Search results for: network technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11913

Search results for: network technology

9843 Comparative Analysis of Technologies for Production of Granular NPKS-Fertilizers

Authors: Andrey Norov

Abstract:

Based on a comparison of technologies for the production of granular nitrate-containing and nitrate-free NPKS-fertilizers, this paper considers the effect of process parameters on the economic feasibility of production, on physical & chemical, and structural & mechanical properties and quality of final products (caking, static strength of granules, hygroscopicity, etc.), as well as on thermal stability of fertilizers, eco-friendly production, and other aspects. This comparative analysis allows to select the optimal technology for specific conditions and requirements. Additionally, the report considers flexible, a unique technology for the production of granular NPKS-fertilizers containing sulfur and calcium, suggested by Samoilov Research Institute for Mineral Fertilizers JSC “NIUIF” - the oldest industry-oriented institute in Russia. This technology is implemented at one of the Russian plants where combined drum is used for granulation and drying.

Keywords: caking, granule static strength, granulating-drying drum, NPKS-fertilizers

Procedia PDF Downloads 113
9842 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract:

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Keywords: DDoS detection, EMD, relative entropy, SDN

Procedia PDF Downloads 341
9841 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 204
9840 iCount: An Automated Swine Detection and Production Monitoring System Based on Sobel Filter and Ellipse Fitting Model

Authors: Jocelyn B. Barbosa, Angeli L. Magbaril, Mariel T. Sabanal, John Paul T. Galario, Mikka P. Baldovino

Abstract:

The use of technology has become ubiquitous in different areas of business today. With the advent of digital imaging and database technology, business owners have been motivated to integrate technology to their business operation ranging from small, medium to large enterprises. Technology has been found to have brought many benefits that can make a business grow. Hog or swine raising, for example, is a very popular enterprise in the Philippines, whose challenges in production monitoring can be addressed through technology integration. Swine production monitoring can become a tedious task as the enterprise goes larger. Specifically, problems like delayed and inconsistent reports are most likely to happen if counting of swine per pen of which building is done manually. In this study, we present iCount, which aims to ensure efficient swine detection and counting that hastens the swine production monitoring task. We develop a system that automatically detects and counts swine based on Sobel filter and ellipse fitting model, given the still photos of the group of swine captured in a pen. We improve the Sobel filter detection result through 8-neigbhorhood rule implementation. Ellipse fitting technique is then employed for proper swine detection. Furthermore, the system can generate periodic production reports and can identify the specific consumables to be served to the swine according to schedules. Experiments reveal that our algorithm provides an efficient way for detecting swine, thereby providing a significant amount of accuracy in production monitoring.

Keywords: automatic swine counting, swine detection, swine production monitoring, ellipse fitting model, sobel filter

Procedia PDF Downloads 314
9839 Future trends of MED-TVC Desalination Technology

Authors: Irfan Wazeer

Abstract:

Desalination has become one of the major water treatment process in several countries around the world where shortage of water is a serious problem. Energy consumption is a vital economic factor in selecting the type of desalination processes because current desalination processes require large amount of energy which is costly. Multi-effect desalination system with thermal vapor compression (MED-TVC) is particularly more attractive than other thermal desalination systems due to its low energy consumption. MED-TVC is characterized by high performance ratio (PR), easier operation, low maintenance requirements and simple geometry. These attractive features make MED-TVC highly competitive to other well established desalination techniques that include the reverse osmosis (RO) and multi-stage flash desalination (MSF). The primary goal of this paper is to present a preview of some aspects related with the theory of the technology, parametric study of the MED-TVC systems and its development. It will analyzed the current and future aspects of the MED-TVC technology in view of latest installed plants.

Keywords: MED-TVC, parallel feed, performance ratio, GOR

Procedia PDF Downloads 259
9838 Perceptions toward Adopting Virtual Reality as a Learning Aid in Information Technology

Authors: S. Alfalah, J. Falah, T. Alfalah, M. Elfalah, O. Falah

Abstract:

The field of education is an ever-evolving area constantly enriched by newly discovered techniques provided by active research in all areas of technologies. The recent years have witnessed the introduction of a number of promising technologies and applications to enhance the teaching and learning experience. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing education in many fields. VR creates an artificial environment, using computer hardware and software, which is similar to the real world. This simulation provides a solution to improve the delivery of materials, which facilitates the teaching process by providing a useful aid to instructors, and enhances the learning experience by providing a beneficial learning aid. In order to assure future utilization of such systems, students’ perceptions were examined toward utilizing VR as an educational tool in the Faculty of Information Technology (IT) in The University of Jordan. A questionnaire was administered to IT undergraduates investigating students’ opinions about the potential opportunities that VR technology could offer and its implications as learning and teaching aid. The results confirmed the end users’ willingness to adopt VR systems as a learning aid. The result of this research forms a solid base for investing in a VR system for IT education.

Keywords: information, technology, virtual reality, education

Procedia PDF Downloads 296
9837 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane

Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua

Abstract:

Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.

Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability

Procedia PDF Downloads 325
9836 Impact of Unbalanced Urban Structure on the Traffic Congestion in Biskra, Algeria

Authors: Khaled Selatnia

Abstract:

Nowadays, the traffic congestion becomes increasingly a chronic problem. Sometimes, the cause is attributed to the recurrent road works that create barriers to the efficient movement. But congestion, which usually occurs in cities, can take diverse forms and magnitudes. The case study of Biskra city in Algeria and the diagnosis of its road network show that throughout all the micro regional system, the road network seems at first quite dense. However, this density although it is important, does not cover all areas. A major flow is concentrated in the axis Sidi Okba – Biskra – Tolga. The largest movement of people in the Wilaya (prefecture) revolves around these three centers and their areas of influence. Centers farthest from the trio are very poorly served. This fact leads us to ask questions about the extent of congestion in Biskra city and its relationship to the imbalance of the urban framework. The objective of this paper is to highlight the impact of the urban fact on the traffic congestion.

Keywords: congestion, urban framework, regional, urban and regional studies

Procedia PDF Downloads 628
9835 Students’ Perceptions and Attitudes for Integrating ICube Technology in the Solar System Lesson

Authors: Noran Adel Emara, Elham Ghazi Mohammad

Abstract:

Qatar University is engaged in a systemic education reform that includes integrating the latest and most effective technologies for teaching and learning. ICube is high-immersive virtual reality technology is used to teach educational scenarios that are difficult to teach in real situations. The trends toward delivering science education via virtual reality applications have accelerated in recent years. However, research on students perceptions of integrating virtual reality especially ICube technology is somehow limited. Students often have difficulties focusing attention on learning science topics that require imagination and easily lose attention and interest during the lesson. The aim of this study was to examine students’ perception of integrating ICube technology in the solar system lesson. Moreover, to explore how ICube could engage students in learning scientific concept of the solar system. The research framework included the following quantitative research design with data collection and analysis from questionnaire results. The solar system lesson was conducted by teacher candidates (Diploma students) who taught in the ICube virtual lab in Qatar University. A group of 30 students from eighth grade were randomly selected to participate in the study. Results showed that the students were extremely engaged in learning the solar system and responded positively to integrating ICube in teaching. Moreover, the students showed interest in learning more lessons through ICube as it provided them with valuable learning experience about complex situations.

Keywords: ICube, integrating technology, science education, virtual reality

Procedia PDF Downloads 304
9834 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 175
9833 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.

Keywords: bubble diameter, heat flux, neural network, training algorithm

Procedia PDF Downloads 447
9832 The Characteristics of the Graduates Based on Thailand Qualification Framework (TQF) of the Faculty of Industrial Technology, Suan Sunandha Rajabhat University

Authors: Apinya Mungaomklang, Natakamol Lookkham

Abstract:

The purpose of this research is to study the characteristics of the graduates based on Thailand Qualification Framework (TQF) of the Faculty of Industrial Technology, Suan Sunandha Rajabhat University. The population of the research was employers/entrepreneurs/supervisors of students who were doing Professional Experiences course in their respective organizations during semester 1/2012. Data were collected during the month of September 2012 from the total number of 100 people. The tool used in this research was a questionnaire developed by the research team. Data were analyzed using percentage, mean and standard deviation using a computer program. The results showed that most of the surveyed organizations were private companies. The program with most students doing Professional Experiences course was Safety Technology and Occupational Health. The nature of work that most students did was associated with the document. Employers/ entrepreneurs/employers’ opinions on the characteristics of the graduates based on TQF received high scores. Cognitive skills received the highest score, followed by interpersonal relationships and responsibilities, ethics and moral, numerical analysis skills, communication and information technology skills, and knowledge, respectively.

Keywords: graduates characteristics, Thailand Qualification Framework, employers, entrepreneurs

Procedia PDF Downloads 319
9831 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System

Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu

Abstract:

The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.

Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter

Procedia PDF Downloads 256
9830 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation

Authors: Peiming Li

Abstract:

This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.

Keywords: federated learning system, block chain, decentralized oracles, hidden markov model

Procedia PDF Downloads 66
9829 Monitoring a Membrane Structure Using Non-Destructive Testing

Authors: Gokhan Kilic, Pelin Celik

Abstract:

Structural health monitoring (SHM) is widely used in evaluating the state and health of membrane structures. In the past, in order to collect data and send it to a data collection unit on membrane structures, wire sensors had to be put as part of the SHM process. However, this study recommends using wireless sensors instead of traditional wire ones to construct an economical, useful, and easy-to-install membrane structure health monitoring system. Every wireless sensor uses a software translation program that is connected to the monitoring server. Operational neural networks (ONNs) have recently been developed to solve the shortcomings of convolutional neural networks (CNNs), such as the network's resemblance to the linear neuron model. The results of using ONNs for monitoring to evaluate the structural health of a membrane are presented in this work.

Keywords: wireless sensor network, non-destructive testing, operational neural networks, membrane structures, dynamic monitoring

Procedia PDF Downloads 94
9828 What Children Do and Do Not Like about Taking Part in Sport: Using Focus Groups to Investigate Thoughts and Feelings of Children with Hearing Loss

Authors: S. Somerset, D. J. Hoare, P. Leighton

Abstract:

Limited participation in physical activity and sport has been linked to poorer mental and physical health in children. Studies have shown that children who participate in sports benefit from improved social skills, self-confidence, communication skills and a better quality of life. Children who participate in sport are also more likely to continue their participation into their adult life. Deaf or hard of hearing children should have the same opportunities to participate in sport and receive the benefits as their hearing peers. Anecdotal evidence suggests this isn’t always the case. This is concerning given there are 45,000 children in the UK with permanent hearing loss. The aim of this study was to understand what encourages or discourages deaf or hard of hearing children to take part in sports. Ethical approval for the study was obtained from the University of Nottingham School of Medicine ethics committee. We conducted eight focus groups with deaf or hard of hearing children aged 10 to 15 years. A total of 45 children (19 male, 26 female) recruited from local schools and sports clubs took part. Information was gathered on the children’s thoughts and feelings about participation in sport. This included whether they played sports and who with, whether they did or did not like sport, and why they got involved in sport. Focus groups were audio recorded and transcribed. Transcripts were analysed using thematic analysis. Several key themes were identified as being associated with levels of sports participation. These included friendships, family and communication. Deaf or hard of hearing children with active siblings had participated in more sports. Communication was a common theme throughout regardless of the type of hearing-assistive technology a child used. Children found communication easier during sport if they were allowed to use their technology and had particular difficulty during sports such as swimming. Children expressed a desire not to have to identify themselves at a club as having a hearing loss. This affected their confidence when participating in sport. Not surprisingly, children who are deaf or hard of hearing are more likely to participate in sport if they have a good support network of parents, coaches and friends. The key barriers to participation for these children are communication, lack of visual information, lack of opportunity and a lack of awareness. By addressing these issues more deaf and hard of hearing children will take part in sport and will continue their participation.

Keywords: barrier, children, deaf, participation, hard of hearing, sport

Procedia PDF Downloads 426
9827 A Hybrid Approach for Thread Recommendation in MOOC Forums

Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard

Abstract:

Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.

Keywords: association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis

Procedia PDF Downloads 298
9826 The Impact of the Knowledge-Sharing Factors on Improving Decision Making at Sultan Qaboos University Libraries

Authors: Aseela Alhinaai, Suliman Abdullah, Adil Albusaidi

Abstract:

Knowledge has been considered an important asset in private and public organizations. It is utilized in the libraries sector to run different operations of technical services and administrative works. As a result, the International Federation of Library Association (IFLA) established a department “Knowledge Management” in December 2003 to provide a deep understanding of the KM concept for professionals. These are implemented through different programs, workshops, and activities. This study aims to identify the impact of the knowledge-sharing factors (technology, collaboration, management support) to improve decision-making at Sultan Qaboos University Libraries. This study conducted a quantitative method using a questionnaire instrument to measure the impact of technology, collaboration, and management support on knowledge sharing that lead to improved decision-making. The study population is the (SQU) libraries (Main Library, Medical Library, College of Economic and political science library, and Art Library). The results showed that management support, collaboration, and technology use have a positive impact on the knowledge-sharing process, and knowledge-sharing positively affects the decision making process.

Keywords: knowledge sharing, decision-making, information technology, management support, corroboration, Sultan Qaboos University

Procedia PDF Downloads 82
9825 Medical Neural Classifier Based on Improved Genetic Algorithm

Authors: Fadzil Ahmad, Noor Ashidi Mat Isa

Abstract:

This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.

Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy

Procedia PDF Downloads 476
9824 Neuro-Connectivity Analysis Using Abide Data in Autism Study

Authors: Dulal Bhaumik, Fei Jie, Runa Bhaumik, Bikas Sinha

Abstract:

Human brain is an amazingly complex network. Aberrant activities in this network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism. fMRI has emerged as an important tool to delineate the neural networks affected by such diseases, particularly autism. In this paper, we propose mixed-effects models together with an appropriate procedure for controlling false discoveries to detect disrupted connectivities in whole brain studies. Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange or ABIDE which includes 361 subjects from 8 medical centers. We believe that our findings have addressed adequately the small sample inference problem, and thus are more reliable for therapeutic target for intervention. In addition, our result can be used for early detection of subjects who are at high risk of developing neurological disorders.

Keywords: ABIDE, autism spectrum disorder, fMRI, mixed-effects model

Procedia PDF Downloads 292
9823 Experience of Using Expanding Polyurethane Resin for Ground Improvement Under Existing Shallow Foundations on The Arabian Peninsula

Authors: Evgeny N. Zakharin, Bartosz Majewski

Abstract:

Foaming polyurethane is a ground improvement technology that is increasingly used for foundation stabilization with differential settlement and controlled foundation structure lifting. This technology differs from conventional mineral grout due to its injection composition, which provides high-pressure expansion quickly due to a chemical reaction. The technology has proven efficient in the typical geological conditions of the United Arab Emirates. An in-situ trial foundation load test has been proposed to objectively assess the deformative and load-bearing characteristics of the soil after injection. The article provides a detailed description of the experiment carried out in field conditions. Based on the practical experiment's results and its finite element modeling, the deformation modulus of the soil after treatment was determined, which was more than five times higher than the initial value.

Keywords: chemical grout, expanding polyurethane resin, foundation remediation, ground improvement

Procedia PDF Downloads 65
9822 Growth and Development of Autorickshaws in Kolkata Municipal Corporation Area: Enigma to Planners

Authors: Lopamudra Bakshi Basu

Abstract:

Transport is one of the most important characteristic features of Indian cities. The physical and societal requirements determine the selection of a particular transport system along with the uniqueness of road networks. Kolkata has a mixed traffic of which Paratransit system plays a crucial role. It is an indispensable transport system in Kolkata mainly because of its size and service flexibility which has led to a unique network character. The paratransit system, mainly the autorickshaws, is the most favoured mode of transport in the city. Its fast movement and comfortability make it a vital transport system of the city. Since the inception of the autorickshaws in Kolkata in 1981, this mode has gained popularity and presently serves nearly 80 to 90 percent of the total passenger trips. This employment generating mode of transport has increased its number rapidly affecting the city’s traffic. Minimal check on their growth by the authority has led to traffic snarls along many streets of Kolkata. Indiscipline behavior, violation of traffic rules and rash driving make situations even worse. The rise in the number and increasing popularity of the autorickshaws make it an interesting study area. Autorickshaws as a paratransit mode play its role as a leader or a follower. However, it is informal in its planning and operations, which makes it a problem area for the city. The entire research work deals with the growth and expansion of the number of vehicles and the routes within the city. The development of transport system has been interesting in the city, which has been studied. The growth of the paratransit modes in the city has been rapid. The network pattern of the paratransit mode within Kolkata has been analysed.

Keywords: growth, informal, network characteristics, paratransit, service flexibility

Procedia PDF Downloads 241
9821 Applying the Fuzzy Analytic Network Process to Establish the Relative Importance of Knowledge Sharing Barriers

Authors: Van Dong Phung, Igor Hawryszkiewycz, Kyeong Kang, Muhammad Hatim Binsawad

Abstract:

Knowledge sharing (KS) is the key to creativity and innovation in any organizations. Overcoming the KS barriers has created new challenges for designing in dynamic and complex environment. There may be interrelations and interdependences among the barriers. The purpose of this paper is to present a review of literature of KS barriers and impute the relative importance of them through the fuzzy analytic network process that is a generalization of the analytical hierarchy process (AHP). It helps to prioritize the barriers to find ways to remove them to facilitate KS. The study begins with a brief description of KS barriers and the most critical ones. The FANP and its role in identifying the relative importance of KS barriers are explained. The paper, then, proposes the model for research and expected outcomes. The study suggests that the use of the FANP is appropriate to impute the relative importance of KS barriers which are intertwined and interdependent. Implications and future research are also proposed.

Keywords: FANP, ANP, knowledge sharing barriers, knowledge sharing, removing barriers, knowledge management

Procedia PDF Downloads 336
9820 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 88
9819 Abating the Barriers to the Deployment of RFID for Construction Project Delivery in South Africa

Authors: Matthew O. Ikuabe, Ayodeji E. Oke, Clinton O. Aigbavboa, Douglas O. Aghimien

Abstract:

The use of technological innovations have been touted to be beneficial in the delivery of construction projects. Particularly, Radio Frequency Identification (RFID) technology is widely regarded to be of immense advantage for the management of construction projects. This study focused on evaluating the barriers to the use of Radio Frequency Identification (RFID) technology for the delivery of construction projects. Using Gauteng Provincein South Africa as the study area, questionnaire was used in eliciting responses from construction professionals, which made up the population of the study. Retrieved data was analysed using Mean Item Score and One-Sample t-test. Findings from the study showed that the most significant barriers to the deployment of RFID for construction project delivery are high cost and lack of awareness. Conclusively, the study made recommendations that would aid in the abatement of the barriers to the use of RFID technology for construction project delivery.

Keywords: barriers, construction, project delivery, RFID

Procedia PDF Downloads 208
9818 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: recognition, CNN, Yi character, divergence

Procedia PDF Downloads 167
9817 A Research and Application of Feature Selection Based on IWO and Tabu Search

Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu

Abstract:

Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.

Keywords: intrusion detection, feature selection, iwo, tabu search

Procedia PDF Downloads 532
9816 Feasibility Analysis of Active and Passive Technical Integration of Rural Buildings

Authors: Chanchan Liu

Abstract:

In the process of urbanization in China, the rapid development of urban construction has been achieved, but a large number of rural buildings still continue the construction mode many years ago. This paper mainly analyzes the rural residential buildings in the hot summer and cold winter regions analyze the active and passive technologies of the buildings. It explored the feasibility of realizing the sustainable development of rural buildings in an economically reasonable range, using mainly passive technologies, innovative building design methods, reducing the buildings’ demand for conventional energy, and supplementing them with renewable energy sources. On this basis, appropriate technology and regional characteristics are proposed to keep the rural architecture retain its characteristics in the development process. It is hoped that this exploration can provide reference and help for the development of rural buildings in the hot summer and cold winter regions.

Keywords: the rural building, active technology, passive technology, sustainable development

Procedia PDF Downloads 220
9815 Under the 'Umbrella' Project: A Volunteer-Mentoring Approach for Socially Disadvantaged University Students

Authors: Evridiki Zachopoulou, Vasilis Grammatikopoulos, Michail Vitoulis, Athanasios Gregoriadis

Abstract:

In the last ten years, the recent economic crisis in Greece has decreased the financial ability and strength of several families when it comes to supporting their children’s studies. As a result, the number of students who are significantly delaying or even dropping out of their university studies is constantly increasing. The students who are at greater risk for academic failure are those who are facing various problems and social disadvantages, like health problems, special needs, family poverty or unemployment, single-parent students, immigrant students, etc. The ‘Umbrella’ project is a volunteer-based initiative to tackle this problem at International Hellenic University. The main purpose of the project is to provide support to disadvantaged students at a socio-emotional, academic, and practical level in order to help them complete their undergraduate studies. More specifically, the ‘Umbrella’ project has the following goals: (a) to develop a consulting-supporting network based on volunteering senior students, called ‘i-mentors’. (b) to train the volunteering i-mentors and create a systematic and consistent support procedure for students at-risk, (c), to develop a service that, parallel to the i-mentor network will be ensuring opportunities for at-risk students to find a job, (d) to support students who are coping with accessibility difficulties, (e) to secure the sustainability of the ‘Umbrella’ project after the completion of the funding of the project. The innovation of the Umbrella project is in its holistic-person-centered approach that will be providing individualized support -via the i-mentors network- to any disadvantaged student that will come ‘under the Umbrella.’

Keywords: peer mentoring, student support, socially disadvantaged students, volunteerism in higher education

Procedia PDF Downloads 237
9814 Efficacy of Technology for Successful Learning Experience; Technology Supported Model for Distance Learning: Case Study of Botho University, Botswana

Authors: Ivy Rose Mathew

Abstract:

The purpose of this study is to outline the efficacy of technology and the opportunities it can bring to implement a successful delivery model in Distance Learning. Distance Learning has proliferated over the past few years across the world. Some of the current challenges faced by current students of distance education include lack of motivation, a sense of isolation and a need for greater and improved communication. Hence the author proposes a creative technology supported model for distance learning exactly mirrored on the traditional face to face learning that can be adopted by distance learning providers. This model suggests the usage of a range of technologies and social networking facilities, with the aim of creating a more engaging and sustaining learning environment to help overcome the isolation often noted by distance learners. While discussing the possibilities, the author also highlights the complexity and practical challenges of implementing such a model. Design/methodology/approach: Theoretical issues from previous research related to successful models for distance learning providers will be considered. And also the analysis of a case study from one of the largest private tertiary institution in Botswana, Botho University will be included. This case study illustrates important aspects of the distance learning delivery model and provides insights on how curriculum development is planned, quality assurance is done, and learner support is assured for successful distance learning experience. Research limitations/implications: While some of the aspects of this study may not be applicable to other contexts, a number of new providers of distance learning can adapt the key principles of this delivery model.

Keywords: distance learning, efficacy, learning experience, technology supported model

Procedia PDF Downloads 249