shaft and a differential in the rear-wheel-drive automobiles. It is well-known that the steel drive shaft is usually manufactured in two pieces to increase the fundamental bending natural frequency to ensure safe operation conditions. In this work, hybrid one-piece propeller shafts composed of carbon/epoxy and glass/epoxy composites have been designed for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Hybridization of carbon and glass fibers is being studied to optimize the cost/performance requirements. Composites shaft materials with various fiber orientation angles and stacking sequences are being fabricated and analyzed using finite element analysis (FEA).

Keywords: composite propeller shaft, hybridization, epoxy matrix, static torque transmission capability, torsional buckling strength, fundamental natural bending frequency.

Procedia PDF Downloads 270
1357 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter

Authors: Yi Huang, Clemens Guehmann

Abstract:

In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.

Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model

Procedia PDF Downloads 285
1356 Comparing the Experimental Thermal Conductivity Results Using Transient Methods

Authors: Sofia Mylona, Dale Hume

Abstract:

The main scope of this work is to compare the experimental thermal conductivity results of fluids between devices using transient techniques. A range of different liquids within a range of viscosities was measured with two or more devices, and the results were compared between the different methods and the reference equations wherever it was available. The liquids selected are the most commonly used in academic or industrial laboratories to calibrate their thermal conductivity instruments having a variety of thermal conductivity, viscosity, and density. Three transient methods (Transient Hot Wire, Transient Plane Source, and Transient Line Source) were compared for the thermal conductivity measurements taken by using them. These methods have been chosen as the most accurate and because they all follow the same idea; as a function of the logarithm of time, the thermal conductivity is calculated from the slope of a plot of sensor temperature rise. For all measurements, the selected temperature range was at the atmospheric level from 10 to 40 ° C. Our results are coming with an agreement with the objections of several scientists over the reliability of the results of a few popular devices. The observation was surprising that the device used in many laboratories for fast measurements of liquid thermal conductivity display deviations of 500 percent which can be very poorly reproduced.

Keywords: accurate data, liquids, thermal conductivity, transient methods.

Procedia PDF Downloads 160
1355 The Effectiveness of Communication Skills Using Transactional Analysis on the Dimensions of Marital Intimacy: An Experimental Study

Authors: Mehravar Javid, James Sexton, S. Taridashti, Joseph Dorer

Abstract:

Objective: Intimacy is among the most important factors in marital relationships and includes different aspects. Communication skills can enable couples to promote their intimacy. This experimental study was conducted to measure the effectiveness of communication skills using Transactional Analysis (TA) on various dimensions of marital intimacy. Method: The participants in this study were female teachers. Analysis of covariance was recruited in the experimental group (n =15) and control group (n =15) with pre-test and post-test. Random assignment was applied. The experimental group received the Transactional Analysis training program for 9 sessions of 2 hours each week. The instrument was the Marital Intimacy Questionnaire, with 87 items and 9 subscales. Result: The findings suggest that training in Transactional Analysis significantly increased the total score of intimacy except spiritual intimacy on the post-test. Discussion: According to the obtained data, it is concluded that communication skills using Transactional Analysis (TA) training could increase intimacy and improve marital relationships. The study highlights the differential effects on emotional, rational, sexual, and psychological intimacy compared to physical, social/recreational, and relational intimacy over a 9-week period.

Keywords: communication skills, intimacy, marital relationships, transactional analysis

Procedia PDF Downloads 95
1354 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm³ and 5.64 cm³.

Keywords: liver cancer, Helix antenna, finite element, microwave ablation

Procedia PDF Downloads 309
1353 Using Audio-Visual Aids and Computer-Assisted Language Instruction to Overcome Learning Difficulties of Reading in Students of Special Needs

Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari

Abstract:

Background & aims: Reading is a receptive skill whose importance could involve abilities' variance from linguistic standard. Several evidences support the hypothesis stating that the more you read the better you write, with a different impact for speech language therapists (SLTs) who use audio-visual aids and computer-assisted language instruction (CALI) and those who do not. Methods: Here we made use of audio-visual aids and CALI for teaching reading skill to a group of 40 students of special needs of both sexes (range between 8 and 18 years old) at al-Malādh school for teaching students of special needs in Dhamar (Yemen) while another group of the same number is taught using ordinary teaching methods. Pre-and-posttests have been administered at the beginning and the end of the semester (Before and after teaching the reading course). The purpose was to understand the differences between the levels of the students of special needs to see to what extent audio-visual aids and CALI are useful for them. The two groups were taught by the same instructor under the same circumstances in the same school. Both quantitative and qualitative procedures were used to analyze the data. Results: The overall findings revealed that audio-visual aids and CALI are very useful for teaching reading to students of special needs and this can be seen in the scores of the treatment group’s subjects (7.0%, in post-test vs.2.5% in pre-test). In comparison to the scores of the second group’s subjects (where audio-visual aids and CALI were not used) (2.2% in both pre-and-posttests), the first group subjects have overcome reading tasks and this can be observed in their performance in the posttest. Compared with males, females’ performance was better (1466 scores (7.3%) vs. 1371 scores (6.8%). Qualitative and statistical analyses showed that such comprehension is absolutely due to the use of audio-visual aids and CALI and nothing else. These outcomes confirm the evidence of the significance of using audio-visual aids and CALI as effective means for teaching receptive skills in general and reading skill in particular.

Keywords: reading, receptive skills, audio-visual aids, CALI, students, special needs, SLTs

Procedia PDF Downloads 49
1352 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials

Authors: Mahdi Fakoor, Hannaneh Manafi Farid

Abstract:

In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.

Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor

Procedia PDF Downloads 167
1351 The Impact of Board Characteristics on Firm Performance: Evidence from Banking Industry in India

Authors: Manmeet Kaur, Madhu Vij

Abstract:

The Board of Directors in a firm performs the primary role of an internal control mechanism. This Study seeks to understand the relationship between internal governance and performance of banks in India. The research paper investigates the effect of board structure (proportion of nonexecutive directors, gender diversity, board size and meetings per year) on the firm performance. This paper evaluates the impact of corporate governance mechanisms on bank’s financial performance using panel data for 28 listed banks in National Stock Exchange of India for the period of 2008-2014. Returns on Asset, Return on Equity, Tobin’s Q and Net Interest Margin were used as the financial performance indicators. To estimate the relationship among governance and bank performance initially the Study uses Pooled Ordinary Least Square (OLS) Estimation and Generalized Least Square (GLS) Estimation. Then a well-developed panel Generalized Method of Moments (GMM) Estimator is developed to investigate the dynamic nature of performance and governance relationship. The Study empirically confirms that two-step system GMM approach controls the problem of unobserved heterogeneity and endogeneity as compared to the OLS and GLS approach. The result suggests that banks with small board, boards with female members, and boards that meet more frequently tend to be more efficient and subsequently have a positive impact on performance of banks. The study offers insights to policy makers interested in enhancing the quality of governance of banks in India. Also, the findings suggest that board structure plays a vital role in the improvement of corporate governance mechanism for financial institutions. There is a need to have efficient boards in banks to improve the overall health of the financial institutions and the economic development of the country.

Keywords: board of directors, corporate governance, GMM estimation, Indian banking

Procedia PDF Downloads 260
1350 Utilization of Pozzolonic Material for the Enhancement of the Concrete Strength: A Comprehensive Review Paper

Authors: M. Parvez Alam, M. Bilal Khan

Abstract:

Concrete is the material of choice where strength, performance, durability, impermeability, fire resistance, and abrasion resistance are required. The hunger for the higher strength leads to other materials to achieve the desired results and thus, emerged the contribution of cementitious material for the strength of concrete In present day constructions, concrete is chosen as one of the best choices by civil engineers in construction materials. The concept of sustainability is touching new heights and many pozzolonic materials are tried and tested as partial replacement for the cement. In this paper, comprehensive review of available literatures are studied to evaluate the performance of pozzolonic materials such as ceramic waste powder, copper slag, silica fume on the strength of concrete by the partial replacement of ordinary materials such as cement, fine aggregate and coarse aggregate at different percentage of composition. From the study, we conclude that ceramic wastes are suitable to be used in the construction industry, and more significantly on the making of concrete. Ceramic wastes are found to be suitable for usage as substitution for fine and coarse aggregates and partial substitution in cement production. They were found to be performing better than normal concrete, in properties such as density, durability, permeability, and compressive strength. Copper slag is the waste material of matte smelting and refining of copper such that each ton of copper generates approximately 2.5 tons of copper slag. Copper slag is one of the materials that is considered as a waste which could have a promising future in construction Industry as partial or full substitute of aggregates. Silica fume, also known as micro silica or condensed silica fume, is a relatively new material compared to fly ash, It is another material that is used as an artificial pozzolonic admixture. High strength concrete made with silica fume provides high abrasion/corrosion resistance.

Keywords: concrete, pozzolonic materials, ceramic waste powder, copper slag

Procedia PDF Downloads 316
1349 Deciphering Tumor Stroma Interactions in Retinoblastoma

Authors: Rajeswari Raguraman, Sowmya Parameswaran, Krishnakumar Subramanian, Jagat Kanwar, Rupinder Kanwar

Abstract:

Background: Tumor microenvironment has been implicated in several cancers to regulate cell growth, invasion and metastasis culminating in outcome of therapy. Tumor stroma consists of multiple cell types that are in constant cross-talk with the tumor cells to favour a pro-tumorigenic environment. Not much is known about the existence of tumor microenvironment in the pediatric intraocular malignancy, Retinoblastoma (RB). In the present study, we aim to understand the multiple stromal cellular subtypes and tumor stromal interactions expressed in RB tumors. Materials and Methods: Immunohistochemistry for stromal cell markers CD31, CD68, alpha-smooth muscle (α-SMA), vimentin and glial fibrillary acidic protein (GFAP) was performed on formalin fixed paraffin embedded tissues sections of RB (n=12). The differential expression of stromal target molecules; fibroblast activation protein (FAP), tenascin-C (TNC), osteopontin (SPP1), bone marrow stromal antigen 2 (BST2), stromal derived factor 2 and 4 (SDF2 and SDF4) in primary RB tumors (n=20) and normal retina (n=5) was studied by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. The differential expression was correlated with the histopathological features of RB. The interaction between RB cell lines (Weri-Rb-1, NCC-RbC-51) and Bone marrow stromal cells (BMSC) was also studied using direct co-culture and indirect co-culture methods. The functional effect of the co-culture methods on the RB cells was evaluated by invasion and proliferation assays. Global gene expression was studied by using Affymetrix 3’ IVT microarray. Pathway prediction was performed using KEGG and the key molecules were validated using qRT-PCR. Results: The immunohistochemistry revealed the presence of several stromal cell types such as endothelial cells (CD31+;Vim+/-); macrophages (CD68+;Vim+/-); Fibroblasts (Vim+; CD31-;CD68- );myofibroblasts (α-SMA+/ Vim+) and invading retinal astrocytes/ differentiated retinal glia (GFAP+; Vim+). A characteristic distribution of these stromal cell types was observed in the tumor microenvironment, with endothelial cells predominantly seen in blood vessels and macrophages near actively proliferating tumor or necrotic areas. Retinal astrocytes and glia were predominant near the optic nerve regions in invasive tumors with sparse distribution in tumor foci. Fibroblasts were widely distributed with rare evidence of myofibroblasts in the tumor. Both gene and protein expression revealed statistically significant (P<0.05) up-regulation of FAP, TNC and BST2 in primary RB tumors compared to the normal retina. Co-culture of BMSC with RB cells promoted invasion and proliferation of RB cells in direct and indirect contact methods respectively. Direct co-culture of RB cell lines with BMSC resulted in gene expression changes in ECM-receptor interaction, focal adhesion, IL-8 and TGF-β signaling pathways associated with cancer. In contrast, various metabolic pathways such a glucose, fructose and amino acid metabolism were significantly altered under the indirect co-culture condition. Conclusion: The study suggests that the close interaction between RB cells and the stroma might be involved in RB tumor invasion and progression which is likely to be mediated by ECM-receptor interactions and secretory factors. Targeting the tumor stroma would be an attractive option for redesigning treatment strategies for RB.

Keywords: gene expression profiles, retinoblastoma, stromal cells, tumor microenvironment

Procedia PDF Downloads 384
1348 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador

Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego

Abstract:

In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.

Keywords: hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador

Procedia PDF Downloads 269