Search results for: industrial plants
3528 Simulation of Heat Exchanger Behavior during LOCA Accident in THTL Test Loop
Authors: R. Mahmoodi, A. R. Zolfaghari
Abstract:
In nuclear power plants, loss of coolant from the primary system is the type of reduced removed capacity that is given most attention; such an accident is referred as Loss of Coolant Accident (LOCA). In the current study, investigation of shell and tube THTL heat exchanger behavior during LOCA is implemented by ANSYS CFX simulation software in both steady state and transient mode of turbulent fluid flow according to experimental conditions. Numerical results obtained from ANSYS CFX simulation show good agreement with experimental data of THTL heat exchanger. The results illustrate that in large break LOCA as short term accident, heat exchanger could not fast response to temperature variables but in the long term, the temperature of shell side of heat exchanger will be increase.Keywords: shell-and-tube heat exchanger, shell-side, CFD, flow and heat transfer, LOCA
Procedia PDF Downloads 4413527 Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment
Authors: Qurbanov Huseyn Nuraddin
Abstract:
The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.Keywords: combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals
Procedia PDF Downloads 733526 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials
Authors: O. Alelweet, S. Pavia
Abstract:
In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.Keywords: alkali activated materials, alkali-activated binders, sustainable building materials, recycled ceramic brick, bauxite, red mud, clay, fly ash, metallurgical slags, particle size, chemical and mineral composition and amorphousness, water demand, particle density
Procedia PDF Downloads 1263525 Development of Alternative Fuels Technologies for Transportation
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej
Abstract:
Currently, in automotive transport to power vehicles, almost exclusively hydrocarbon based fuels are used. Due to increase of hydrocarbon fuels consumption, quality parameters are tightend for clean environment. At the same time efforts are undertaken for development of alternative fuels. The reasons why looking for alternative fuels for petroleum and diesel are: to increase vehicle efficiency and to reduce the environmental impact, reduction of greenhouse gases emissions and savings in consumption of limited oil resources. Significant progress was performed on development of alternative fuels such as methanol, ethanol, natural gas (CNG / LNG), LPG, dimethyl ether (DME) and biodiesel. In addition, biggest vehicle manufacturers work on fuel cell vehicles and its introduction to the market. Alcohols such as methanol and ethanol create the perfect fuel for spark-ignition engines. Their advantages are high-value antiknock which determines their application as additive (10%) to unleaded petrol and relative purity of produced exhaust gasses. Ethanol is produced in distillation process of plant products, which value as a food can be irrational. Ethanol production can be costly also for the entire economy of the country, because it requires a large complex distillation plants, large amounts of biomass and finally a significant amount of fuel to sustain the process. At the same time, the fermentation process of plants releases into the atmosphere large quantities of carbon dioxide. Natural gas cannot be directly converted into liquid fuels, although such arrangements have been proposed in the literature. Going through stage of intermediates is inevitable yet. Most popular one is conversion to methanol, which can be processed further to dimethyl ether (DME) or olefin (ethylene and propylene) for the petrochemical sector. Methanol uses natural gas as a raw material, however, requires expensive and advanced production processes. In relation to pollution emissions, the optimal vehicle fuel is LPG which is used in many countries as an engine fuel. Production of LPG is inextricably linked with production and processing of oil and gas, and which represents a small percentage. Its potential as an alternative for traditional fuels is therefore proportionately reduced. Excellent engine fuel may be biogas, however, follows to the same limitations as ethanol - the same production process is used and raw materials. Most essential fuel in the campaign of environment protection against pollution is natural gas. Natural gas as fuel may be either compressed (CNG) or liquefied (LNG). Natural gas can also be used for hydrogen production in steam reforming. Hydrogen can be used as a basic starting material for the chemical industry, an important raw material in the refinery processes, as well as a fuel vehicle transportation. Natural gas can be used as CNG which represents an excellent compromise between the availability of the technology that is proven and relatively cheap to use in many areas of the automotive industry. Natural gas can also be seen as an important bridge to other alternative sources of energy derived from fuel and harmless to the environment. For these reasons CNG as a fuel stimulates considerable interest in the worldwide.Keywords: alternative fuels, CNG (Compressed Natural Gas), LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles)
Procedia PDF Downloads 1813524 Chronic Exposure of Mercury on Amino Acid Level in Freshwater Fish Clarias batrachus (Linn.)
Authors: Mary Josephine Rani
Abstract:
Virtually all metals are toxic to aquatic organisms because of the devastating effect of these metals on humans; heavy metals are one of the most toxic forms of aquatic pollution. Metal concentrations in aquatic organisms appear to be of several magnitudes higher than concentrations present in the ecosystem. Mercury is one of the most toxic heavy metals in the environment. The principal sources of contamination in wastewater are chloralkali plants, battery factories, mercury switches, and medical wastes. Elevated levels of mercury in aquatic organisms specially fish represent both an ecological and human concern. Amino acid levels were estimated in five tissues (gills, liver, kidney, brain and muscle) of Clariasbatrachus after 28 days of chronic exposure to mercury. Free amino acids serve as precursor for energy production under stress and for the synthesis of required proteins to face the metal challenge.Keywords: amino acids, fish, mercury, toxicity
Procedia PDF Downloads 3573523 Exploring Probabilistic Models for Transient Stability Analysis of Renewable-Dominant Power Grid
Authors: Phuong Nguyen
Abstract:
Along with the ongoing energy transition, the electrical power system is getting more vulnerable with the increasing penetration of renewable energy sources (RES). By replacing a large amount of fossil fuel-based power plants with RES, the rotating mass of the power grid is decreasing drastically, which has been reported by a number of system operators. This leads to a huge challenge for operators to secure the operation of their grids in all-time horizon ranges, from sub-seconds to minutes and even hours. There is a need to revise the grid capabilities in dealing with transient (angle) stability and voltage dynamics. While the traditional approaches relied on deterministic scenarios (worst-case scenarios), there is also a need to cover a whole range of probabilities regarding a wide range of uncertainties coming from massive RES units. To contribute to handle these issues, this paper aims to focus on developing a new analytical approach for transient stability.Keywords: transient stability, uncertainties, renewable energy sources, analytical approach
Procedia PDF Downloads 733522 Effects of Turbulence Penetration on Valve Leakage in Nuclear Reactor Coolant System
Authors: Gupta Rajesh, Paudel Sagar, Sharma Utkarsh, Singh Amit Kumar
Abstract:
Thermal stratification has drawn much attention because of the malfunctions at various nuclear plants in U.S.A that raised significant safety concerns. The concerns due to this phenomenon relate to thermal stresses in branch pipes connected to the reactor coolant system piping. This stress limits the lifetime of the piping system, and even leading to penetrating cracks. To assess origin of valve damage in the pipeline, it is essential to determine the effect of turbulence penetration on valve leakage; since stratified flow is generally generated by turbulent penetration or valve leakage. As a result, we concluded with the help of coupled fluent-structural analysis that the pipe with less turbulence has less chance of failure there by requiring less maintenance.Keywords: nuclear reactor coolant system, thermal stratification, turbulent penetration, coupled fluent-structural analysis, Von-Misses stress
Procedia PDF Downloads 2933521 Supply Chain Collaboration Comparison Practices between Developed and Developing Countries
Authors: Maria Jose Granero Paris, Ana Isabel Jimenez Zarco, Agustin Pablo Alvarez Herranz
Abstract:
In the industrial sector the collaboration along the supply chain is key especially in order to develop product, production methods or process innovations. The access to resources and knowledge not being available inside the company, the achievement of cost competitive solutions, the reduction of the time required to innovate are some of the benefits linked with the collaboration with suppliers. The big industrial manufacturers have a long tradition to collaborate with their suppliers to develop new products in the developed countries. Since they have increased their global supply chains and global sourcing activities, the objective of the research is to analyse if the same best practices, way of working, experiences, information technology tools, governance methodologies are applied when collaborating with suppliers in the developed world or in developing countries. Most of the current research focuses to analyse the Supply Chain Collaboration in the developed countries and in recent years the number of publications related to the Supply Chain Collaboration in developing countries has increased, but there is still a lack of research comparing both and analysing the similarities, differences and key success factors among the Supply Chain Collaboration practices in developed and developing countries. With this gap in mind, the research under preparation will focus on the following goals: -Identify the most important elements required for a successful supply chain collaboration in the developed and developing countries. -Set up the optimal governance framework to manage the supply chain collaboration in the developed and developing countries. -Define some recommendations about required improvements in the current supply chain collaboration business relationship practices in place. Following the case methodology we will analyze the way manufacturers and suppliers collaborate in the development of new products, production methods or process innovations and in the set up of new global supply chains in two industries with different level of technology intensity and collaboration history being the automotive and aerospace industries.Keywords: global supply chain networks, Supply Chain Collaboration, supply chain governance, supply chain performance
Procedia PDF Downloads 6033520 Application of Phenol Degrading Microorganisms for the Treatment of Olive Mill Waste (OMW)
Authors: M. A. El-Khateeb
Abstract:
The growth of the olive oil production in Saudi Arabia peculiarly in Al Jouf region in recent years has been accompanied by an increase in the discharge of associated processing waste. Olive mill waste is produced throughout the extraction of oil from the olive fruit using the traditional mill and press process. Deterioration of the environment due to olive mill disposal wastes is a serious problem. When olive mill waste disposed into the soil, it affects soil quality, soil micro flora, and also toxic to plants. The aim of this work is to isolate microorganism (bacterial or fungal strains) from OMW capable of degrading phenols. Olive mill wastewater, olive mill waste and soil (beside oil production mill) contaminated with olive waste were used for isolation of phenol tolerant microorganisms. Four strains (two fungal and two bacterial) were isolated from olive mill waste. The isolated strains were Candida tropicalis and Phanerochaete chrysosporium (fungal strains) and Bacillus sp. and Rhodococcus sp. (bacterial strains). These strains were able to degrade phenols and could be used for bioremediation of olive mill waste.Keywords: bioremediation, bacteria, fungi, Sakaka
Procedia PDF Downloads 3633519 Preliminary Treatment in Wastewater Treatment Plants: Operation and Maintenance Aspects
Authors: Priscila M. Lima, Corine A. P. de Almeida, Muriele R. de Lima, Fernando J. C. Magalhães Filho
Abstract:
This work characterized the preliminary treatment in WWTPs in the state of Mato Grosso Do Sul (Brazil) and analyzed aspects of operation and maintenance of solid waste retained, and was evaluated the interference of this step in treatment efficiency beyond the relationship between solid waste generation with rainfall and seasonality in the region of each WTPs. The results shown that the standard setting in the preliminary treatment consists of grid along with Sand Trap, followed by Parshall that is used in 94.12% of WWTPs analyzed, and in 5.88% of WWTPs it was added the air-lift to the Sand Trap. Was concluded that the influence of rainfall, flow and seasonality associated with the rate of waste generation in the preliminary treatment, had little relation to the operation and maintenance of the primary treatment. But in some cases, precipitation data showed increased rainfall converging with increased flow and solid waste generation.Keywords: pretreatment, sewage, solid waste, wastewater
Procedia PDF Downloads 4693518 Environmental Assessment of Roll-to-Roll Printed Smart Label
Authors: M. Torres, A. Moulay, M. Zhuldybina, M. Rozel, N. D. Trinh, C. Bois
Abstract:
Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements.Keywords: Eco-design, label, life cycle assessment, printed electronics
Procedia PDF Downloads 1633517 The Analysis of the Challenge China’s Energy Transition Faces and Proposed Solutions
Authors: Yuhang Wang
Abstract:
As energy is vital to industrial productivity and human existence, ensuring energy security becomes a critical government responsibility. The Chinese government has implemented the energy transition to safeguard China’s energy security. Throughout this progression, the Chinese government has faced numerous obstacles. This article seeks to describe the causes of China’s energy transition barriers and the steps taken by the Chinese government to overcome them.Keywords: energy transition, energy market, fragmentation, path dependency
Procedia PDF Downloads 1023516 Development of a Weed Suppression Robot for Rice Cultivation Weed Suppression and Posture Control
Authors: Shohei Nakai, Yasuhiro Yamada
Abstract:
Weed suppression and weeding are necessary measures for rice cultivation. Weed suppression precedes the process of weeding. It means suppressing the growth of young weeds and creating a weed-less environment. If we suppress the growth of weeds, we can reduce the number of weeds in a paddy field. This would result in a reduction of the weeding work load. In this paper, we will show how we developed a weed suppression robot for the purpose of reducing the weeding work load. The robot has a laser range finder for autonomous mobility and a robot arm for weed suppression. It travels along the rice rows without stepping on and injuring the rice plants in a paddy field. The robot arm applies force to the weed seedlings and thereby suppresses the growth of weeds. This paper will explain the methodology of the autonomous mobile, the experiment in weed suppression, and the method of controlling the robot’s posture on uneven ground.Keywords: mobile robot, paddy field, robot arm, weed
Procedia PDF Downloads 3773515 Influence of Processing Parameters in Selective Laser Melting on the Microstructure and Mechanical Properties of Ti/Tin Composites With in-situ and ex-situ Reinforcement
Authors: C. Sánchez de Rojas Candela, A. Riquelme, P. Rodrigo, M. D. Escalera-Rodríguez, B. Torres, J. Rams
Abstract:
Selective laser melting is one of the most commonly used AM techniques. In it, a thin layer of metallic powder is deposited, and a laser is used to melt selected zones. The accumulation of layers, each one molten in the preselected zones, gives rise to the formation of a 3D sample with a nearly arbitrary design. To ensure that the properties of the final parts match those of the powder, all the process is carried out in an inert atmosphere, preferentially Ar, although this gas could be substituted. Ti6Al4V alloy is widely used in multiple industrial applications such as aerospace, maritime transport and biomedical, due to its properties. However, due to the demanding requirements of these applications, greater hardness and wear resistance are necessary, together with a better machining capacity, which currently limits its commercialization. To improve these properties, in this study, Selective Laser Melting (SLM) is used to manufacture Ti/TiN metal matrix composites with in-situ and ex-situ titanium nitride reinforcement where the scanning speed is modified (from 28.5 up to 65 mm/s) to study the influence of the processing parameters in SLM. A one-step method of nitriding the Ti6Al4V alloy is carried out to create in-situ TiN reinforcement in a reactive atmosphere and it is compared with ex-situ composites manufactured by previous mixture of both the titanium alloy powder and the ceramic reinforcement particles. The microstructure and mechanical properties of the different Ti/TiN composite materials have been analyzed. As a result, the existence of a similar matrix has been confirmed in in-situ and ex-situ fabrications and the growth mechanisms of the nitrides have been studied. An increase in the mechanical properties with respect to the initial alloy has been observed in both cases and related to changes in their microstructure. Specifically, a greater improvement (around 30.65%) has been identified in those manufactured by the in-situ method at low speeds although other properties such as porosity must be improved for their future industrial applicability.Keywords: in-situ reinforcement, nitriding reaction, selective laser melting, titanium nitride
Procedia PDF Downloads 793514 Assessment of Power Formation in Gas Turbine Power Plants Using Different Inlet Air Cooling Systems
Authors: Nikhil V. Nayak
Abstract:
In this paper, the influence of air cooling intake on the gas turbine performance is presented. A comparison among different cooling systems, i.e., evaporative and cooling coil, is performed. A computer simulation model for the employed systems is developed in order to evaluate the performance of the studied gas turbine unit, at Marka Power Station, Amman, Bangalore. The performance characteristics are examined for a set of actual operational parameters including ambient temperature, relative humidity, turbine inlet temperature, pressure ratio, etc. The obtained results showed that the evaporative cooling system is capable of boosting the power and enhancing the efficiency of the studied gas turbine unit in a way much cheaper than cooling coil system due to its high power consumption required to run the vapor-compression refrigeration unit. Nevertheless, it provides full control on the temperature inlet conditions regardless of the relative humidity ratio.Keywords: power augmentation, temperature control, evaporative cooling, cooling coil, gas turbine
Procedia PDF Downloads 3853513 Dutch Disease and Industrial Development: An Investigation of the Determinants of Manufacturing Sector Performance in Nigeria
Authors: Kayode Ilesanmi Ebenezer Bowale, Dominic Azuh, Busayo Aderounmu, Alfred Ilesanmi
Abstract:
There has been a debate among scholars and policymakers about the effects of oil exploration and production on industrial development. In Nigeria, there were many reforms resulting in an increase in crude oil production in the recent past. There is a controversy on the importance of oil production in the development of the manufacturing sector in Nigeria. Some scholars claim that oil has been a blessing to the development of the manufacturing sector, while others regard it as a curse. The objective of the study is to determine if empirical analysis supports the presence of Dutch Disease and de-industrialisation in the Nigerian manufacturing sector between 2019- 2022. The study employed data that were sourced from World Development Indicators, Nigeria Bureau of Statistics, and the Central Bank of Nigeria Statistical Bulletin on manufactured exports, manufacturing employment, agricultural employment, and service employment in line with the theory of Dutch Disease using the unit root test to establish their level of stationarity, Engel and Granger cointegration test to check their long-run relationship. Autoregressive. Distributed Lagged bound test was also used. The Vector Error Correction Model will be carried out to determine the speed of adjustment of the manufacturing export and resource movement effect. The results showed that the Nigerian manufacturing industry suffered from both direct and indirect de-industrialisation over the period. The findings also revealed that there was resource movement as labour moved away from the manufacturing sector to both the oil sector and the services sector. The study concluded that there was the presence of Dutch Disease in the manufacturing industry, and the problem of de-industrialisation led to the crowding out of manufacturing output. The study recommends that efforts should be made to diversify the Nigerian economy. Furthermore, a conducive business environment should be provided to encourage more involvement of the private sector in the agriculture and manufacturing sectors of the economy.Keywords: Dutch disease, resource movement, manufacturing sector performance, Nigeria
Procedia PDF Downloads 793512 Composition and in Vitro Antimicrobial Activity of Three Eryngium L. Species
Authors: R. Mickiene, A. Friese, U. Rosler, A. Maruska, O. Ragazinskiene
Abstract:
This research focuses on phytochemistry and antimicrobial activities of compounds isolated and identified from three species of Eryngium. The antimicrobial activity of extracts from Eryngiumplanum L., Eryngium maritimum L., Eryngium campestre L. grown in Lithuania, were tested by the method of series dilutions, against different bacteria species: Escherichia coli, Proteus vulgaris and Staphylococcus aureus with and without antibiotic resistances, originating from livestock. The antimicrobial activity of extracts was described by determination of the minimal inhibitory concentration. Preliminary results show that the minimal inhibitory concentration range between 8.0 % and 17.0 % for the different Eryngium extracts and bacterial species.The total amounts ofphenolic compounds and total amounts of flavonoids were tested in the methanolic extracts of the plants. Identification and evaluation of the phenolic compounds were performed by liquid chromatography. The essential oils were analyzed by gas chromatography mass spectrometry.Keywords: antimicrobial activities, Eryngium L. species, essential oils, gas chromatography mass spectrometry
Procedia PDF Downloads 4473511 Assessment the Infiltration of the Wastewater Ponds and Its Impact on the Water Quality of Pleistocene Aquifer at El Sadat City Using 2-D Electrical Resistivity Tomography and Water Chemistry
Authors: Abeer A. Kenawy, Usama Massoud, El-Said A. Ragab, Heba M. El-Kosery
Abstract:
2-D Electrical Resistivity Tomography (ERT) and hydrochemical study have been conducted at El Sadat industrial city. The study aims to investigate the area around the wastewater ponds to determine the possibility of water percolation from the wastewater ponds to the Pleistocene aquifer and to inspect the effect of this seepage on the groundwater chemistry. Pleistocene aquifer is the main groundwater reservoir in this area, where El Sadat city and its vicinities depend totally on this aquifer for water supplies needed for drinking, agricultural, and industrial activities. In this concern, seven ERT profiles were measured around the wastewater ponds. Besides, 10 water samples were collected from the ponds and the nearby groundwater wells. The water samples have been chemically analyzed for major cations, anions, nutrients, and heavy elements. Also, the physical parameters (pH, Alkalinity, EC, TDS) of the water samples were measured. Inspection of the ERT sections shows that they exhibit lower resistivity values towards the water ponds and higher values in opposite sides. In addition, the water table was detected at shallower depths at the same sides of lower resistivity. This could indicate a wastewater infiltration to the groundwater aquifer near the oxidation ponds. Correlation of the physical parameters and ionic concentrations of the wastewater samples with those of the groundwater samples indicates that; the ionic levels are randomly varying and no specific trend could be obtained. In addition, the wastewater samples shows some ionic levels lower than those detected in other groundwater samples. Besides, the nitrate level is higher in samples taken from the cultivated land than the wastewater samples due to the over using of nitrogen fertilizers. Then, we can say that the infiltrated water from wastewater ponds are not the main controller of the groundwater chemistry in this area, but rather the variable ionic concentrations could be attributed to local, natural, and anthropogenic processes.Keywords: El Sadat city, ERT, hydrochemistry, percolation, wastewater ponds
Procedia PDF Downloads 3553510 Nanoparticles and Nanoproducts in Medicine Applications
Authors: Shideh Mohseni Movahed, Mansoureh Safari, Ali Safari
Abstract:
In this paper, the state of play and prospect of nanoparticles and nanoproducts in medicine have been discussed. Advances in terms of scientific knowledge in the Nanosciences (nanotechnologies and/or nanomaterials) have and already translated into an industrial and economic reality. Just like other sectors in the phase of launching products in the markets, it is to consider the introduction of these new products in order to measure and control potential consequences in terms of health impacts on humans and the environment, but also in terms of societal impacts.Keywords: nanoparticles, nanoproducts, medicine, health
Procedia PDF Downloads 4043509 Disease Control of Rice Blast Caused by Pyricularia Oryzae Cavara Using Novel Chitosan-based Agronanofungicides
Authors: Abdulaziz Bashir Kutawa, Khairulmazmi Ahmad, Mohd Zobir Hussein, Asgar Ali, Mohd Aswad Abdul Wahab, Amara Rafi, Mahesh Tiran Gunasena, Muhammad Ziaur Rahman, Md. Imam Hossain, Syazwan Afif Mohd Zobir
Abstract:
Rice is a cereal crop and belongs to the family Poaceae, it was domesticated in southern China and North-Eastern India around 8000 years ago, and it’s the staple nourishment for over half of the total world’s population. Rice production worldwide is affected by different abiotic and biotic stresses. Diseases are important challenges for the production of rice, among all the diseases in rice plants, the most severe and common disease is the rice blast. Worldwide, it is one of the most damaging diseases affecting rice cultivation, the disease is caused by the non-obligate filamentous ascomycete fungus called Magnaporthe grisae or Pyricularia oryzae Cav. Nanotechnology is a new idea to improve agriculture by combating the diseases of plants, as nanoparticles were found to possess an inhibitory effect on different species of fungi. This work aimed to develop and determine the efficacy of agronanofungicides, and commercial fungicides (in-vitro and in-vivo). The agronanofungicides were developed using ionic gelation methods. In-vitro antifungal activity of the synthesized agronanofungicides was evaluated against P. oryzae using the poisoned medium technique. The potato dextrose agar (PDA) was amended in several concentrations; 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, and 0.35 ppm for the agronanofungicides. Medium with the only solvent served as a control. Mycelial growth was recorded every day, and the percentage inhibition of radial growth (PIRG) was also calculated. Based on the results of the zone of inhibition, the chitosan-hexaconazole agronanofungicide (2g/mL) was the most effective fungicide to inhibit the growth of the fungus with 100% inhibition at 0.2, 0.25, 0.30, and 0.35 ppm, respectively. The least were found to be propiconazole and basamid fungicides with 100% inhibition only at 100 ppm. In terms of the glasshouse results, the chitosan-hexaconazole-dazomet agronanofungicide (CHDEN) treatment (2.5g/L) was found to be the most effective fungicide to reduce the intensity of the disease with a disease severity index (DSI) of 19.80%, protection index (PI) of 82.26%, lesion length of 1.63cm, disease reduction (DR) of 80.20%, and AUDPC (390.60 Unit2). The least effective fungicide was found to be ANV with a disease severity index (45.60%), protection index (45.24%), lesion length (3.83 cm), disease reduction (54.40%), and AUDPC (1205.75 Unit2). The negative control did not show any symptoms during the glasshouse assay, while the untreated control treatment exhibited severe symptoms of the disease with a DSI value of 64.38%, lesion length of 5.20 cm, and AUDPC value of 2201.85 Unit2, respectively. The treatments of agronanofungicides have enhanced the yield significantly with CHDEN having 239.00 while the healthy control had 113.67 for the number of grains per panicle. The use of CHEN and CHDEN will help immensely in reducing the severity of rice blast in the fields, and this will increase the yield and profit of the farmers that produced rice.Keywords: chitosan, dazomet, disease severity, efficacy, and blast disease
Procedia PDF Downloads 873508 Micro Grids, Solution to Power Off-Grid Areas in Pakistan
Authors: M. Naveed Iqbal, Sheza Fatima, Noman Shabbir
Abstract:
In the presence of energy crisis in Pakistan, off-grid remote areas are not on priority list. The use of new large scale coal fired power plants will also make this situation worst. Therefore, the greatest challenge in our society is to explore new ways to power off grid remote areas with renewable energy sources. It is time for a sustainable energy policy which puts consumers, the environment, human health, and peace first. The renewable energy is one of the biggest growing sectors of the energy industry. Therefore, the large scale use of micro grid is thus described here with modeling, simulation, planning and operating of the micro grid. The goal of this research paper is to go into detail of a library of major components of micro grid. The introduction will go through the detail view of micro grid definition. Then, the simulation of Micro Grid in MATLAB/ Simulink including the Photo Voltaic Cell will be described with the detailed modeling. The simulation with the design and modeling will be introduced too.Keywords: micro grids, distribution generation, PV, off-grid operations
Procedia PDF Downloads 3123507 Production and Purification of Pectinase by Aspergillus Niger
Authors: M. Umar Dahot, G. S. Mangrio
Abstract:
In this study Agro-industrial waste was used as a carbon source, which is a low cost substrate. Along with this, various sugars and molasses of 2.5% and 5% were investigated as substrate/carbon source for the growth of A.niger and Pectinase production. Different nitrogen sources were also used. An overview of results obtained show that 5% sucrose, 5% molasses and 0.4% (NH4)2SO4 were found the best carbon and nitrogen sources for the production of pectinase by A. niger. The maximum production of pectinase (26.87units/ml) was observed at pH 6.0 after 72 hrs incubation. The optimum temperature for the maximum production of pectinase was achieved at 35ºC when maximum production of pectinase was obtained as 28.25Units/ml.Pectinase enzyme was purified with ammonium sulphate precipitation and dialyzed sample was finally applied on gel filtration chromatography (Sephadex G-100) and Ion Exchange DEAE A-50. The enzyme was purified 2.5 fold by gel chromatography on Sephadex G-100 and Four fractions were obtained, Fraction 1, 2, 4 showed single band while Fraction -3 showed multiple bands on SDS Page electrophoresis. Fraction -3 was pooled, dialyzed and separated on Sephdex A-50 and two fractions 3a and 3b showed single band. The molecular weights of the purified fractions were detected in the range of 33000 ± 2000 and 38000± 2000 Daltons. The purified enzyme was specifically most active with pure pectin, while pectin, Lemon pectin and orange peel given lower activity as compared to (control). The optimum pH and temperature for pectinase activity was found between pH 5.0 and 6.0 and 40°- 50°C, respectively. The enzyme was stable over the pH range 3.0-8.0. The thermostability of was determined and it was observed that the pectinase activity is heat stable and retains activity more than 40% when incubated at 90°C for 10 minutes. The pectinase activity of F3a and F3b was increased with different metal ions. The Pectinase activity was stimulated in the presence of CaCl2 up to 10-30%. ZnSO4, MnSO4 and Mg SO4 showed higher activity in fractions F3a and F3b, which indicates that the pectinase belongs to metalo-enzymes. It is concluded that A. niger is capable to produce pH stable and thermostable pectinase, which can be used for industrial purposes.Keywords: pectinase, a. niger, production, purification, characterization
Procedia PDF Downloads 4133506 Projection of Solar Radiation for the Extreme South of Brazil
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Rafael Haag, Elton Rossini
Abstract:
This work aims to validate and make the projections of solar energy for the Brazilian period from 2025 to 2100. As the plants designed by the HadGEM2-AO (Global Hadley Model 2 - Atmosphere) General Circulation Model UK Met Office Hadley Center, belonging to Phase 5 of the Intercomparison of Coupled Models (CMIP5). The simulation results of the model are compared with monthly data from 2006 to 2013, measured by a network of meteorological sections of the National Institute of Meteorology (INMET). The performance of HadGEM2-AO is evaluated by the efficiency coefficient (CEF) and bias. The results are shown in the table of maps and maps. HadGEM2-AO, in the most pessimistic scenario, RCP 8.5 had a very good accuracy, presenting efficiency coefficients between 0.94 and 0.98, the perfect setting being Solar radiation, which indicates a horizontal trend, is a climatic alternative for some regions of the Brazilian scenario, especially in spring.Keywords: climate change, projections, solar radiation, scenarios climate change
Procedia PDF Downloads 1513505 Effect of Ginger (Zingiber Officinal) Root Extract on Blood Glucose Level and Lipid Profile in Normal and Alloxan-Diabetic Rabbits
Authors: Khalil Abdullah Ahmed Khalil, Elsadig Mohamed Ahmed
Abstract:
Ginger is one of the most important medicinal plants, which is widely used in folk medicine. This study was designed to go further step and evaluate the hypoglycemic and hypolipidaemic effects of the aqueous ginger root extract in normal and alloxan diabetic rabbits. Results revealed that the aqueous ginger has a significant hypoglycemic effect (P<0.05) in diabetic rabbits but a non-significant hypoglycemic effect (P>0.05) in normal rabbits. There were also significant decreases in the concentrations (P<0.05) in serum cholesterol, triglycerides and LDL – cholesterol in both normal and diabetic rabbits. Although there was an elevation in serum HDL- cholesterol in both normal and diabetic rabbits, these elevations were non-significant (P>0.05). Our data suggest the aqueous ginger has a hypoglycemic effect in diabetic rabbits and lipid-lowering properties in both normal and diabetic rabbits.Keywords: aqueous extract of ginger root (AEGR), hypoglycemic, cholesterol, triglyceride
Procedia PDF Downloads 2933504 Analyzing Antimicrobial Power of Cotula cinerea Essential Oil: Case of Western Algeria
Authors: A. Abdenbi, B. Dennai, B. Touati, M. Bouaaza, A. Saad
Abstract:
The essential oils of many plants have become popular in recent years and their bioactive principles have recently won several industry sectors, however their use as antibacterial and anti fungal agents has been reported. This study focuses on the physico chemical and phyto chemical with a study of the antimicrobial activity of essential oils of aromatic and medicinal plant of southwest Algeria, this essential oil was obtained by hydro-distillation of aerial parts of Cotula cinerea, belonging to the Asteraceae family, it is very extensive in the spring season in a region called Kenadza road, located 12km from Bechar. Variable anti fungal activity of the essential oil of Cotula cinerea (yield 2%) were revealed about four fungal strains, the minimum inhibitory concentrations of essential oils were determined by the method of dilution in agar. Significant fungal sensitivity of Penicillium sp with an inhibition of 32.3 mm area.Keywords: Cotula cinerea, essential oil, physico- chemical analysis and phyto- chemical, anti fungal power
Procedia PDF Downloads 4143503 Effect of Modeling of Hydraulic Form Loss Coefficient to Break on Emergency Core Coolant Bypass
Authors: Young S. Bang, Dong H. Yoon, Seung H. Yoo
Abstract:
Emergency Core Coolant Bypass (ECC Bypass) has been regarded as an important phenomenon to peak cladding temperature of large-break loss-of-coolant-accidents (LBLOCA) in nuclear power plants (NPP). A modeling scheme to address the ECC Bypass phenomena and the calculation of LBLOCA using that scheme are discussed in the present paper. A hydraulic form loss coefficient (HFLC) from the reactor vessel downcomer to the broken cold leg is predicted by the computational fluid dynamics (CFD) code with a variation of the void fraction incoming from the downcomer. The maximum, mean, and minimum values of FLC are derived from the CFD results and are incorporated into the LBLOCA calculation using a system thermal-hydraulic code, MARS-KS. As a relevant parameter addressing the ECC Bypass phenomena, the FLC to the break and its range are proposed.Keywords: CFD analysis, ECC bypass, hydraulic form loss coefficient, system thermal-hydraulic code
Procedia PDF Downloads 2303502 HPTLC Metabolite Fingerprinting of Artocarpus champeden Stembark from Several Different Locations in Indonesia and Correlation with Antimalarial Activity
Authors: Imam Taufik, Hilkatul Ilmi, Puryani, Mochammad Yuwono, Aty Widyawaruyanti
Abstract:
Artocarpus champeden Spreng stembark (Moraceae) in Indonesia well known as ‘cempedak’ had been traditionally used for malarial remedies. The difference of growth locations could cause the difference of metabolite profiling. As a consequence, there were difference antimalarial activities in spite of the same plants. The aim of this research was to obtain the profile of metabolites that contained in A. champeden stembark from different locations in Indonesia for authentication and quality control purpose of this extract. The profiling had been performed by HPTLC-Densitometry technique and antimalarial activity had been also determined by HRP2-ELISA technique. The correlation between metabolite fingerprinting and antimalarial activity had been analyzed by Principle Component Analysis, Hierarchical Clustering Analysis and Partial Least Square. As a result, there is correlation between the difference metabolite fingerprinting and antimalarial activity from several different growth locations.Keywords: antimalarial, artocarpus champeden spreng, metabolite fingerprinting, multivariate analysis
Procedia PDF Downloads 3113501 Composite Materials from Epoxidized Linseed Oil and Lignin
Authors: R. S. Komartin, B. Balanuca, R. Stan
Abstract:
the last decades, studies about the use of polymeric materials of plant origin, considering environmental concerns, have captured the interest of researchers because these represent an alternative to petroleum-derived materials. Vegetable oils are one of the preferred alternatives for petroleum-based raw materials having long aliphatic chains similar to hydrocarbons which means that can be processed using conventional chemistry. Epoxidized vegetable oils (EVO) are among the most interesting products derived from oil both for their high reactivity (epoxy group) and for the potential to react with compounds from various classes. As in the case of epoxy resins starting from petrochemical raw materials, those obtained from EVO can be crosslinked with different agents to build polymeric networks and can also be reinforced with various additives to improve their thermal and mechanical performances. Among the multitude of known EVO, the most common in industrial practice are epoxidized linseed oils (ELO) and epoxidized soybean oils (ESO), the first with an iodine index over 180, the second having a lower iodine index but being cheaper. On the other hand, lignin (Ln) is the second natural organic material as a spread, whose use has long been hampered because of the high costs associated with its isolation and purification. In this context, our goal was to obtain new composite materials with satisfactory intermediate properties in terms of stiffness and elasticity using the characteristics of ELO and Ln and choosing the proper curing procedure. In the present study linseed oil (LO) epoxidation was performed using peracetic acid generated in situ. The obtained bio-based epoxy resin derived from linseed oil was used further to produce the new composites byloading Ln in various mass ratios. The resulted ELO-Ln blends were subjected to a dual-curing protocol, namely photochemical and thermal. The new ELO-Ln composites were investigated by FTIR spectrometry, thermal stability, water affinity, and morphology. The positive effect of lignin regarding the thermal stability of the composites could be proved. The results highlight again the still largely unexplored potential of lignin in industrial applications.Keywords: composite materials, dual curing, epoxidized linseed oil, lignin
Procedia PDF Downloads 1563500 Reliability Analysis for the Functioning of Complete and Low Capacity MLDB Systems in Piston Plants
Authors: Ramanpreet Kaur, Upasana Sharma
Abstract:
The purpose of this paper is to address the challenges facing the water supply for the Machine Learning Database (MLDB) system at the piston foundry plant. In the MLDB system, one main unit, i.e., robotic, is connected by two sub-units. The functioning of the system depends on the robotic and water supply. Lack of water supply causes system failure. The system operates at full capacity with the help of two sub-units. If one sub-unit fails, the system runs at a low capacity. Reliability modeling is performed using semi-Markov processes and regenerative point techniques. Several system effects such as mean time to system failure, availability at full capacity, availability at reduced capacity, busy period for repair and expected number of visits have been achieved. Benefits have been analyzed. The graphical study is designed for a specific case using programming in C++ and MS Excel.Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique
Procedia PDF Downloads 1033499 Suitability Assessment of Water Harvesting and Land Restoration in Catchment Comprising Abandoned Quarry Site in Addis Ababa, Ethiopia
Authors: Rahel Birhanu Kassaye, Ralf Otterpohl, Kumelachew Yeshitila
Abstract:
Water resource management and land degradation are among the critical issues threatening the suitable livability of many cities in developing countries such as Ethiopia. Rapid expansion of urban areas and fast growing population has increased the pressure on water security. On the other hand, the large transformation of natural green cover and agricultural land loss to settlement and industrial activities such as quarrying is contributing to environmental concerns. Integrated water harvesting is considered to play a crucial role in terms of providing alternative water source to insure water security and helping to improve soil condition, agricultural productivity and regeneration of ecosystem. Moreover, it helps to control stormwater runoff, thus reducing flood risks and pollution, thereby improving the quality of receiving water bodies and the health of inhabitants. The aim of this research was to investigate the potential of applying integrated water harvesting approaches as a provision for water source and enabling land restoration in Jemo river catchment consisting of abandoned quarry site adjacent to a settlement area that is facing serious water shortage in western hilly part of Addis Ababa city, Ethiopia. The abandoned quarry site, apart from its contribution to the loss of aesthetics, has resulted in poor water infiltration and increase in stormwater runoff leading to land degradation and flooding in the downstream. Application of GIS and multi-criteria based analysis are used for the assessment of potential water harvesting technologies considering the technology features and site characteristics of the case study area. Biophysical parameters including precipitation, surrounding land use, surface gradient, soil characteristics and geological aspects are used as site characteristic indicators and water harvesting technologies including retention pond, check dam, agro-forestation employing contour trench system were considered for evaluation with technical and socio-economic factors used as parameters in the assessment. The assessment results indicate the different suitability potential among the analyzed water harvesting and restoration techniques with respect to the abandoned quarry site characteristics. Application of agro-forestation with contour trench system with the revegetation of indigenous plants is found to be the most suitable option for reclamation and restoration of the quarry site. Successful application of the selected technologies and strategies for water harvesting and restoration is considered to play a significant role to provide additional water source, maintain good water quality, increase agricultural productivity at urban peri-urban interface scale and improve biodiversity in the catchment. The results of the study provide guideline for decision makers and contribute to the integration of decentralized water harvesting and restoration techniques in the water management and planning of the case study area.Keywords: abandoned quarry site, land reclamation and restoration, multi-criteria assessment, water harvesting
Procedia PDF Downloads 216