Search results for: automatic processing
2355 Plagiarism Detection for Flowchart and Figures in Texts
Authors: Ahmadu Maidorawa, Idrissa Djibo, Muhammad Tella
Abstract:
This paper presents a method for detecting flow chart and figure plagiarism based on shape of image processing and multimedia retrieval. The method managed to retrieve flowcharts with ranked similarity according to different matching sets. Plagiarism detection is well known phenomenon in the academic arena. Copying other people is considered as serious offense that needs to be checked. There are many plagiarism detection systems such as turn-it-in that has been developed to provide these checks. Most, if not all, discard the figures and charts before checking for plagiarism. Discarding the figures and charts result in look holes that people can take advantage. That means people can plagiarize figures and charts easily without the current plagiarism systems detecting it. There are very few papers which talks about flowcharts plagiarism detection. Therefore, there is a need to develop a system that will detect plagiarism in figures and charts.Keywords: flowchart, multimedia retrieval, figures similarity, image comparison, figure retrieval
Procedia PDF Downloads 4642354 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model
Authors: Tanu Khanuja, Harikrishnan N. Unni
Abstract:
Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress
Procedia PDF Downloads 1622353 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm
Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy
Abstract:
Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification
Procedia PDF Downloads 2382352 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks
Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry
Abstract:
Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices
Procedia PDF Downloads 502351 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique
Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti
Abstract:
Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.Keywords: cordierite, infiltration technique, porous ceramics, sol-gel
Procedia PDF Downloads 2712350 Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12
Authors: Shi-hong Lu, Chao-xun Liu, Yi-feng Zhu
Abstract:
Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and microhardness) with different USP process parameters were measured. The research proposes that the radius of curvature of shot peened sheet increases with time and electric current decreasing, while it increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical microhardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively.Keywords: USP forming, surface properties, radius of curvature, residual stress
Procedia PDF Downloads 5172349 Construal Level Perceptions of Environmental vs. Social Sustainability in Online Fashion Shopping Environments
Authors: Barbara Behre, Verolien Cauberghe, Dieneke Van de Sompel
Abstract:
Sustainable consumption is on the rise, yet it has still not entered the mainstream in several industries, such as the fashion industry. In online fashion contexts, sustainability cues have been used to signal the sustainable benefits of certain garments to promote sustainable consumption. These sustainable cues may focus on the ecological or social dimension of sustainability. Since sustainability, in general, relates to distant, abstract benefits, the current study aims to examine if and how psychological distance may mediate the effects of exposure to different sustainability cues on consumption outcomes. Following the framework of Construal Level Theory of Psychological Distance, reduced psychological distance renders the construal level more concrete, which may influence attitudes and subsequent behavior in situations like fashion shopping. Most studies investigated sustainability as a composite, failing to differentiate between ecological and societal aspects of sustainability. The few studies examining sustainability more in detail uncovered that environmental sustainability is rather perceived in abstract cognitive construal, whereas social sustainability is linked to concrete construal. However, the construal level affiliation of the sustainability dimensions likely is not universally applicable to different domains and stages of consumption, which further suggest a need to clarify the relationships between environmental and social sustainability dimensions and the construal level of psychological distance within fashion brand consumption. While psychological distance and construal level have been examined in the context of sustainability, these studies yielded mixed results. The inconsistent findings of past studies might be due to the context-dependence of psychological distance as inducing construal differently in diverse situations. Especially in a hedonic consumption context like online fashion shopping, the role of visual processing of information could determine behavioural outcomes as linked to situational construal. Given the influence of the mode of processing on psychological distance and construal level, the current study examines the moderating role of verbal versus non-verbal presentation of the sustainability cues. In a 3 (environmental sustainability vs. social sustainability vs. control) x 2 (non-verbal message vs. verbal message) between subjects experiment, the present study thus examines how consumers evaluate sustainable brands in online shopping contexts in terms of psychological distance and construal level, as well as the impact on brand attitudes and buying intentions. The results among 246 participants verify the differential impact of the sustainability dimensions on fashion brand purchase intent as mediated by construal level and perceived psychological distance. The ecological sustainability cue is perceived as more concrete, which might be explained by consumer bias induced by the predominance of pro-environmental sustainability messages. The verbal versus non-verbal presentation of the sustainability cue neither had a significant influence on distance perceptions and construal level nor on buying intentions. This study offers valuable contributions to the sustainable consumption literature, as well as a theoretical basis for construal-level framing as applied in sustainable fashion branding.Keywords: construal level theory, environmental vs social sustainability, online fashion shopping, sustainable fashion
Procedia PDF Downloads 1032348 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 1422347 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 2102346 Eco-Nanofiltration Membranes: Nanofiltration Membrane Technology Utilization-Based Fiber Pineapple Leaves Waste as Solutions for Industrial Rubber Liquid Waste Processing and Fertilizer Crisis in Indonesia
Authors: Andi Setiawan, Annisa Ulfah Pristya
Abstract:
Indonesian rubber plant area reached 2.9 million hectares with productivity reached 1.38 million. High rubber productivity is directly proportional to the amount of waste produced rubber processing industry. Rubber industry would produce a negative impact on the rubber industry in the form of environmental pollution caused by waste that has not been treated optimally. Rubber industrial wastewater containing high-nitrogen compounds (nitrate and ammonia) and phosphate compounds which cause water pollution and odor problems due to the high ammonia content. On the other hand, demand for NPK fertilizers in Indonesia continues to increase from year to year and in need of ammonia and phosphate as raw material. Based on domestic demand, it takes a year to 400,000 tons of ammonia and Indonesia imports 200,000 tons of ammonia per year valued at IDR 4.2 trillion. As well, the lack of phosphoric acid to be imported from Jordan, Morocco, South Africa, the Philippines, and India as many as 225 thousand tons per year. During this time, the process of wastewater treatment is generally done with a rubber on the tank to contain the waste and then precipitated, filtered and the rest released into the environment. However, this method is inefficient and thus require high energy costs because through many stages before producing clean water that can be discharged into the river. On the other hand, Indonesia has the potential of pineapple fruit can be harvested throughout the year in all of Indonesia. In 2010, production reached 1,406,445 tons of pineapple in Indonesia or about 9.36 percent of the total fruit production in Indonesia. Increased productivity is directly proportional to the amount of pineapple waste pineapple leaves are kept continuous and usually just dumped in the ground or disposed of with other waste at the final disposal. Through Eco-Nanofiltration Membrane-Based Fiber Pineapple leaves Waste so that environmental problems can be solved efficiently. Nanofiltration is a process that uses pressure as a driving force that can be either convection or diffusion of each molecule. Nanofiltration membranes that can split water to nano size so as to separate the waste processed residual economic value that N and P were higher as a raw material for the manufacture of NPK fertilizer to overcome the crisis in Indonesia. The raw materials were used to manufacture Eco-Nanofiltration Membrane is cellulose from pineapple fiber which processed into cellulose acetate which is biodegradable and only requires a change of the membrane every 6 months. Expected output target is Green eco-technology so with nanofiltration membranes not only treat waste rubber industry in an effective, efficient and environmentally friendly but also lowers the cost of waste treatment compared to conventional methods.Keywords: biodegradable, cellulose diacetate, fertilizers, pineapple, rubber
Procedia PDF Downloads 4472345 Experimental Study on Dehumidification Performance of Supersonic Nozzle
Authors: Esam Jassim
Abstract:
Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR.Keywords: supersonic nozzle, dehumidification, particle separation, nozzle geometry
Procedia PDF Downloads 3392344 Reversible and Adaptive Watermarking for MRI Medical Images
Authors: Nisar Ahmed Memon
Abstract:
A new medical image watermarking scheme delivering high embedding capacity is presented in this paper. Integer Wavelet Transform (IWT), Companding technique and adaptive thresholding are used in this scheme. The proposed scheme implants, recovers the hidden information and restores the input image to its pristine state at the receiving end. Magnetic Resonance Imaging (MRI) images are used for experimental purposes. The scheme first segment the MRI medical image into non-overlapping blocks and then inserts watermark into wavelet coefficients having a high frequency of each block. The scheme uses block-based watermarking adopting iterative optimization of threshold for companding in order to avoid the histogram pre and post processing. Results show that proposed scheme performs better than other reversible medical image watermarking schemes available in literature for MRI medical images.Keywords: adaptive thresholding, companding technique, data authentication, reversible watermarking
Procedia PDF Downloads 2962343 Evaluation of Different Liquid Scintillation Counting Methods for 222Rn Determination in Waters
Authors: Jovana Nikolov, Natasa Todorovic, Ivana Stojkovic
Abstract:
Monitoring of 222Rn in drinking or surface waters, as well as in groundwater has been performed in connection with geological, hydrogeological and hydrological surveys and health hazard studies. Liquid scintillation counting (LSC) is often preferred analytical method for 222Rn measurements in waters because it allows multiple-sample automatic analysis. LSC method implies mixing of water samples with organic scintillation cocktail, which triggers radon diffusion from the aqueous into organic phase for which it has a much greater affinity, eliminating possibility of radon emanation in that manner. Two direct LSC methods that assume different sample composition have been presented, optimized and evaluated in this study. One-phase method assumed direct mixing of 10 ml sample with 10 ml of emulsifying cocktail (Ultima Gold AB scintillation cocktail is used). Two-phase method involved usage of water-immiscible cocktails (in this study High Efficiency Mineral Oil Scintillator, Opti-Fluor O and Ultima Gold F are used). Calibration samples were prepared with aqueous 226Ra standard in glass 20 ml vials and counted on ultra-low background spectrometer Quantulus 1220TM equipped with PSA (Pulse Shape Analysis) circuit which discriminates alpha/beta spectra. Since calibration procedure is carried out with 226Ra standard, which has both alpha and beta progenies, it is clear that PSA discriminator has vital importance in order to provide reliable and precise spectra separation. Consequentially, calibration procedure was done through investigation of PSA discriminator level influence on 222Rn efficiency detection, using 226Ra calibration standard in wide range of activity concentrations. Evaluation of presented methods was based on obtained efficiency detections and achieved Minimal Detectable Activity (MDA). Comparison of presented methods, accuracy and precision as well as different scintillation cocktail’s performance was considered from results of measurements of 226Ra spiked water samples with known activity and environmental samples.Keywords: 222Rn in water, Quantulus1220TM, scintillation cocktail, PSA parameter
Procedia PDF Downloads 2012342 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset
Authors: Assel Jaxylykova, Alexnder Pak
Abstract:
This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics
Procedia PDF Downloads 462341 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition
Procedia PDF Downloads 3322340 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration
Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger
Abstract:
Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration
Procedia PDF Downloads 482339 Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics
Authors: F. Lhafiane, A. Elbyed, M. Bouchoum
Abstract:
The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.Keywords: reverse logistics, multi agent system, prometheus methodology
Procedia PDF Downloads 4712338 CRM Cloud Computing: An Efficient and Cost Effective Tool to Improve Customer Interactions
Authors: Gaurangi Saxena, Ravindra Saxena
Abstract:
Lately, cloud computing is used to enhance the ability to attain corporate goals more effectively and efficiently at lower cost. This new computing paradigm “The Cloud Computing” has emerged as a powerful tool for optimum utilization of resources and gaining competitiveness through cost reduction and achieving business goals with greater flexibility. Realizing the importance of this new technique, most of the well known companies in computer industry like Microsoft, IBM, Google and Apple are spending millions of dollars in researching cloud computing and investigating the possibility of producing interface hardware for cloud computing systems. It is believed that by using the right middleware, a cloud computing system can execute all the programs a normal computer could run. Potentially, everything from most simple generic word processing software to highly specialized and customized programs designed for specific company could work successfully on a cloud computing system. A Cloud is a pool of virtualized computer resources. Clouds are not limited to grid environments, but also support “interactive user-facing applications” such as web applications and three-tier architectures. Cloud Computing is not a fundamentally new paradigm. It draws on existing technologies and approaches, such as utility Computing, Software-as-a-service, distributed computing, and centralized data centers. Some companies rent physical space to store servers and databases because they don’t have it available on site. Cloud computing gives these companies the option of storing data on someone else’s hardware, removing the need for physical space on the front end. Prominent service providers like Amazon, Google, SUN, IBM, Oracle, Salesforce etc. are extending computing infrastructures and platforms as a core for providing top-level services for computation, storage, database and applications. Application services could be email, office applications, finance, video, audio and data processing. By using cloud computing system a company can improve its customer relationship management. A CRM cloud computing system may be highly useful in delivering a sales team a blend of unique functionalities to improve agent/customer interactions. This paper attempts to first define the cloud computing as a tool for running business activities more effectively and efficiently at a lower cost; and then it distinguishes cloud computing with grid computing. Based on exhaustive literature review, authors discuss application of cloud computing in different disciplines of management especially in the field of marketing with special reference to use of cloud computing in CRM. Study concludes that CRM cloud computing platform helps a company track any data, such as orders, discounts, references, competitors and many more. By using CRM cloud computing, companies can improve its customer interactions and by serving them more efficiently that too at a lower cost can help gaining competitive advantage.Keywords: cloud computing, competitive advantage, customer relationship management, grid computing
Procedia PDF Downloads 3122337 Estimating Estimators: An Empirical Comparison of Non-Invasive Analysis Methods
Authors: Yan Torres, Fernanda Simoes, Francisco Petrucci-Fonseca, Freddie-Jeanne Richard
Abstract:
The non-invasive samples are an alternative of collecting genetic samples directly. Non-invasive samples are collected without the manipulation of the animal (e.g., scats, feathers and hairs). Nevertheless, the use of non-invasive samples has some limitations. The main issue is degraded DNA, leading to poorer extraction efficiency and genotyping. Those errors delayed for some years a widespread use of non-invasive genetic information. Possibilities to limit genotyping errors can be done using analysis methods that can assimilate the errors and singularities of non-invasive samples. Genotype matching and population estimation algorithms can be highlighted as important analysis tools that have been adapted to deal with those errors. Although, this recent development of analysis methods there is still a lack of empirical performance comparison of them. A comparison of methods with dataset different in size and structure can be useful for future studies since non-invasive samples are a powerful tool for getting information specially for endangered and rare populations. To compare the analysis methods, four different datasets used were obtained from the Dryad digital repository were used. Three different matching algorithms (Cervus, Colony and Error Tolerant Likelihood Matching - ETLM) are used for matching genotypes and two different ones for population estimation (Capwire and BayesN). The three matching algorithms showed different patterns of results. The ETLM produced less number of unique individuals and recaptures. A similarity in the matched genotypes between Colony and Cervus was observed. That is not a surprise since the similarity between those methods on the likelihood pairwise and clustering algorithms. The matching of ETLM showed almost no similarity with the genotypes that were matched with the other methods. The different cluster algorithm system and error model of ETLM seems to lead to a more criterious selection, although the processing time and interface friendly of ETLM were the worst between the compared methods. The population estimators performed differently regarding the datasets. There was a consensus between the different estimators only for the one dataset. The BayesN showed higher and lower estimations when compared with Capwire. The BayesN does not consider the total number of recaptures like Capwire only the recapture events. So, this makes the estimator sensitive to data heterogeneity. Heterogeneity in the sense means different capture rates between individuals. In those examples, the tolerance for homogeneity seems to be crucial for BayesN work properly. Both methods are user-friendly and have reasonable processing time. An amplified analysis with simulated genotype data can clarify the sensibility of the algorithms. The present comparison of the matching methods indicates that Colony seems to be more appropriated for general use considering a time/interface/robustness balance. The heterogeneity of the recaptures affected strongly the BayesN estimations, leading to over and underestimations population numbers. Capwire is then advisable to general use since it performs better in a wide range of situations.Keywords: algorithms, genetics, matching, population
Procedia PDF Downloads 1432336 LuMee: A Centralized Smart Protector for School Children who are Using Online Education
Authors: Lumindu Dilumka, Ranaweera I. D., Sudusinghe S. P., Sanduni Kanchana A. M. K.
Abstract:
This study was motivated by the challenges experienced by parents and guardians in ensuring the safety of children in cyberspace. In the last two or three years, online education has become very popular all over the world due to the Covid 19 pandemic. Therefore, parents, guardians and teachers must ensure the safety of children in cyberspace. Children are more likely to go astray and there are plenty of online programs are waiting to get them on the wrong track and also, children who are engaging in the online education can be distracted at any moment. Therefore, parents should keep a close check on their children's online activity. Apart from that, due to the unawareness of children, they tempt to share their sensitive information, causing a chance of being a victim of phishing attacks from outsiders. These problems can be overcome through the proposed web-based system. We use feature extraction, web tracking and analysis mechanisms, image processing and name entity recognition to implement this web-based system.Keywords: online education, cyber bullying, social media, face recognition, web tracker, privacy data
Procedia PDF Downloads 892335 Fiber Orientation Measurements in Reinforced Thermoplastics
Authors: Ihsane Modhaffar
Abstract:
Fiber orientation is essential for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually known and widely used to predict the behavior of the material. In this work, we propose an image processing approach to estimate true principal directions and fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Numerical techniques for the prediction of fiber orientation are also considered for concentrated situations. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The governing equations, of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation
Procedia PDF Downloads 5322334 Development of an Implicit Coupled Partitioned Model for the Prediction of the Behavior of a Flexible Slender Shaped Membrane in Interaction with Free Surface Flow under the Influence of a Moving Flotsam
Authors: Mahtab Makaremi Masouleh, Günter Wozniak
Abstract:
This research is part of an interdisciplinary project, promoting the design of a light temporary installable textile defence system against flood. In case river water levels increase abruptly especially in winter time, one can expect massive extra load on a textile protective structure in term of impact as a result of floating debris and even tree trunks. Estimation of this impulsive force on such structures is of a great importance, as it can ensure the reliability of the design in critical cases. This fact provides the motivation for the numerical analysis of a fluid structure interaction application, comprising flexible slender shaped and free-surface water flow, where an accelerated heavy flotsam tends to approach the membrane. In this context, the analysis on both the behavior of the flexible membrane and its interaction with moving flotsam is conducted by finite elements based solvers of the explicit solver and implicit Abacus solver available as products of SIMULIA software. On the other hand, a study on how free surface water flow behaves in response to moving structures, has been investigated using the finite volume solver of Star CCM+ from Siemens PLM Software. An automatic communication tool (CSE, SIMULIA Co-Simulation Engine) and the implementation of an effective partitioned strategy in form of an implicit coupling algorithm makes it possible for partitioned domains to be interconnected powerfully. The applied procedure ensures stability and convergence in the solution of these complicated issues, albeit with high computational cost; however, the other complexity of this study stems from mesh criterion in the fluid domain, where the two structures approach each other. This contribution presents the approaches for the establishment of a convergent numerical solution and compares the results with experimental findings.Keywords: co-simulation, flexible thin structure, fluid-structure interaction, implicit coupling algorithm, moving flotsam
Procedia PDF Downloads 3892333 Collect Meaningful Information about Stock Markets from the Web
Authors: Saleem Abuleil, Khalid S. Alsamara
Abstract:
Events represent a significant source of information on the web; they deliver information about events that occurred around the world in all kind of subjects and areas. These events can be collected and organized to provide valuable and useful information for decision makers, researchers, as well as any person seeking knowledge. In this paper, we discuss an ongoing research to target stock markets domain to observe and record changes (events) when they happen, collect them, understand the meaning of each one of them, and organize the information along with meaning in a well-structured format. By using Semantic Role Labeling (SRL) technique, we identified four factors for each event in this paper: verb of action and three roles associated with it, entity name, attribute, and attribute value. We have generated a set of rules and techniques to support our approach to analyze and understand the meaning of the events taking place in stock markets.Keywords: natuaral language processing, Arabic language, event extraction and understanding, sematic role labeling, stock market
Procedia PDF Downloads 3932332 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 502331 Study on Fabrication of Surface Functional Micro and Nanostructures by Femtosecond Laser
Authors: Shengzhu Cao, Hui Zhou, Gan Wu, Lanxi Wanhg, Kaifeng Zhang, Rui Wang, Hu Wang
Abstract:
The functional micro and nanostructures, which can endow material surface with unique properties such as super-absorptance, hydrophobic and drag reduction. Recently, femtosecond laser ablation has been demonstrated to be a promising technology for surface functional micro and nanostructures fabrication. In this paper, using femtosecond laser ablation processing technique, we fabricated functional micro and nanostructures on Ti and Al alloy surfaces, test results showed that processed surfaces have 82%~96% absorptance over a broad wavelength range from ultraviolet to infrared. The surface function properties, which determined by micro and nanostructures, could be modulated by variation laser parameters. These functional surfaces may find applications in such areas as photonics, plasmonics, spaceborne devices, thermal radiation sources, solar energy absorbers and biomedicine.Keywords: surface functional, micro and nanostructures, femtosecond laser, ablation
Procedia PDF Downloads 3692330 Improvement of the Traditional Techniques of Artistic Casting through the Development of Open Source 3D Printing Technologies Based on Digital Ultraviolet Light Processing
Authors: Drago Diaz Aleman, Jose Luis Saorin Perez, Cecile Meier, Itahisa Perez Conesa, Jorge De La Torre Cantero
Abstract:
Traditional manufacturing techniques used in artistic contexts compete with highly productive and efficient industrial procedures. The craft techniques and associated business models tend to disappear under the pressure of the appearance of mass-produced products that compete in all niche markets, including those traditionally reserved for the work of art. The surplus value derived from the prestige of the author, the exclusivity of the product or the mastery of the artist, do not seem to be sufficient reasons to preserve this productive model. In the last years, the adoption of open source digital manufacturing technologies in small art workshops can favor their permanence by assuming great advantages such as easy accessibility, low cost, and free modification, adapting to specific needs of each workshop. It is possible to use pieces modeled by computer and made with FDM (Fused Deposition Modeling) 3D printers that use PLA (polylactic acid) in the procedures of artistic casting. Models printed by PLA are limited to approximate minimum sizes of 3 cm, and optimal layer height resolution is 0.1 mm. Due to these limitations, it is not the most suitable technology for artistic casting processes of smaller pieces. An alternative to solve size limitation, are printers from the type (SLS) "selective sintering by laser". And other possibility is a laser hardens, by layers, metal powder and called DMLS (Direct Metal Laser Sintering). However, due to its high cost, it is a technology that is difficult to introduce in small artistic foundries. The low-cost DLP (Digital Light Processing) type printers can offer high resolutions for a reasonable cost (around 0.02 mm on the Z axis and 0.04 mm on the X and Y axes), and can print models with castable resins that allow the subsequent direct artistic casting in precious metals or their adaptation to processes such as electroforming. In this work, the design of a DLP 3D printer is detailed, using backlit LCD screens with ultraviolet light. Its development is totally "open source" and is proposed as a kit made up of electronic components, based on Arduino and easy to access mechanical components in the market. The CAD files of its components can be manufactured in low-cost FDM 3D printers. The result is less than 500 Euros, high resolution and open-design with free access that allows not only its manufacture but also its improvement. In future works, we intend to carry out different comparative analyzes, which allow us to accurately estimate the print quality, as well as the real cost of the artistic works made with it.Keywords: traditional artistic techniques, DLP 3D printer, artistic casting, electroforming
Procedia PDF Downloads 1422329 Bio-Desalination and Bioremediation of Agroindustrial Wastewaters Using Yarrowia Lipolytica
Authors: Selma Hamimed, Abdelwaheb Chatti
Abstract:
The current study deals with the biological treatment of saline wastewaters generated by various agro-food industries using Yarrowia lipolytica. The ability of this yeast was studied on the mixture of olive mill wastewater and tuna wash processing wastewater. Results showed that the high proportion of olive mill wastewater in the mixture about (75:25) is the suitable one for the highest Y. lipolytica biomass production, reaching 11.3 g L⁻¹ after seven days. In addition, results showed significant removal of chemical oxygen demand (COD) and phosphorous of 97.49 % and 98.90 %, respectively. On the other hand, Y. lipolytica was found to be effective to desalinate all mixtures reaching a removal of 92.21 %. Moreover, the analytical results using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) confirmed the biosorption of NaCl on the surface of the yeast as nanocrystals form with a size of 47.3 nm.Keywords: nanocrystallization of NaCl, desalination, wastewater treatment, yarrowia lipolytica
Procedia PDF Downloads 1872328 Evaluation of the Boiling Liquid Expanding Vapor Explosion Thermal Effects in Hassi R'Mel Gas Processing Plant Using Fire Dynamics Simulator
Authors: Brady Manescau, Ilyas Sellami, Khaled Chetehouna, Charles De Izarra, Rachid Nait-Said, Fati Zidani
Abstract:
During a fire in an oil and gas refinery, several thermal accidents can occur and cause serious damage to people and environment. Among these accidents, the BLEVE (Boiling Liquid Expanding Vapor Explosion) is most observed and remains a major concern for risk decision-makers. It corresponds to a violent vaporization of explosive nature following the rupture of a vessel containing a liquid at a temperature significantly higher than its normal boiling point at atmospheric pressure. Their effects on the environment generally appear in three ways: blast overpressure, radiation from the fireball if the liquid involved is flammable and fragment hazards. In order to estimate the potential damage that would be caused by such an explosion, risk decision-makers often use quantitative risk analysis (QRA). This analysis is a rigorous and advanced approach that requires a reliable data in order to obtain a good estimate and control of risks. However, in most cases, the data used in QRA are obtained from the empirical correlations. These empirical correlations generally overestimate BLEVE effects because they are based on simplifications and do not take into account real parameters like the geometry effect. Considering that these risk analyses are based on an assessment of BLEVE effects on human life and plant equipment, more precise and reliable data should be provided. From this point of view, the CFD modeling of BLEVE effects appears as a solution to the empirical law limitations. In this context, the main objective is to develop a numerical tool in order to predict BLEVE thermal effects using the CFD code FDS version 6. Simulations are carried out with a mesh size of 1 m. The fireball source is modeled as a vertical release of hot fuel in a short time. The modeling of fireball dynamics is based on a single step combustion using an EDC model coupled with the default LES turbulence model. Fireball characteristics (diameter, height, heat flux and lifetime) issued from the large scale BAM experiment are used to demonstrate the ability of FDS to simulate the various steps of the BLEVE phenomenon from ignition up to total burnout. The influence of release parameters such as the injection rate and the radiative fraction on the fireball heat flux is also presented. Predictions are very encouraging and show good agreement in comparison with BAM experiment data. In addition, a numerical study is carried out on an operational propane accumulator in an Algerian gas processing plant of SONATRACH company located in the Hassi R’Mel Gas Field (the largest gas field in Algeria).Keywords: BLEVE effects, CFD, FDS, fireball, LES, QRA
Procedia PDF Downloads 1862327 Genetic Algorithm Optimization of Microcantilever Based Resonator
Authors: Manjula Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti
Abstract:
Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency.Keywords: MEMS resonator, genetic algorithm, modelling and simulation, optimization
Procedia PDF Downloads 5502326 Phonological Encoding and Working Memory in Kannada Speaking Adults Who Stutter
Authors: Nirmal Sugathan, Santosh Maruthy
Abstract:
Background: A considerable number of studies have evidenced that phonological encoding (PE) and working memory (WM) skills operate differently in adults who stutter (AWS). In order to tap these skills, several paradigms have been employed such as phonological priming, phoneme monitoring, and nonword repetition tasks. This study, however, utilizes a word jumble paradigm to assess both PE and WM using different modalities and this may give a better understanding of phonological processing deficits in AWS. Aim: The present study investigated PE and WM abilities in conjunction with lexical access in AWS using jumbled words. The study also aimed at investigating the effect of increase in cognitive load on phonological processing in AWS by comparing the speech reaction time (SRT) and accuracy scores across various syllable lengths. Method: Participants were 11 AWS (Age range=19-26) and 11 adults who do not stutter (AWNS) (Age range=19-26) matched for age, gender and handedness. Stimuli: Ninety 3-, 4-, and 5-syllable jumbled words (JWs) (n=30 per syllable length category) constructed from Kannada words served as stimuli for jumbled word paradigm. In order to generate jumbled words (JWs), the syllables in the real words were randomly transpositioned. Procedures: To assess PE, the JWs were presently visually using DMDX software and for WM task, JWs were presented through auditory mode through headphones. The participants were asked to silently manipulate the jumbled words to form a Kannada real word and verbally respond once. The responses for both tasks were audio recorded using record function in DMDX software and the recorded responses were analyzed using PRAAT software to calculate the SRT. Results: SRT: Mann-Whitney test results demonstrated that AWS performed significantly slower on both tasks (p < 0.001) as indicated by increased SRT. Also, AWS presented with increased SRT on both the tasks in all syllable length conditions (p < 0.001). Effect of syllable length: Wilcoxon signed rank test was carried out revealed that, on task assessing PE, the SRT of 4syllable JWs were significantly higher in both AWS (Z= -2.93, p=.003) and AWNS (Z= -2.41, p=.003) when compared to 3-syllable words. However, the findings for 4- and 5-syllable words were not significant. Task Accuracy: The accuracy scores were calculated for three syllable length conditions for both PE and PM tasks and were compared across the groups using Mann-Whitney test. The results indicated that the accuracy scores of AWS were significantly below that of AWNS in all the three syllable conditions for both the tasks (p < 0.001). Conclusion: The above findings suggest that PE and WM skills are compromised in AWS as indicated by increased SRT. Also, AWS were progressively less accurate in descrambling JWs of increasing syllable length and this may be interpreted as, rather than existing as a uniform deficiency, PE and WM deficits emerge when the cognitive load is increased. AWNS exhibited increased SRT and increased accuracy for JWs of longer syllable length whereas AWS was not benefited from increasing the reaction time, thus AWS had to compromise for both SRT and accuracy while solving JWs of longer syllable length.Keywords: adults who stutter, phonological ability, working memory, encoding, jumbled words
Procedia PDF Downloads 240