Search results for: healthcare costs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3730

Search results for: healthcare costs

1660 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier

Authors: Girts Zageris, Vadims Geza, Andris Jakovics

Abstract:

Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.

Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling

Procedia PDF Downloads 286
1659 Rise in Public Interest in COVID-19 Symptoms and the Need for Proper Information: Insights from the Google Trends Analysis

Authors: Jaweriya Aftab, Madho Mal, Hamida Memon

Abstract:

The first case of coronavirus disease 2019 (COVID-19) in Pakistan was recorded on February 26th, 2020. While the country went through various phases of lockdowns, the importance of proper sensitization campaigns was highlighted by healthcare workers to combat misinformation. Past studies via Google trends analysis have shown a rise in public interest in multiple COVID-19-related symptoms as well as cardiovascular symptoms. As there is a paucity of data related to the trends in Pakistan, we conducted a retrospective analysis to bridge further information. Methods: As per the recommendations from past studies, a Google trend analysis was conducted for various symptoms, including ‘Fever’, ‘Chest Pain’, ‘Shortness of Breath’, and ‘Cough’ between 1st January 2019 to 31st December 2021. The trends in various search results were analyzed and modeled. Results: Our analysis found various rises in public interest in the various symptoms (fever, chest pain, shortness of breath, and cough) that correspond closely to the wave of the virus's spread in the country. Conclusion: Our study confirms similar trends in Pakistan as previously reported in studies from India, USA, and UK, whereby the public interest in various COVID-19 symptoms rose with the number of cases. This further highlights the need for a strong approach to combat misinformation during such a critical period.

Keywords: covid, trend, Pakistan, public

Procedia PDF Downloads 39
1658 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia PDF Downloads 126
1657 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 261
1656 Wrong Site Surgery Should Not Occur In This Day And Age!

Authors: C. Kuoh, C. Lucas, T. Lopes, I. Mechie, J. Yoong, W. Yoong

Abstract:

For all surgeons, there is one preventable but still highly occurring complication – wrong site surgeries. They can have potentially catastrophic, irreversible, or even fatal consequences on patients. With the exponential development of microsurgery and the use of advanced technological tools, the consequences of operating on the wrong side, anatomical part, or even person is seen as the most visible and destructive of all surgical errors and perhaps the error that is dreaded by most clinicians as it threatens their licenses and arouses feelings of guilt. Despite the implementation of the WHO surgical safety checklist more than a decade ago, the incidence of wrong-site surgeries remains relatively high, leading to tremendous physical and psychological repercussions for the clinicians involved, as well as a financial burden for the healthcare institution. In this presentation, the authors explore various factors which can lead to wrong site surgery – a combination of environmental and human factors and evaluate their impact amongst patients, practitioners, their families, and the medical industry. Major contributing factors to these “never events” include deviations from checklists, excessive workload, and poor communication. Two real-life cases are discussed, and systems that can be implemented to prevent these errors are highlighted alongside lessons learnt from other industries. The authors suggest that reinforcing speaking-up, implementing medical professional trainings, and higher patient’s involvements can potentially improve safety in surgeries and electrosurgeries.

Keywords: wrong side surgery, never events, checklist, workload, communication

Procedia PDF Downloads 184
1655 Feasibility Study for the Implementation of a Condition-Based Maintenance System in the UH-60 Helicopters

Authors: Santos Cabrera, Halbert Yesid, Moncada Nino, Alvaro Fernando, Rincon Cuta, Yeisson Alexis

Abstract:

The present work evaluates the feasibility of implementing a health and use monitoring system (HUMS), based on vibration analysis as a condition-based maintenance program for the UH60L 'Blackhawk' helicopters. The mixed approach used consists of contributions from national and international experts, the analysis of data extracted from the software (Meridium), the correlation of variables derived from the diagnosis of availability, the development, and application of the HUMS system, the evaluation of the latter through of the use of instruments designed for the collection of information using the DELPHI method and data capture with the device installed in the helicopter studied. The results obtained in the investigation reflect the context of maintenance in aerial operations, a reduction of operation and maintenance costs of over 2%, better use of human resources, improvement in availability (5%), and fulfillment of the aircraft’s security standards, enabling the implementation of the monitoring system (HUMS) in the condition-based maintenance program. New elements are added to the study of maintenance based on condition -specifically, in the determination of viability based on qualitative and quantitative data according to the methodology. The use of condition-based maintenance will allow organizations to adjust and reconfigure their strategic, logistical, and maintenance capabilities, aligning them with their strategic objectives of responding quickly and adequately to changes in the environment and operational requirements.

Keywords: air transportation sustainability, HUMS, maintenance based condition, maintenance blackhawk capability

Procedia PDF Downloads 158
1654 Analysis of Energy Efficiency Behavior with the Use of Train Dynamics Simulator and Statistical Tools: Case Study of Vitoria Minas Railway, Brazil

Authors: Eric Wilson Santos Cabral, Marta Monteiro Da Costa Cruz, Fabio Luis Maciel Machado, Henrique Andrade, Rodrigo Pirola Pestana, Vivian Andrea Parreira

Abstract:

The large variation in the price of diesel in Brazil directly affects the variable cost of companies operating in the transportation sector. In rail transport, the great challenge is to overcome the annual budget, cargo and ore transported with cost reduction in relation to previous years, becoming more efficient every year. Some effective measures are necessary to achieve the reduction of the liter ratio consumed by KTKB (Gross Ton per Kilometer multiplied by thousand). This acronym represents the indicator of energy efficiency of some railroads in the world. This study is divided into two parts: the first, to identify using statistical tools, part of the controlled variables in the railways, which have a correlation with the energy efficiency indicator, seeking to aid decision-making. The second, with the use of the train dynamics simulator, within scenarios defined in the operational reality of a railroad, seeks to optimize the train formations and the train stop model for the change of train drivers. With the completion of the study, companies in the rail sector are expected to be able to reduce some of their transportation costs.

Keywords: railway transport, railway simulation, energy efficiency, fuel consumption

Procedia PDF Downloads 336
1653 Role of Adaptive Support Ventilation in Weaning of COPD Patients

Authors: A. Kamel Abd Elaziz Mohamed, B. Sameh Kamal el Maraghi

Abstract:

Introduction: Adaptive support ventilation (ASV) is an improved closed-loop ventilation mode that provides both pressure-controlled ventilation and PSV according to the patient’s needs. Aim of the work: To compare the short-term effects of Adaptive support ventilation (ASV), with conventional Pressure support ventilation (PSV) in weaning of intubated COPD patients. Patients and methods: Fifty patients admitted in the intensive care with acute exacerbation of COPD and needing intubation were included in the study. All patients were initially ventilated with control/assist control mode, in a stepwise manner and were receiving standard medical therapy. Patients were randomized into two groups to receive either ASV or PSV. Results: Out of fifty patients included in the study forty one patients in both studied groups were weaned successfully according to their ABG data and weaning indices. APACHE II score showed no significant difference in both groups. There were statistically significant differences between the groups in term of, duration of mechanical ventilation, weaning hours and length of ICU stay being shorter in (group 1) weaned by ASV. Re-intubation and mortality rate were higher in (group 11) weaned by conventional PSV, however the differences were not significant. Conclusion: ASV can provide automated weaning and achieve shorter weaning time for COPD patients hence leading to reduction in the total duration of MV, length of stay, and hospital costs.

Keywords: COPD patients, ASV, PSV, mechanical ventilation (MV)

Procedia PDF Downloads 390
1652 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture

Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju

Abstract:

Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nano cutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.

Keywords: economic analysis, machining, minimum quantity lubrication, nanofluid

Procedia PDF Downloads 381
1651 Cultural Practices as a Coping Measure for Women who Terminated a Pregnancy in Adolescence: A Qualitative Study

Authors: Botshelo Rachel Sebola

Abstract:

Unintended pregnancy often results in pregnancy termination. Most countries have legalised the termination of a pregnancy, and pregnant adolescents can visit designated clinics without their parents’ consent. In most African and Asian countries, certain cultural practices are performed following any form of childbirth, including abortion, and such practices are ingrained in societies. The aim of this paper was to understand how women who terminated a pregnancy during adolescence coped by embracing cultural practices. A descriptive multiple case study design was adopted for the study. In-depth, semi-structured interviews and reflective diaries were used for data collection. 13 women aged 20 to 35 years who had terminated a pregnancy in adolescence participated in the study. Three women kept their soiled sanitary pads, burned them to ash and waited for the rainy season to scatter the ash in a flowing stream. This ritual was performed to appease the ancestors, ask them for forgiveness and as a send-off for the aborted foetus. Five women secretly consulted Sangoma (traditional healers) to perform certain rituals. Three women isolated themselves to perform herbal cleansings, and the last two chose not to engage in any sexual activity for one year, which led to the loss of their partners. This study offers a unique contribution to understanding the solitary journey of women who terminate a pregnancy. The study challenges healthcare professionals who work in clinics that offer pregnancy termination services to look beyond releasing the foetus to advocating and providing women with the necessary care and support in performing cultural practices.

Keywords: adolescence, culture, case study, pregnancy

Procedia PDF Downloads 86
1650 Information Management Approach in the Prediction of Acute Appendicitis

Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki

Abstract:

This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.

Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree

Procedia PDF Downloads 352
1649 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.

Keywords: autism disease, neural network, CPU, GPU, transfer learning

Procedia PDF Downloads 121
1648 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes

Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng

Abstract:

To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.

Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation

Procedia PDF Downloads 58
1647 Role of Information and Communication Technology in Pharmaceutical Innovation: Case of Firms in Developing Countries

Authors: Ilham Benali, Nasser Hajji, Nawfel Acha

Abstract:

The pharmaceutical sector is ongoing different constraints related to the Research and Development (R&D) costs, the patents extinction, the demand pressing, the regulatory requirement and the generics development, which drive leading firms in the sector to undergo technological change and to shift to biotechnological paradigm. Based on a large literature review, we present a background of innovation trajectory in pharmaceutical industry and reasons behind this technological transformation. Then we investigate the role that Information and Communication Technology (ICT) is playing in this revolution. In order to situate pharmaceutical firms in developing countries in this trajectory, and to examine the degree of their involvement in the innovation process, we did not find any previous empirical work or sources generating gathered data that allow us to analyze this phenomenon. Therefore, and for the case of Morocco, we tried to do it from scratch by gathering relevant data of the last five years from different sources. As a result, only about 4% of all innovative drugs that have access to the local market in the mentioned period are made locally which substantiates that the industrial model in pharmaceutical sector in developing countries is based on the 'license model'. Finally, we present another alternative, based on ICT use and big data tools that can allow developing countries to shift from status of simple consumers to active actors in the innovation process.

Keywords: biotechnologies, developing countries, innovation, information and communication technology, pharmaceutical firms

Procedia PDF Downloads 151
1646 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 197
1645 Influential Health Care System Rankings Can Conceal Maximal Inequities: A Simulation Study

Authors: Samuel Reisman

Abstract:

Background: Comparative rankings are increasingly used to evaluate health care systems. These rankings combine discrete attribute rankings into a composite overall ranking. Health care equity is a component of overall rankings, but excelling in other categories can counterbalance low inequity grades. Highly ranked inequitable health care would commend systems that disregard human rights. We simulated the ranking of a maximally inequitable health care system using a published, influential ranking methodology. Methods: We used The Commonwealth Fund’s ranking of eleven health care systems to simulate the rank of a maximally inequitable system. Eighty performance indicators were simulated, assuming maximal ineptitude in equity benchmarks. Maximal rankings in all non-equity subcategories were assumed. Subsequent stepwise simulations lowered all non-equity rank positions by one. Results: The maximally non-equitable health care system ranked first overall. Three subsequent stepwise simulations, lowering non-equity rankings by one, each resulted in an overall ranking within the top three. Discussion: Our results demonstrate that grossly inequitable health care systems can rank highly in comparative health care system rankings. These findings challenge the validity of ranking methodologies that subsume equity under broader benchmarks. We advocate limiting maximum overall rankings of health care systems to their individual equity rankings. Such limits are logical given the insignificance of health care system improvements to those lacking adequate health care.

Keywords: global health, health equity, healthcare systems, international health

Procedia PDF Downloads 402
1644 Electricity Sector's Status in Lebanon and Portfolio Optimization for the Future Electricity Generation Scenarios

Authors: Nour Wehbe

Abstract:

The Lebanese electricity sector is at the heart of a deep crisis. Electricity in Lebanon is supplied by Électricité du Liban (EdL) which has to suffer from technical and financial deficiencies for decades and proved to be insufficient and deficient as the demand still exceeds the supply. As a result, backup generation is widespread throughout Lebanon. The sector costs massive government resources and, on top of it, consumers pay massive additional amounts for satisfying their electrical needs. While the developed countries have been investing in renewable energy for the past two decades, the Lebanese government realizes the importance of adopting such energy sourcing strategies for the upgrade of the electricity sector in the country. The diversification of the national electricity generation mix has increased considerably in Lebanon's energy planning agenda, especially that a detailed review of the energy potential in Lebanon has revealed a great potential of solar and wind energy resources, a considerable potential of biomass resource, and an important hydraulic potential in Lebanon. This paper presents a review of the energy status of Lebanon, and illustrates a detailed review of the EDL structure with the existing problems and recommended solutions. In addition, scenarios reflecting implementation of policy projects are presented, and conclusions are drawn on the usefulness of a proposed evaluation methodology and the effectiveness of the adopted new energy policy for the electrical sector in Lebanon.

Keywords: EdL Electricite du Liban, portfolio optimization, electricity generation mix, mean-variance approach

Procedia PDF Downloads 248
1643 Design of a Computer Vision Based Exercise Video Game for Senior Citizens

Authors: June Tay, Ivy Chia

Abstract:

There are numerous changes, both mental and physical, taking place when people age. We need to understand the different aspects required for healthy living, including meeting nutritional needs, regular physical activities to keep agility, sufficient rest and sleep to have physical and mental well-being, social engagement to avoid the risk of social isolation and depression, and access to healthcare to detect and manage chronic conditions. Promoting physical activities for an ageing population is necessary as many may have enjoyed sedentary lifestyles for some time. In our study, we evaluate the considerations when designing a computer vision video game for the elderly. We need to design some low-impact activities, such as stretching and gentle movements, because some elderly individuals may have joint pains or mobility issues. The exercise game should consist of simple movements that are easy to follow and remember. It should be fun and enjoyable so that they can be motivated to do some exercise. Social engagement can keep the elderly motivated and competitive, and they are more willing to engage in game exercises. Elderly citizens can compare their game scores and try to improve them. We propose a computer vision-based video game for the elderly that will capture and track the movement of the elderly hand pushing a ball on the screen into a circle. It can be easily set up using a PC laptop with a webcam. Our video game adhered to the design framework we employed, and it encompassed ease of use, a simple graphical interface, easy-to-play game exercise, and fun gameplay.

Keywords: about computer vision, video games, gerontology technology, caregiving

Procedia PDF Downloads 83
1642 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.

Keywords: CNC machining, six sigma, surface roughness, Taguchi methodology

Procedia PDF Downloads 243
1641 Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant

Authors: Gökhan Polat, Dicle Kocaoğlu Yılmazer, Muhlis Nezihi Sarıdede

Abstract:

Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.

Keywords: Coke, iron oxide wastes, recycling, reduction

Procedia PDF Downloads 340
1640 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: artificial bee colony algorithm, economic dispatch, unit commitment, wind power

Procedia PDF Downloads 376
1639 A Panel Cointegration Analysis for Macroeconomic Determinants of International Housing Market

Authors: Mei-Se Chien, Chien-Chiang Lee, Sin-Jie Cai

Abstract:

The main purpose of this paper is to investigate the long-run equilibrium and short-run dynamics of international housing prices when macroeconomic variables change. We apply the Pedroni’s, panel cointegration, using the unbalanced panel data analysis of 33 countries over the period from 1980Q1 to 2013Q1, to examine the relationships among house prices and macroeconomic variables. Our empirical results of panel data cointegration tests support the existence of a cointegration among these macroeconomic variables and house prices. Besides, the empirical results of panel DOLS further present that a 1% increase in economic activity, long-term interest rates, and construction costs cause house prices to respectively change 2.16%, -0.04%, and 0.22% in the long run. Furthermore, the increasing economic activity and the construction cost would cause stronger impacts on the house prices for lower income countries than higher income countries. The results lead to the conclusion that policy of house prices growth can be regarded as economic growth for lower income countries. Finally, in America region, the coefficient of economic activity is the highest, which displays that increasing economic activity causes a faster rise in house prices there than in other regions. There are some special cases whereby the coefficients of interest rates are significantly positive in America and Asia regions.

Keywords: house prices, macroeconomic variables, panel cointegration, dynamic OLS

Procedia PDF Downloads 393
1638 A Phase Change Materials Thermal Storage for Ground-Source Heat Pumps: Computational Fluid Dynamics Analysis of Innovative Layouts

Authors: Emanuele Bonamente, Andrea Aquino, Franco Cotana

Abstract:

The exploitation of the low-temperature geothermal resource via ground-source heat pumps is often limited by the high investment cost mainly due to borehole drilling. From the monitoring of a prototypal system currently used by a commercial building, it was found that a simple upgrade of the conventional layout, obtained including a thermal storage between the ground-source heat exchangers and the heat pump, can optimize the ground energy exploitation requiring for shorter/fewer boreholes. For typical applications, a reduction of up to 66% with respect to the conventional layout can be easily achieved. Results from the monitoring campaign of the prototype are presented in this paper, and upgrades of the thermal storage using phase change materials (PCMs) are proposed using computational fluid dynamics simulations. The PCM thermal storage guarantees an improvement of the system coefficient of performance both for summer cooling and winter heating (up to 25%). A drastic reduction of the storage volume (approx. 1/10 of the original size) is also achieved, making it possible to easily place it within the technical room, avoiding extra costs for underground displacement. A preliminary optimization of the PCM geometry is finally proposed.

Keywords: computational fluid dynamics (CFD), geothermal energy, ground-source heat pumps, phase change materials (PCM)

Procedia PDF Downloads 271
1637 Application of Carbon Nanotube and Nanowire FET Devices in Future VLSI

Authors: Saurabh Chaudhury, Sanjeet Kumar Sinha

Abstract:

The MOSFET has been the main building block in high performance and low power VLSI chips for the last several decades. Device scaling is fundamental to technological advancements, which allows more devices to be integrated on a single die providing greater functionality per chip. Ultimately, the goal of scaling is to build an individual transistor that is smaller, faster, cheaper, and consumes less power. Scaling continued following Moore's law initially and now we see an exponential growth in today's nano scaled chip. However, device scaling to deep nano meter regime leads to exponential increase in leakage currents and excessive heat generation. Moreover, fabrication process variability causing a limitation to further scaling. Researchers believe that with a mix of chemistry, physics, and engineering, nano electronics may provide a solution to increasing fabrication costs and may allow integrated circuits to be scaled beyond the limits of the modern transistor. Carbon nano tube (CNT) and nano wires (NW) based FETs have been analyzed and characterized in laboratory and also been demonstrated as prototypes. This work presents an extensive simulation based study and analysis of CNTFET and NW-FET devices and comparison of the results with conventional MOSFET. From this study, we can conclude that these devices have got some excellent properties and favorable characteristics which will definitely lead the future semiconductor devices in post silicon era.

Keywords: carbon nanotube, nanowire FET, low power, nanoscaled devices, VLSI

Procedia PDF Downloads 413
1636 Evaluation of the Safety and Performance of Blood Culture Practices Using BD Safety-Lokᵀᴹ Blood Collection Sets in the Emergency Room

Authors: Jeonghyun Chang, Taegeun Lee, Heungsup Sung, Yoon-Seon Lee, Youn-Jung Kim, Mi-Na Kim

Abstract:

Background: Safety device has been applied to improve safety and performance of blood culture practice. BD vacutainer® Safety-Lokᵀᴹ blood collection sets with pre-attached holder (Safety-Lok) (BD, USA) was evaluated in the emergency room (ER) of a tertiary care hospital. Methods: From April to June 2017, interns and nurses in ER were surveyed for blood culture practices with a questionnaire before and after 2 or 3 weeks of experience of Safety-Lok. All of them participated in exercise workshop for 1 hour combined with video education prior to the initial survey. The blood volume, positive and contamination rates of Safety-Lok-drawn (SD) blood cultures were compared to those of overall blood cultures. Results: Eighteen interns and 30 nurses were enrolled. As a result of the initial survey, interns had higher rates of needlestick incidence (27.8%), carriage of the blood-filled syringe with needle (88.9%) and lower rates of vacutainer use (38.9%) than nurses (13.3%, 53.3%, and 60.0%). Interns preferred to use safety devices (88.9%) rather than nurses (40.0%). The number of overall blood cultures and SD blood cultures was 9,053 and 555, respectively. While the overall blood volume of aerobic bottles was 2.6±2.1 mL, those of SD blood cultures were 5.0±3.0 mL in aerobic bottles and 6.0±3.0 mL in anaerobic bottles. Positive and contamination rates were 6.5% and 0.72% with SD blood cultures and 6.2% and 0.3% with overall blood cultures. Conclusions: The introduction of the safety device would encourage healthcare workers to collect adequate blood volume as well as lead to safer practices in the ER.

Keywords: blood culture, needlestick, safety device, volume

Procedia PDF Downloads 207
1635 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources

Authors: PR

Abstract:

Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.

Keywords: artificial intelligence, renewable energy sources, spiral model, optimize

Procedia PDF Downloads 14
1634 Enhancing Dispute Resolution in Construction: The Potential Contributions of Dispute Boards and the Roadblock to Vaster Adoption

Authors: Zeyad M. Abdelgawad, A. Samer Ezeldin, Waleed El Nemr

Abstract:

The Egyptian construction industry has evolved significantly over the past decade, driven by enhanced economic sectors and the need for industrial development. This complexity requires diverse and flexible alternative dispute resolution (ADR) techniques. Dispute boards (DB) are globally recognized as effective ADR methods, especially since their introduction to World Bank projects in 1995. Despite their advantages, dispute boards remain underutilized in Egypt aside from the World Bank-financed projects due to several misconceptions. The study reveals the perceptions hindering the wider adoption of dispute boards in the Egyptian construction industry through detailed literature review and interviews with the experts. The perceptions encompassed the lack of awareness and understanding of dispute boards and implementation procedures, misconceptions about the costs associated with implementing dispute boards and the impact on the bid prices, the common orientation of resolving disputes internally and avoid resorting to external parties to preserve the long-term relationship, and lack of trust in the ability of the dispute boards to positively affect the project performance. In response to these identified misconceptions, a proposed alternative draft to the FIDIC 2017 clause twenty-one “Disputes and Arbitration” is provided, offering a way for a practical application of the dispute boards within the Egyptian context.

Keywords: alternative dispute resolution, claim management system, dispute boards, Egyptian construction industry, FIDIC

Procedia PDF Downloads 23
1633 The Use of Water Resources Yield Model at Kleinfontein Dam

Authors: Lungile Maliba, O. I. Nkwonta, E Onyari

Abstract:

Water resources development and management are regarded as crucial for poverty reduction in many developing countries and sustainable economic growth such as South Africa. The contribution of large hydraulic infrastructure and management of it, particularly reservoirs, to development remains controversial. This controversy stems from the fact that from a historical point of view construction of reservoirs has brought fewer benefits than envisaged and has resulted in significant environmental and social costs. A further complexity in reservoir management is the variety of stakeholders involved, all with different objectives, including domestic and industrial water use, flood control, irrigation and hydropower generation. The objective was to evaluate technical adaptation options for kleinfontein Dam’s current operating rule curves. To achieve this objective, the current operating rules curves being used in the sub-basin were analysed. An objective methodology was implemented in other to get the operating rules with regards to the target storage curves. These were derived using the Water Resources Yield/Planning Model (WRY/PM), with the aim of maximising of releases to demand zones. The result showed that the system is over allocated and in addition the demands exceed the long-term yield that is available for the system. It was concluded that the current operating rules in the system do not produce the optimum operation such as target storage curves to avoid supply failures in the system.

Keywords: infrastructure, Kleinfontein dam, operating rule curve, water resources yield and planning model

Procedia PDF Downloads 140
1632 Knowledge, Attitude, and Practice Among Diabetic Patients About Diabetic Foot Disease in Khartoum State Primary Health Care Centers, November 2022

Authors: Abrar Noorain, Zeinab Amara, Sulaf Abdelaziz

Abstract:

Background: Diabetic foot disease imposes a financial burden on diabetic patients and healthcare services. In Sudan, diabetic foot ulcer prevalence reached 18.1%. This study aims to assess the knowledge, attitudes, and practices and the correlation between the level of foot care knowledge and self-care practices among diabetic patients in Sudan. Methodology: In a cross-sectional study involving 262 patients with type 1 and type 2 diabetes attending diabetic clinics in three primary care centers in Khartoum, Sudan, during September to November 2022, information regarding participants sociodemographic status, foot care knowledge, attitudes, and practices was gathered using a validated, structured questionnaire in a face-to-face interview method. These data were analyzed using the statistical package for the social sciences (SPSS) 22. Results: The patients’ mean age was 54.9 years, with a female predominance (56%). Of the participants, 37% had diabetes mellitus for over ten years. On the topic of foot care, 35.5% of patients showed good knowledge, and 76% were aware of the risk of reduced foot sensation. In relation to nail care, only 19% knew how to cut nails correctly. Conclusion: Knowledge, attitudes, and practices about diabetic foot care are substandard. There is a positive correlation between foot care knowledge and self-care practices. Hence, educating diabetic patients with foot care knowledge through an awareness program and the characteristics of diabetic shoes may improve self-care practices.

Keywords: DM, DFD, DFU, PHC, SPSS

Procedia PDF Downloads 74
1631 An Assessment of Sexual Informational Needs of Breast Cancer Patients in Radiation Oncology

Authors: Li Hoon Lim, Nur Farhanah Said, Katie Simmons, Eric Pei Ping Pang, Sharon Mei Mei Wong

Abstract:

Background and Purpose: Research regarding the sexual impact of breast cancer treatment on Asian women is both sensitive and scarce. This study aims to assess and evaluate the sexual health needs and concerns of breast cancer radiotherapy patients. It is hoped that awareness will be increased and an appropriate intervention can be developed to address the needs of future breast cancer patients. Methods: 110 consecutive unselected breast cancer patients were recruited prospectively. Questionnaires were administered once for patient undergoing radiotherapy to the breast. This study employed an anonymous questionnaire; any breast radiotherapy patient who can read English can voluntarily receive and complete the survey. The questionnaire consisted of items addressing demographics, potential informational needs, and educational preferences. Results: Patients’ interest to address sexual concerns decreases with age (p=0.024). Coherently, sexual concerns of patients are reported to decrease with age (p=0.015) where 70% of all respondents below age 50 [age 20-29 (60%); 30-39 (56.3%); 40-49(55.1%)] have started to have sexual concerns regarding their treatment effects on their sexual health. Patients who underwent breast conservation surgery (42.2%) and reconstruction surgery (83.3%) were more likely to have concerns about sexual health versus patients who underwent mastectomy (36.7%) (p=0.032). 74.2% of patients with sexual concern regardless of age would initiate conversation with their healthcare providers (p < 0.001). Conclusions: The results showed a staggering interest of female patients wanting information on this area which would not only boost their confidence and body image but also address concerns of the effect of breast radiotherapy on sexual health during their treatment.

Keywords: breast cancer, breast radiotherapy, sexual health, sexual impact

Procedia PDF Downloads 207