Search results for: Single Throw Mechanical Equipment (STME)
7388 Effect of UV Radiation to Change the Properties of the Composite PA+GF
Authors: Lenka Markovičová, Viera Zatkalíková, Tomasz Garbacz
Abstract:
The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors.Keywords: composites with glass fibers, mechanical properties, polyamides, UV degradation
Procedia PDF Downloads 2887387 CsPbBr₃@MOF-5-Based Single Drop Microextraction for in-situ Fluorescence Colorimetric Detection of Dechlorination Reaction
Authors: Yanxue Shang, Jingbin Zeng
Abstract:
Chlorobenzene homologues (CBHs) are a category of environmental pollutants that can not be ignored. They can stay in the environment for a long period and are potentially carcinogenic. The traditional degradation method of CBHs is dechlorination followed by sample preparation and analysis. This is not only time-consuming and laborious, but the detection and analysis processes are used in conjunction with large-scale instruments. Therefore, this can not achieve rapid and low-cost detection. Compared with traditional sensing methods, colorimetric sensing is simpler and more convenient. In recent years, chromaticity sensors based on fluorescence have attracted more and more attention. Compared with sensing methods based on changes in fluorescence intensity, changes in color gradients are easier to recognize by the naked eye. Accordingly, this work proposes to use single drop microextraction (SDME) technology to solve the above problems. After the dechlorination reaction was completed, the organic droplet extracts Cl⁻ and realizes fluorescence colorimetric sensing at the same time. This method was integrated sample processing and visual in-situ detection, simplifying the detection process. As a fluorescence colorimetric sensor material, CsPbBr₃ was encapsulated in MOF-5 to construct CsPbBr₃@MOF-5 fluorescence colorimetric composite. Then the fluorescence colorimetric sensor was constructed by dispersing the composite in SDME organic droplets. When the Br⁻ in CsPbBr₃ exchanges with Cl⁻ produced by the dechlorination reactions, it is converted into CsPbCl₃. The fluorescence color of the single droplet of SDME will change from green to blue emission, thereby realizing visual observation. Therein, SDME can enhance the concentration and enrichment of Cl⁻ and instead of sample pretreatment. The fluorescence color change of CsPbBr₃@MOF-5 can replace the detection process of large-scale instruments to achieve real-time rapid detection. Due to the absorption ability of MOF-5, it can not only improve the stability of CsPbBr₃, but induce the adsorption of Cl⁻. Simultaneously, accelerate the exchange of Br- and Cl⁻ in CsPbBr₃ and the detection process of Cl⁻. The absorption process was verified by density functional theory (DFT) calculations. This method exhibits exceptional linearity for Cl⁻ in the range of 10⁻² - 10⁻⁶ M (10000 μM - 1 μM) with a limit of detection of 10⁻⁷ M. Whereafter, the dechlorination reactions of different kinds of CBHs were also carried out with this method, and all had satisfactory detection ability. Also verified the accuracy by gas chromatography (GC), and it was found that the SDME we developed in this work had high credibility. In summary, the in-situ visualization method of dechlorination reaction detection was a combination of sample processing and fluorescence colorimetric sensing. Thus, the strategy researched herein represents a promising method for the visual detection of dechlorination reactions and can be extended for applications in environments, chemical industries, and foods.Keywords: chlorobenzene homologues, colorimetric sensor, metal halide perovskite, metal-organic frameworks, single drop microextraction
Procedia PDF Downloads 1437386 Fabrication and Characterization Analysis of La-Sr-Co-Fe-O Perovskite Hollow Fiber Catalyst for Oxygen Removal in Landfill Gas
Authors: Seong Woon Lee, Soo Min Lim, Sung Sik Jeong, Jung Hoon Park
Abstract:
The atmospheric concentration of greenhouse gas (GHG, Green House Gas) is increasing continuously as a result of the combustion of fossil fuels and industrial development. In response to this trend, many researches have been conducted on the reduction of GHG. Landfill gas (LFG, Land Fill Gas) is one of largest sources of GHG emissions containing the methane (CH₄) as a major constituent and can be considered renewable energy sources as well. In order to use LFG by connecting to the city pipe network, it required a process for removing impurities. In particular, oxygen must be removed because it can cause corrosion of pipes and engines. In this study, methane oxidation was used to eliminate oxygen from LFG and perovskite-type ceramic catalysts of La-Sr-Co-Fe-O composition was selected as a catalyst. Hollow fiber catalysts (HFC, Hollow Fiber Catalysts) have attracted attention as a new concept alternative because they have high specific surface area and mechanical strength compared to other types of catalysts. HFC was prepared by a phase-inversion/sintering technique using commercial La-Sr-Co-Fe-O powder. In order to measure the catalysts' activity, simulated LFG was used for feed gas and complete oxidation reaction of methane was confirmed. Pore structure of the HFC was confirmed by SEM image and perovskite structure of single phase was analyzed by XRD. In addition, TPR analysis was performed to verify the oxygen adsorption mechanism of the HFC. Acknowledgement—The project is supported by the ‘Global Top Environment R&D Program’ in the ‘R&D Center for reduction of Non-CO₂ Greenhouse gases’ (Development and demonstration of oxygen removal technology of landfill gas) funded by Korea Ministry of Environment (ME).Keywords: complete oxidation, greenhouse gas, hollow fiber catalyst, land fill gas, oxygen removal, perovskite catalyst
Procedia PDF Downloads 1177385 Optical and Mechanical Characterization of Severe Plastically Deformed Copper Alloy Processed by Constrained Groove Pressing
Authors: Jaya Prasad Vanam, Vinay Anurag P, Vidya Sravya N S, Kishore Babu Nagamothu
Abstract:
Constrained Groove Pressing (CGP) is one of the severe plastic deformation technique (SPD) by which we can process Ultra Fine Grained (UFG)/plane metallic materials. This paper discusses the effects of CGP on Cu-Zn alloy specimen at room temperature. A comprehensive study is made on the structural and mechanical properties of Brass specimen before and after Constrained grooves Pressing. Entire process is simulated in AFDEX CAE Software. It is found that most of the properties are superior with respect to brass samples such as yield strength, ultimate tensile strength, hardness, strain rate, etc., and they are found to be better for the CGP processed specimen. The results are discussed with respective graphs.Keywords: constrained groove pressing, AFDEX, ultra fine grained materials, severe plastic deformation technique
Procedia PDF Downloads 1567384 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming
Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter
Abstract:
High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.Keywords: hyperelastic, anisotropic, polymer film, thermoforming
Procedia PDF Downloads 6177383 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-functionalized SWNT Sensor Array
Authors: W. J. Zhang, Y. Q. Du, M. L. Wang
Abstract:
Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancement in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Eight DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, cirrhosis and diabetes. Our tests indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, reproducibility, and repeatability. Furthermore, different molecules can be distinguished through pattern recognition enabled by this sensor array. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or bimolecular detection for the noninvasive diagnostics of diseases and health monitoring.Keywords: breath analysis, diagnosis, DNA-SWNT sensor array, noninvasive
Procedia PDF Downloads 3487382 Internet of Things, Edge and Cloud Computing in Rock Mechanical Investigation for Underground Surveys
Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo
Abstract:
Rock mechanical investigation is one of the most crucial activities in underground operations, especially in surveys related to hydrocarbon exploration and production, geothermal reservoirs, energy storage, mining, and geotechnics. There is a wide range of traditional methods for driving, collecting, and analyzing rock mechanics data. However, these approaches may not be suitable or work perfectly in some situations, such as fractured zones. Cutting-edge technologies have been provided to solve and optimize the mentioned issues. Internet of Things (IoT), Edge, and Cloud Computing technologies (ECt & CCt, respectively) are among the most widely used and new artificial intelligence methods employed for geomechanical studies. IoT devices act as sensors and cameras for real-time monitoring and mechanical-geological data collection of rocks, such as temperature, movement, pressure, or stress levels. Structural integrity, especially for cap rocks within hydrocarbon systems, and rock mass behavior assessment, to further activities such as enhanced oil recovery (EOR) and underground gas storage (UGS), or to improve safety risk management (SRM) and potential hazards identification (P.H.I), are other benefits from IoT technologies. EC techniques can process, aggregate, and analyze data immediately collected by IoT on a real-time scale, providing detailed insights into the behavior of rocks in various situations (e.g., stress, temperature, and pressure), establishing patterns quickly, and detecting trends. Therefore, this state-of-the-art and useful technology can adopt autonomous systems in rock mechanical surveys, such as drilling and production (in hydrocarbon wells) or excavation (in mining and geotechnics industries). Besides, ECt allows all rock-related operations to be controlled remotely and enables operators to apply changes or make adjustments. It must be mentioned that this feature is very important in environmental goals. More often than not, rock mechanical studies consist of different data, such as laboratory tests, field operations, and indirect information like seismic or well-logging data. CCt provides a useful platform for storing and managing a great deal of volume and different information, which can be very useful in fractured zones. Additionally, CCt supplies powerful tools for predicting, modeling, and simulating rock mechanical information, especially in fractured zones within vast areas. Also, it is a suitable source for sharing extensive information on rock mechanics, such as the direction and size of fractures in a large oil field or mine. The comprehensive review findings demonstrate that digital transformation through integrated IoT, Edge, and Cloud solutions is revolutionizing traditional rock mechanical investigation. These advanced technologies have empowered real-time monitoring, predictive analysis, and data-driven decision-making, culminating in noteworthy enhancements in safety, efficiency, and sustainability. Therefore, by employing IoT, CCt, and ECt, underground operations have experienced a significant boost, allowing for timely and informed actions using real-time data insights. The successful implementation of IoT, CCt, and ECt has led to optimized and safer operations, optimized processes, and environmentally conscious approaches in underground geological endeavors.Keywords: rock mechanical studies, internet of things, edge computing, cloud computing, underground surveys, geological operations
Procedia PDF Downloads 637381 Olive Seed Tannins as Bioadhesives for Manufacturing Wood-Based Panels
Authors: Ajith K. A. Gedara, Iva Chianella, Jose L. Endrino, Qi Zhang
Abstract:
The olive seed is a by-product of the olive oil production industry. Biuret test and ferric chloride test revealed that water or alkali NaOH extractions of olive seed flour are rich in proteins and tannins. Both protein and tannins are well-known bio-based wood adhesives in the wood-based panel industry. In general, tannins-based adhesives show better mechanical and physical properties than protein wood adhesives. This paper explores different methods of extracting tannins from olive seed flour against the tannins yield and their applications as bio-based adhesives in wood-based panels. Once investigated, the physical and the mechanical properties of wood-based panels made using bio-adhesives based tannins extracted from olive seed flour revealed that the resulting products seemed to satisfy the Japanese Industrial Standards JIS A 5908:2015.Keywords: bio-adhesives, olive seed flour, tannins, wood-based panels
Procedia PDF Downloads 1517380 Characterization and Analysis of Airless Tire in Mountain Cycle
Authors: Sadia Rafiq, Md. Ashab Siddique Zaki, Ananya Roy
Abstract:
Mountain cycling is a type of off-road bicycle racing that typically takes place on rocky, arid, or other challenging terrains on specially-made mountain cycles. Professional cyclists race while attempting to stay on their bikes in a variety of locales across the world. For safety measures in mountain cycling, as there we have a high chance of injury in case of tire puncture, it’s a preferable way to use an airless tire instead of a pneumatic tire. As airless tire does not tend to go flat, it needs to be replaced less frequently. The airless tire replaces the pneumatic tire, wheel, and tire system with a single unit. It consists of a stiff hub connected to a shear band by flexible, pliable spokes, which is made of poly-composite and a tread band, all of which work together as a single unit to replace all of the components of a normal radial tire. In this paper, an analysis of airless tires in the mountain cycle is shown along with structure and material study. We will be taking the Honeycomb and Diamond Structure of spokes to compare the deformation in both cases and choose our preferable structure. As we know, the tread and spokes deform with the surface roughness and impact. So, the tire tread thickness and the design of spokes can control how much the tire can distort. Through the simulation, we can come to the conclusion that the diamond structure deforms less than the honeycomb structure. So, the diamond structure is more preferable.Keywords: airless tire, diamond structure, honeycomb structure, deformation
Procedia PDF Downloads 827379 Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate
Authors: Salah Aguib, Noureddine Chikh, Abdelmalek Khabli, Abdelkader Nour, Toufik Djedid, Lallia Kobzili
Abstract:
This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering.Keywords: hybrid smart sandwich plate, vibratory behavior, FEM, Ritz approach, MRE
Procedia PDF Downloads 677378 For Single to Multilayer Polyvinylidene Fluoride Based Polymer for Electro-Caloric Cooling
Authors: Nouh Zeggai, Lucas Debrux, Fabien Parrain, Brahim Dkhil, Martino Lobue, Morgan Almanza
Abstract:
Refrigeration and air conditioning are some of the most used energies in our daily life, especially vapor compression refrigeration. Electrocaloric material might appears as an alternative towards solid-state cooling. polyvinylidene fluoride (PVDF) based polymer has shown promising adiabatic temperature change (∆T) and entropy change (∆S). There is practically no limit to the electric field that can be applied, except the one that the material can withstand. However, when working with a large surface as required in a device, the chance to have a defect is larger and can drastically reduce the voltage breakdown, thus reducing the electrocaloric properties. In this work, we propose to study how the characteristic of a single film are transposed when going to multilayer. The laminator and the hot press appear as two interesting processes that have been investigating to achieve a multilayer film. The study is mainly focused on the breakdown field and the adiabatic temperature change, but the phase and crystallinity have also been measured. We process one layer-based PVDF and assemble them to obtain a multilayer. Pressing at hot temperature method and lamination were used for the production of the thin films. The multilayer film shows higher breakdown strength, temperature change, and crystallinity (beta phases) using the hot press technique.Keywords: PVDF-TrFE-CFE, multilayer, electrocaloric effect, hot press, cooling device
Procedia PDF Downloads 1707377 Regular Laboratory Based Neonatal Simulation Program Increases Senior Clinicians’ Knowledge, Skills and Confidence Caring for Sick Neonates
Authors: Madeline Tagg, Choihoong Mui, Elizabeth Lek, Jide Menakaya
Abstract:
Introduction: Simulation technology is used by neonatal teams to learn and refresh skills and gain the knowledge and confidence to care for sick neonates. In-situ simulation is considered superior to laboratory-based programmes as it closely mirrors real life situations. This study reports our experience of running regular laboratory-based simulation sessions for senior clinicians and nurses and its impact on their knowledge, skills and confidence. Methods: A before and after questionnaire survey was carried out on senior clinicians and nurses that attended a scheduled laboratory-based simulation session. Participants were asked to document their expectations before a 3-hour monthly laboratory programme started and invited to feedback their reflections at the end of the session. The session included discussion of relevant clinical guidelines, immersion in a scenario and video led debrief. The results of the survey were analysed in three skills based categories - improved, no change or a worsened experience. Results: 45 questionnaires were completed and analysed. Of these 25 (55%) were completed by consultants seven and six by nurses and trainee doctors respectively, and seven respondents were unknown. 40 (88%) rated the session overall and guideline review as good/excellent, 39 respondents (86%) rated the scenario session good/excellent and 40/45 fed back a good/excellent debrief session. 33 (73%) respondents completed the before and after questionnaire. 21/33 (63%) reflected an improved knowledge, skill or confidence in caring for sick new-bon babies, eight respondents reported no change and four fed back a worse experience after the session. Discussion: Most respondents found the laboratory based structured simulation session beneficial for their professional development. They valued equally the whole content of the programme such as guideline review and equipment training as well as the simulation and debrief sessions. Two out three participants stated their knowledge of caring for sick new-born babies had been transformed positively by the session. Sessions where simulation equipment failed or relevant staff were absent contributed to a poor educational experience. Summary: A regular structured laboratory-based simulation programme with a rich content is a credible educational resource for improving the knowledge, skills and confidence of senior clinicians caring for sick new born babies.Keywords: knowledge, laboratory based, neonates, simulation
Procedia PDF Downloads 1217376 Hardness map of Human Tarsals, Meta Tarsals and Phalanges of Toes
Authors: Irfan Anjum Manarvi, Zahid Ali kaimkhani
Abstract:
Predicting location of the fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation, and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers, therefore, have proposed further studies due to inaccuracies in measurement methods, testing machines, and experimental errors. Advancement and availability of hardware, measuring instrumentation, and testing machines can now provide remedies to these limitations. The human foot is a critical part of the body exposed to various forces throughout its life. A number of products are developed for using it for protection and care, which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Mechanical properties of Tarsals, Metatarsals, and phalanges are, therefore, the primary area of consideration for all such design applications. Hardness is one of the mechanical properties which are considered very important to establish the mechanical resistance behavior of a material against applied loads. Past researchers have worked in the areas of investigating mechanical properties of these bones. However, their results were based on a limited number of experiments and taking average values of hardness due to either limitation of samples or testing instruments. Therefore, they proposed further studies in this area. The present research has been carried out to develop a hardness map of the human foot by measuring micro hardness at various locations of these bones. Results are compiled in the form of distance from a reference point on a bone and the hardness values for each surface. The number of test results is far more than previous studies and are spread over a typical bone to give a complete hardness map of these bones. These results could also be used to establish other properties such as stress and strain distribution in the bones. Also, industrial engineers could use it for design and development of various accessories for human feet health care and comfort and further research in the same areas.Keywords: tarsals, metatarsals, phalanges, hardness testing, biomechanics of human foot
Procedia PDF Downloads 4217375 Elaboration and Characterization of MEH-PPV/PCBM Composite Film Doped with TiO2 Nanoparticles for Photovoltaic Application
Authors: Wided Zerguine, Farid Habelhames
Abstract:
The performance of photovoltaic devices with a light absorber consisting of a single-type conjugated polymer is poor, due to a low photo-generation yield of charge carriers, strong radiative recombination’s and low mobility of charge carriers. Recently, it has been shown that ultra-fast photoinduced charge transfer can also occur between a conjugated polymer and a metal oxide semiconductor such as SnO2, TiO2, ZnO, Nb2O5, etc. This has led to the fabrication of photovoltaic devices based on composites of oxide semiconductor nanoparticles embedded in a conjugated polymer matrix. In this work, Poly [2-methoxy-5-(20-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited by physical methods (spin-coating) on indium tin-oxide (ITO) substrate. The incorporation of the titanium dioxide nanoparticles changed the morphology and increased the roughness of polymers film (MEH-PPV/PCBM), and the photocurrent density of the composite (MEH-PPV/PCBM +n-TiO2) was higher than that of single MEHPPV/ PCBM film. The study showed that the presence of n-TiO2 particles in the polymeric film improves the photoelectrochemical properties of MEH-PPV/PCBM composite.Keywords: photocurrent density, organic nanostructures, hybrid coating, conducting polymer, titanium dioxide
Procedia PDF Downloads 3287374 Application of Production Planning to Improve Operation in Local Factory
Authors: Bashayer Al-Enezi, Budoor Al-Sabti, Eman Al-Durai, Fatmah Kalban, Meshael Ahmed
Abstract:
Production planning and control principles are concerned with planning, controlling and balancing all aspects of manufacturing including raw materials, finished goods, production schedules, and equipment requirements. Hence, an effective production planning and control system is very critical to the success of any factory. This project will focus on the application of production planning and control principles on “The National Canned Food Production and Trading Company (NCFP)” factory to find problems or areas for improvement.Keywords: production planning, operations improvement, inventory management, National Canned Food Production and Trading Company (NCFP)
Procedia PDF Downloads 5067373 Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior
Authors: Priyanka Gupta, Bipin Kumar
Abstract:
Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators.Keywords: knitting, memory filament, shape memory, smart textiles, thermo-mechanical cycle
Procedia PDF Downloads 897372 Rheological Modeling for Shape-Memory Thermoplastic Polymers
Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev
Abstract:
This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model
Procedia PDF Downloads 3237371 A 1.57ghz Mixer Design for GPS Receiver
Authors: Hamd Ahmed
Abstract:
During the Persian Gulf War in 1991s, The confederation forces were surprised when they were being shot at by friendly forces in Iraqi desert. As obvious was the fact that they were mislead due to the lack of proper guidance and technology resulting in unnecessary loss of life and bloodshed. This unforeseen incident along with many others led the US department of defense to open the doors of GPS. In the very beginning, this technology was for military use, but now it is being widely used and increasingly popular among the public due to its high accuracy and immeasurable significance. The GPS system simply consists of three segments, the space segment (the satellite), the control segment (ground control) and the user segment (receiver). This project work is about designing a 1.57GHZ mixer for triple conversion GPS receiver .The GPS Front-End receiver based on super heterodyne receiver which improves selectivity and image frequency. However the main principle of the super heterodyne receiver depends on the mixer. Many different types of mixers (single balanced mixer, Single Ended mixer, Double balanced mixer) can be used with GPS receiver, it depends on the required specifications. This research project will provide an overview of the GPS system and details about the basic architecture of the GPS receiver. The basic emphasis of this report in on investigating general concept of the mixer circuit some terms related to the mixer along with their definitions and present the types of mixer, then gives some advantages of using singly balanced mixer and its application. The focus of this report is on how to design mixer for GPS receiver and discussing the simulation results.Keywords: GPS , RF filter, heterodyne, mixer
Procedia PDF Downloads 3237370 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach
Authors: Jared Beard, Ali Baheri
Abstract:
As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification
Procedia PDF Downloads 1577369 Design and Implementation of a 94 GHz CMOS Double-Balanced Up-Conversion Mixer for 94 GHz Imaging Radar Sensors
Authors: Yo-Sheng Lin, Run-Chi Liu, Chien-Chu Ji, Chih-Chung Chen, Chien-Chin Wang
Abstract:
A W-band double-balanced mixer for direct up-conversion using standard 90 nm CMOS technology is reported. The mixer comprises an enhanced double-balanced Gilbert cell with PMOS negative resistance compensation for conversion gain (CG) enhancement and current injection for power consumption reduction and linearity improvement, a Marchand balun for converting the single LO input signal to differential signal, another Marchand balun for converting the differential RF output signal to single signal, and an output buffer amplifier for loading effect suppression, power consumption reduction and CG enhancement. The mixer consumes low power of 6.9 mW and achieves LO-port input reflection coefficient of -17.8~ -38.7 dB and RF-port input reflection coefficient of -16.8~ -27.9 dB for frequencies of 90~100 GHz. The mixer achieves maximum CG of 3.6 dB at 95 GHz, and CG of 2.1±1.5 dB for frequencies of 91.9~99.4 GHz. That is, the corresponding 3 dB CG bandwidth is 7.5 GHz. In addition, the mixer achieves LO-RF isolation of 36.8 dB at 94 GHz. To the authors’ knowledge, the CG, LO-RF isolation and power dissipation results are the best data ever reported for a 94 GHz CMOS/BiCMOS up-conversion mixer.Keywords: CMOS, W-band, up-conversion mixer, conversion gain, negative resistance compensation, output buffer amplifier
Procedia PDF Downloads 5317368 Analysis of Distance Travelled by Plastic Consumables Used in the First 24 Hours of an Intensive Care Admission: Impacts and Methods of Mitigation
Authors: Aidan N. Smallwood, Celestine R. Weegenaar, Jack N. Evans
Abstract:
The intensive care unit (ICU) is a particularly resource heavy environment, in terms of staff, drugs and equipment required. Whilst many areas of the hospital are attempting to cut down on plastic use and minimise their impact on the environment, this has proven challenging within the confines of intensive care. Concurrently, as globalization has progressed over recent decades, there has been a tendency towards centralised manufacturing with international distribution networks for products, often covering large distances. In this study, we have modelled the standard consumption of plastic single-use items over the course of the first 24-hours of an average individual patient’s stay in a 12 bed ICU in the United Kingdom (UK). We have identified the country of manufacture and calculated the minimum possible distance travelled by each item from factory to patient. We have assumed direct transport via the shortest possible straight line from country of origin to the UK and have not accounted for transport within either country. Assuming an intubated patient with invasive haemodynamic monitoring and central venous access, there are a total of 52 distincts, largely plastic, disposable products which would reasonably be required in the first 24-hours after admission. Each product type has only been counted once to account for multiple items being shipped as one package. Travel distances from origin were summed to give the total distance combined for all 52 products. The minimum possible total distance travelled from country of origin to the UK for all types of product was 273,353 km, equivalent to 6.82 circumnavigations of the globe, or 71% of the way to the moon. The mean distance travelled was 5,256 km, approximately the distance from London to Mecca. With individual packaging for each item, the total weight of consumed products was 4.121 kg. The CO2 produced shipping these items by air freight would equate to 30.1 kg, however doing the same by sea would produce 0.2 kg CO2. Extrapolating these results to the 211,932 UK annual ICU admissions (2018-2019), even with the underestimates of distance and weight of our assumptions, air freight would account for 6586 tons CO2 emitted annually, approximately 130 times that of sea freight. Given the drive towards cost saving within the UK health service, and the decline of the local manufacturing industry, buying from intercontinental manufacturers is inevitable However, transporting all consumables by sea where feasible would be environmentally beneficial, as well as being less costly than air freight. At present, the NHS supply chain purchases from medical device companies, and there is no freely available information as to the transport mode used to deliver the product to the UK. This must be made available to purchasers in order to give a fuller picture of life cycle impact and allow for informed decision making in this regard.Keywords: CO2, intensive care, plastic, transport
Procedia PDF Downloads 1787367 CFD Studies on Forced Convection Nanofluid Flow Inside a Circular Conduit
Authors: M. Khalid, W. Rashmi, L. L. Kwan
Abstract:
This work provides an overview on the experimental and numerical simulations of various nanofluids and their flow and heat transfer behavior. It was further extended to study the effect of nanoparticle concentration, fluid flow rates and thermo-physical properties on the heat transfer enhancement of Al2O3/water nanofluid in a turbulent flow circular conduit using ANSYS FLUENT™ 14.0. Single-phase approximation (homogeneous model) and two-phase (mixture and Eulerian) models were used to simulate the nanofluid flow behavior in the 3-D horizontal pipe. The numerical results were further validated with experimental correlations reported in the literature. It was found that heat transfer of nanofluids increases with increasing particle volume concentration and Reynolds number, respectively. Results showed good agreement (~9% deviation) with the experimental correlations, especially for a single-phase model with constant properties. Among two-phase models, mixture model (~14% deviation) showed better prediction compared to Eulerian-dispersed model (~18% deviation) when temperature independent properties were used. Non-drag forces were also employed in the Eulerian two-phase model. However, the two-phase mixture model with temperature dependent nanofluid properties gave slightly closer agreement (~12% deviation).Keywords: nanofluid, CFD, heat transfer, forced convection, circular conduit
Procedia PDF Downloads 5237366 Sizing Residential Solar Power Systems Based on Site-Specific Energy Statistics
Authors: Maria Arechavaleta, Mark Halpin
Abstract:
In the United States, costs of solar energy systems have declined to the point that they are viable options for most consumers. However, there are no consistent procedures for specifying sufficient systems. The factors that must be considered are energy consumption, potential solar energy production, and cost. The traditional method of specifying solar energy systems is based on assumed daily levels of available solar energy and average amounts of daily energy consumption. The mismatches between energy production and consumption are usually mitigated using battery energy storage systems, and energy use is curtailed when necessary. The main consumer decision question that drives the total system cost is how much unserved (or curtailed) energy is acceptable? Of course additional solar conversion equipment can be installed to provide greater peak energy production and extra energy storage capability can be added to mitigate longer lasting low solar energy production periods. Each option increases total cost and provides a benefit which is difficult to quantify accurately. An approach to quantify the cost-benefit of adding additional resources, either production or storage or both, based on the statistical concepts of loss-of-energy probability and expected unserved energy, is presented in this paper. Relatively simple calculations, based on site-specific energy availability and consumption data, can be used to show the value of each additional increment of production or storage. With this incremental benefit-cost information, consumers can select the best overall performance combination for their application at a cost they are comfortable paying. The approach is based on a statistical analysis of energy consumption and production characteristics over time. The characteristics are in the forms of curves with each point on the curve representing an energy consumption or production value over a period of time; a one-minute period is used for the work in this paper. These curves are measured at the consumer location under the conditions that exist at the site and the duration of the measurements is a minimum of one week. While greater accuracy could be obtained with longer recording periods, the examples in this paper are based on a single week for demonstration purposes. The weekly consumption and production curves are overlaid on each other and the mismatches are used to size the battery energy storage system. Loss-of-energy probability and expected unserved energy indices are calculated in addition to the total system cost. These indices allow the consumer to recognize and quantify the benefit (probably a reduction in energy consumption curtailment) available for a given increase in cost. Consumers can then make informed decisions that are accurate for their location and conditions and which are consistent with their available funds.Keywords: battery energy storage systems, loss of load probability, residential renewable energy, solar energy systems
Procedia PDF Downloads 2347365 Modeling of a Stewart Platform for Analyzing One Directional Dynamics for Spacecraft Docking Operations
Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams
Abstract:
A one-directional dynamic model of a Stewart Platform was developed to assist NASA in analyzing the dynamic response in spacecraft docking operations. A simplified mechanical drawing was created, capturing the physical structure's main features. A simplified schematic diagram was developed into a lumped mass model from the mechanical drawing. Three differential equations were derived according to the schematic diagram. A Simulink diagram was created using MATLAB to represent the three equations. System parameters, including spring constants and masses, are derived in detail from the physical system. The model can be used for further analysis via computer simulation in predicting dynamic response in its main docking direction, i.e., up-and-down motion.Keywords: stewart platform, docking operation, spacecraft, spring constant
Procedia PDF Downloads 1997364 Effect of Chilling on Soundness, Micro Hardness, Ultimate Tensile Strength, and Corrosion Behavior of Nickel Alloy-Fused Silica Metal Matrix Composite
Authors: G. Purushotham, Joel Hemanth
Abstract:
An investigation has been carried out to fabricate and evaluate the strength and soundness of chilled composites consisting of nickel matrix and fused silica particles (size 40–150 μm) in the matrix. The dispersoid added ranged from 3 to 12 wt. % in steps of 3%. The resulting composites cast in moulds containing metallic and non-metallic chill blocks (MS, SiC, and Cu) were tested for their microstructure and mechanical properties. The main objective of the present research is to obtain fine grain Ni/SiO2 chilled sound composite having very good mechanical properties. Results of the investigation reveal the following: (1) Strength of the composite developed is highly dependent on the location of the casting from where the test specimens are taken and also on the dispersoid content of the composite. (2) Chill thickness and chill material, however, does significantly affect the strength and soundness of the composite. (3) Soundness of the composite developed is highly dependent on the chilling rate as well as the dispersoid content. An introduction of chilling and increase in the dispersoid content of the material both result in an increase in the ultimate tensile strength (UTS) of the material. The temperature gradient developed during solidification and volumetric heat capacity (VHC) of the chill used is the important parameters controlling the soundness of the composite. (4) Thermal properties of the end chills are used to determine the magnitude of the temperature gradient developed along the length of the casting solidifying under the influence of chills.Keywords: metal matrix composite, mechanical properties, corrosion behavior, nickel alloy, fused silica, chills
Procedia PDF Downloads 3987363 Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant
Authors: Dimitrie Marinceu
Abstract:
The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability.Keywords: used fuel packing plant, robotic assembly cell, used fuel container, deep geological repository
Procedia PDF Downloads 2917362 Activated Carbons Prepared from Date Pits for Hydrogen Storage
Authors: M. Belhachemi, M. Monteiro de Castro, M. Casco, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso
Abstract:
In this study, activated carbons were prepared from Algerian date pits using thermal activation with CO2 or steam. The prepared activated carbons were doped by vanadium oxide in order to increase the H2 adsorption capacity. The adsorbents were characterized by N2 and CO2 adsorption at 77 K and 273K, respectively. The hydrogen adsorption experiments were carried at 298K in the 0–100 bar pressure range using a volumetric equipment. The results show that the H2 adsorption capacity is influenced by the size and volume of micropores in the activated carbon adsorbent. Furthermore, vanadium doping of activated carbons has a slight positive effect on H2 storage.Keywords: hydrogen storage, activated carbon, vanadium doping, adsorption
Procedia PDF Downloads 5707361 A Structural and Magnetic Investigation of the Inversion Degree in Spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 Ferrites Prepared by Soft Mechanochemical Synthesis
Authors: Z. Ž. Lazarević, D. L. Sekulić, V. N. Ivanovski, N. Ž. Romčević
Abstract:
NiFe2O4 (nickel ferrite), ZnFe2O4 (zinc ferrite) and Ni0.5Zn0.5Fe2O4 (nickel-zinc ferrite) were prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2/Fe(OH)3, Zn(OH)2/Fe(OH)3 and Ni(OH)2/Zn(OH)2/Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 25 h, 18 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase ferrite samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.Keywords: ferrites, Raman spectroscopy, IR spectroscopy, Mössbauer measurements
Procedia PDF Downloads 4547360 Scale Up-Mechanochemical Synthesis of High Surface Area Alpha-Alumina
Authors: Sarah Triller, Ferdi Schüth
Abstract:
The challenges encountered in upscaling the mechanochemical synthesis of high surface area α-alumina are investigated in this study. After lab-scale experiments in shaker mills and planetary ball mills, the optimization of reaction parameters of the conversion in the smallest vessel of a scalable mill, named Simoloyer, was developed. Furthermore, the future perspectives by scaling up the conversion in several steps are described. Since abrasion from the steel equipment can be problematic, the process was transferred to a ceramically lined mill, which solved the contamination problem. The recovered alpha-alumina shows a high specific surface area in all investigated scales.Keywords: mechanochemistry, scale-up, ball milling, ceramic lining
Procedia PDF Downloads 667359 Responsibility of States in Air Traffic Management: Need for International Unification
Authors: Nandini Paliwal
Abstract:
Since aviation industry is one of the fastest growing sectors of the world economy, states depend on the air transport industry to maintain or stimulate economic growth. It significantly promotes and contributes to the economic well-being of every nation as well as world in general. Because of the continuous and rapid growth in civil aviation, it is inevitably leading to congested skies, flight delays and most alarmingly, a decrease in the safety of air navigation facilities. Safety is one of the most important concerns of aviation industry that has been unanimously recognised across the whole world. The available capacity of the air navigation system is not sufficient for the demand that is being generated. It has been indicated by forecast that the current growth in air traffic has the potential of causing delays in 20% of flights by 2020 unless changes are brought in the current system. Therefore, a safe, orderly and expeditious air navigation system is needed at the national and global levels, which, requires the implementation of an air traffic management (hereinafter referred as ‘ATM’) system to ensure an optimum flow of air traffic by utilising and enhancing capabilities provided by technical advances. The objective of this paper is to analyse the applicability of national regulations in case of liability arising out of air traffic management services and whether the current legal regime is sufficient to cover multilateral agreements including the Single European Sky regulations. In doing so, the paper will examine the international framework mainly the Article 28 of the Chicago Convention and its relevant annexes to determine the responsibility of states for providing air navigation services. Then, the paper will discuss the difference between the concept of responsibility and liability under the air law regime and how states might claim sovereign immunity for the functions of air traffic management. Thereafter, the paper will focus on the cross border agreements including the bilateral and multilateral agreements. In the end, the paper will address the scheme of Single European Sky and the need for an international convention dealing with the liability of air navigation service providers. The paper will conclude with some suggestions for unification of the laws at an international level dealing with liability of air navigation service providers and the requirement of enhanced co-operation among states in order to keep pace with technological advances.Keywords: air traffic management, safety, single European sky, co-operation
Procedia PDF Downloads 170