Search results for: tropical wood
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1030

Search results for: tropical wood

850 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 219
849 Feasibility Studies on the Removal of Fluoride from Aqueous Solution by Adsorption Using Agro-Based Waste Materials

Authors: G. Anusha, J. Raja Murugadoss

Abstract:

In recent years, the problem of water contaminant is drastically increasing due to the disposal of industrial wastewater containing iron, fluoride, mercury, lead, cadmium, phosphorus, silver etc. into water bodies. The non-biodegradable heavy metals could accumulate in the human system through food chain and cause various dreadful diseases and permanent disabilities and in worst cases it leads to casual losses. Further, the presence of the excess quantity of such heavy metals viz. Lead, Cadmium, Chromium, Nickel, Zinc, Copper, Iron etc. seriously affect the natural quality of potable water and necessitates the treatment process for removal. Though there are dozens of standard procedures available for the removal of heavy metals, their cost keeps the industrialists away from adopting such technologies. In the present work, an attempt has been made to remove such contaminants particularly fluoride and to study the efficiency of the removal of fluoride by adsorption using a new agro-based materials namely Limonia acidissima and Emblica officinalis which is commonly referred as wood apple and gooseberry respectively. Accordingly a set of experiments has been conducted using batch and column processes, with the help of activated carbon prepared from the shell of wood apple and seeds of gooseberries. Experiments reveal that the adsorption capacity of the shell of wood apple is significant to yield promising solutions.

Keywords: adsorption, fluoride, agro-based waste materials, Limonia acidissima, Emblica officinalis

Procedia PDF Downloads 428
848 Conservation Status of a Lowland Tropical Forest in South-West, Nigeria

Authors: Lucky Dartsa Wakawa, Friday Nwabueze Ogana, Temitope Elizabeth Adeniyi

Abstract:

Timely and reliable information on the status of a forest is essential for assessing the extent of regeneration and degradation. However, when such information is lacking effective forest management practices becomes impossible. Therefore, this study assessed the tree species composition, richness, diversity, structure of Oluwa forest reserve with the view of ascertaining it conservation status. A systematic line transect was used in the laying of eight (8) temporary sample plots (TSPs) of size 50m x 50m. Trees with Dbh ≥ 10cm in the selected plots were enumerated, identified and measured. The results indicate that 535 individual trees were enumerated cutting across 26 families and 58 species. The family Sterculiaceae recorded the highest number of species (10) and occurrence (112) representing 17.2% and 20.93% respectively. Celtis zenkeri is the species with the highest number of occurrence of tree per hectare and importance value index (IVI) of 59 and 53.81 respectively. The reserve has the Margalef's index of species richness, Shannon-Weiner diversity Index (H') and Pielou's Species Evenness Index (EH) of 9.07, 3.43 and 0.84 respectively. The forest has a mean Dbh (cm), mean height (m), total basal area/ha (m2) and total volume/ha (m3) of 24.7, 16.9, 36.63 and 602.09 respectively. The important tropical tree species identified includes Diospyros crassiflora Milicia excels, Mansonia altisima, Triplochiton scleroxylon. Despite the level of exploitation in the forest, the forest seems to be resilience. Given the right attention, it could regenerate and replenish to save some of the original species composition of the reserve.

Keywords: forest conservation, forest structure, Lowland tropical forest, South-west Nigeria

Procedia PDF Downloads 342
847 Localized Analysis of Cellulosic Fibrous Insulation Materials

Authors: Chady El Hachem, Pan Ye, Kamilia Abahri, Rachid Bennacer

Abstract:

Considered as a building construction material, and regarding its environmental benefits, wood fiber insulation is the material of interest in this work. The definition of adequate elementary representative volume that guarantees reliable understanding of the hygrothermal macroscopic phenomena is very critical. At the microscopic scale, when subjected to hygric solicitations, fibers undergo local dimensionless variations. It is therefore necessary to master this behavior, which affects the global response of the material. This study consists of an experimental procedure using the non-destructive method, X-ray tomography, followed by morphological post-processing analysis using ImageJ software. A refine investigation took place in order to identify the representative elementary volume and the sufficient resolution for accurate structural analysis. The second part of this work was to evaluate the microscopic hygric behavior of the studied material. Many parameters were taken into consideration, like the evolution of the fiber diameters, distribution along the sorption cycle and the porosity, and the water content evolution. In addition, heat transfer simulations based on the energy equation resolution were achieved on the real structure. Further, the problematic of representative elementary volume was elaborated for such heterogeneous material. Moreover, the material’s porosity and its fibers’ thicknesses show very big correlation with the water content. These results provide the literature with very good understanding of wood fiber insulation’s behavior.

Keywords: hygric behavior, morphological characterization, wood fiber insulation material, x-ray tomography

Procedia PDF Downloads 267
846 Mangroves in the Douala Area, Cameroon: The Challenges of Open Access Resources for Forest Governance

Authors: Bissonnette Jean-François, Dossa Fabrice

Abstract:

The project focuses on analyzing the spatial and temporal evolution of mangrove forest ecosystems near the city of Douala, Cameroon, in response to increasing human and environmental pressures. The selected study area, located in the Wouri River estuary, has a unique combination of economic importance, and ecological prominence. The study included valuable insights by conducting semi-structured interviews with resource operators and local officials. The thorough analysis of socio-economic data, farmer surveys, and satellite-derived information was carried out utilizing quantitative approaches in Excel and SPSS. Simultaneously, qualitative data was subjected to rigorous classification and correlation with other sources. The use of ArcGIS and CorelDraw facilitated the visual representation of the gradual changes seen in various land cover classifications. The research reveals complex processes that characterize mangrove ecosystems on Manoka and Cape Cameroon Islands. The lack of regulations in urbanization and the continuous growth of infrastructure have led to a significant increase in land conversion, causing negative impacts on natural landscapes and forests. The repeated instances of flooding and coastal erosion have further shaped landscape alterations, fostering the proliferation of water and mudflat areas. The unregulated use of mangrove resources is a significant factor in the degradation of these ecosystems. Activities including the use of wood for smoking and fishing, together with the coastal pollution resulting from the absence of waste collection, have had a significant influence. In addition, forest operators contribute to the degradation of vegetation, hence exacerbating the harmful impact of invasive species on the ecosystem. Strategic interventions are necessary to guarantee the sustainable management of these ecosystems. The proposals include advocating for sustainable wood exploitation techniques, using appropriate techniques, along with regeneration, and enforcing rules to prevent wood overexploitation. By implementing these measures, the ecological balance can be preserved, safeguarding the long-term viability of these precious ecosystems. On a conceptual level, this paper uses the framework developed by Elinor Ostrom and her colleagues to investigate the consequences of open access resources, where local actors have not been able to enforce measures to prevent overexploitation of mangrove wood resources. Governmental authorities have demonstrated limited capacity to enforce sustainable management of wood resources and have not been able to establish effective relationships with local fishing communities and with communities involved in the purchase of wood. As a result, wood resources in the mangrove areas remain largely accessible, while authorities do not monitor wood volumes extracted nor methods of exploitation. There have only been limited and punctual attempts at forest restoration with no significant consequence on mangrove forests dynamics.

Keywords: Mangroves, forest management, governance, open access resources, Cameroon

Procedia PDF Downloads 62
845 Greenhouse Gas Emissions from a Tropical Eutrophic Freshwater Wetland

Authors: Juan P. Silva, T. R. Canchala, H. J. Lubberding, E. J. Peña, H. J. Gijzen

Abstract:

This study measured the fluxes of greenhouse gases (GHGs) i.e. CO2, CH4 and N2O from a tropical eutrophic freshwater wetland (“Sonso Lagoon”) which receives input loading nutrient from several sources i.e. agricultural run-off, domestic sewage, and a polluted river. The flux measurements were carried out at four different points using the static chamber technique. CO2 fluxes ranged from -8270 to 12210 mg.m-2.d-1 (median = 360; SD = 4.11; n = 50), CH4 ranged between 0.2 and 5270 mg.m-2.d-1 (median = 60; SD = 1.27; n = 45), and N2O ranged from -31.12 to 15.4 mg N2O m-2.d-1 (median = 0.05; SD = 9.36; n = 42). Although some negative fluxes were observed in the zone dominated by floating plants i.e. Eichornia crassipes, Salvinia sp., and Pistia stratiotes L., the mean values indicated that the Sonso Lagoon was a net source of CO2, CH4 and N2O. In addition, an effect of the eutrophication on GHG emissions could be observed in the positive correlation found between CO2, CH4 and N2O generation and COD, PO4-3, NH3-N, TN and NO3-N. The eutrophication impact on GHG production highlights the necessity to limit the anthropic activities on freshwater wetlands.

Keywords: eutrophication, greenhouse gas emissions, freshwater wetlands, climate change

Procedia PDF Downloads 361
844 Heat Waves and Hospital Admissions for Mental Disorders in Hanoi Vietnam

Authors: Phan Minh Trang, Joacim Rocklöv, Kim Bao Giang, Gunnar Kullgren, Maria Nilsson

Abstract:

There are recent studies from high income countries reporting an association between heat waves and hospital admissions for mental health disorders. It is not previously studied if such relations exist in sub-tropical and tropical low- and middle-income countries. In this study from Vietnam, the assumption was that hospital admissions for mental disorders may be triggered, or exacerbated, by heat exposure and heat waves. A database from Hanoi Mental Hospital with mental disorders diagnosed by the International Classification of Diseases 10, spanning over five years, was used to estimate the heatwave-related impacts on admissions for mental disorders. The relationship was analysed by a Negative Binomial regression model accounting for year, month, and days of week. The focus of the study was heat-wave events with periods of three or seven consecutive days above the threshold of 35oC daily maximum temperature. The preliminary study results indicated that heat-waves increased the risks for hospital admission for mental disorders (F00-79) from heat-waves of three and seven days with relative risks (RRs) of 1.16 (1.01–1.33) and 1.42 (1.02–1.99) respectively, when compared with non-heat-wave periods. Heatwave-related admissions for mental disorders increased statistically significantly among men, among residents in rural communities and in elderly. Moreover, cases for organic mental disorders including symptomatic illnesses (F0-9) and mental retardation (F70-79) raised in high risks during heat waves. The findings are novel studying a sub-tropical middle-income city, facing rapid urbanisation and epidemiological and demographic transitions.

Keywords: mental disorders, admissions for F0-9 or F70-79, maximum temperature, heat waves

Procedia PDF Downloads 244
843 Effect of Pressure and Glue Spread on the Bonding Properties of CLT Panels Made from Low-Grade Hardwood

Authors: Sumanta Das, Miroslav Gašparík, Tomáš Kytka, Anil Kumar Sethy

Abstract:

In this modern century, Cross-laminated timber (CLT) evolved as an excellent material for building and high load-bearing structural applications worldwide. CLT is produced mainly from softwoods such as Norway spruce, White fir, Scots pine, European larch, Douglas fir, and Swiss stone pine. The use of hardwoods in CLT production is still at an early stage, and the utilization of hardwoods is expected to provide the opportunity for obtaining higher bending stiffness and shear resistance to CLT panels. In load-bearing structures like CLT, bonding is an important character that is needed to evaluate. One particular issue with using hardwood lumber in CLT panels is that it is often more challenging to achieve a strong, durable adhesive bond. Several researches in the past years have already evaluated the bonding properties of CLT panels from hardwood both from higher and lower densities. This research aims to identify the effect of pressure and glue spread and evaluate which poplar lumber characteristics affect adhesive bond quality. Three-layered CLT panels were prepared from poplar wood with one-component polyurethane (PUR) adhesive by applying pressure of 0.6 N/mm2 and 1 N/mm2 with a glue spread rate of 160 and 180 g/m2. The delamination and block shear tests were carried out as per EN 16351:2015, and the wood failure percentage was also evaluated. The results revealed that glue spread rate and applied pressure significantly influenced both the shear bond strength and wood failure percentage of the CLT. However, samples with lower pressure 0.6 N/mm2 and less glue spread rate showed delamination, and in samples with higher pressure 1 N/mm2 and higher glue spread rate, no delamination was observed. All the properties determined by this study met the minimum requirement mentioned in EN 16351:2015 standard.

Keywords: cross-laminated timber, delamination, glue spread rate, poplar, pressure, PUR, shear strength, wood failure percentage

Procedia PDF Downloads 162
842 Understanding the Productivity Effect on Industrial Management: The Portuguese Wood Furniture Industry Case Study

Authors: Jonas A. R. H. Lima, Maria Antonia Carravilla

Abstract:

As productivity concepts are widely related to industrial savings, it is becoming particularly important in a more and more competitive world, to really understand how productivity can be well used in industrial management techniques. Nowadays, consumers are no more willing to pay for mistakes and inefficiencies. Therefore, one way for companies to stay competitive is to control and increase their productivity. This study aims to define clearly the productivity concept, understand how a company can affect productivity, and, if possible, identify the relation between each identified productivity factor. This will help managers, by clarifying the main issues behind productivity concepts and proposing a methodology to measure, control and increase productivity. The main questions to be answered are: what is the importance of productivity for the Portuguese Wood Furniture Industry? Is it possible to control productivity internally, or is it a phenomenon external to companies, hard or even impossible to control? How to understand, control and adjust productivity performance? How to make productivity to become one main asset for maximizing the use of the available resources? This essay will follow a constructive approach mostly based in the research hypothesis mentioned above. For that, a literature review is being done to find the main conceptual frameworks and empirical studies that already exist, and by doing so, highlight eventual knowledge or conflicting research to be addressed in this work. We expect to build theoretical explanations and test theoretical predictions from participants understandings and own experiences, by elaborating field surveys and interviews, to select adjusted productivity indicators and analyze the productivity evolution according the adjustments on other variables. Its intended the conduction of an exploratory work that can simultaneous clarify productivity concepts, objectives, and define frameworks. This investigation intends to migrate from merely academic concepts to a daily basis operational reality of the companies from the Portuguese Wood Furniture Industry highlighting productivity increased importance within modern engineering and industrial management. The ambition is to clarify, systemize and develop a management tool that may not only control but positively influence the way resources are used.

Keywords: industrial management, motivation, productivity, performance indicators, reward management, wood furniture industry

Procedia PDF Downloads 229
841 Understanding the Endogenous Impact of Tropical Cyclones Floods and Sustainable Landscape Management Innovations on Farm Productivity in Malawi

Authors: Innocent Pangapanga, Eric Mungatana

Abstract:

Tropical cyclones–related floods (TCRFs) in Malawi have devastating effects on smallholder agriculture, thereby threatening the food security agenda, which is already constrained by poor agricultural innovations, low use of improved varieties, and unaffordable inorganic fertilizers, and fragmenting landholding sizes. Accordingly, households have engineered and indigenously implemented sustainable landscape management (SLM) innovations to contain the adverse effects of TCRFs on farm productivity. This study, therefore, interrogated the efficacy of SLM adoption on farm productivity under varying TCRFs, while controlling for the potential selection bias and unobservable heterogeneity through the application of the Endogenous Switching Regression Model. In this study, we further investigated factors driving SLM adoption. Substantively, we found TCRFs reducing farm productivity by 31 percent, on the one hand, and influencing the adoption of SLM innovations by 27 percent, on the other hand. The study also observed that households that interacted SLM with TCRFs were more likely to enhance farm productivity by 24 percent than their counterparts. Interestingly, the study results further demonstrated that multiple adoptions of SLM-related innovations, including intercropping, agroforestry, and organic manure, enhanced farm productivity by 126 percent, suggesting promoting SLM adoption as a package to appropriately inform existing sustainable development goals’ agricultural productivity initiatives under intensifying TCRFs in the country.

Keywords: tropical cyclones–related floods, sustainable landscape management innovations, farm productivity, endogeneity, endogenous switching regression model, panel data, smallholder agriculture

Procedia PDF Downloads 116
840 Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials

Authors: Stanislavs Gendelis, Maris Sinka, Andris Jakovics

Abstract:

Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved.

Keywords: heat capacity, hemp concrete, thermal conductivity, water vapor transmission, wood wool

Procedia PDF Downloads 221
839 Portuguese Pine Resin: The Economic and Activity Decline to a New Forestry and Biotechnology Approach

Authors: Carolina Nunes, Sónia Ribeiro, Hélio Faustinho, Hélia Sales, Rita Pontes, João Nunes

Abstract:

Pine resin activity in Portugal was one of the most important and major non-wood forestry, representing a strategic natural resource for Portuguese Bioeconomy and an important social activity for rural regions. Pine forests representing a stock of atmospheric carbon, contributing to greenhouse effect mitigation and social and environmental important services returns. They are important sources of numerous useful products, including not only wood and cellulose but also nonwood products used by the chemical, food, and pharmaceutical industries, as well as for biorefineries. Portuguese pine forest area decreases from 1 million hectares to 400 mil hectares in the last 20 years. Portugal, in 80´s decade, was one of the world´s TOP 3 producers, with a middle annual production of 140 mil tones.year-1. With the pressure of the social desertification, forest fires, phytosanitary problems (e.g. nematode of the pine wood) and the decrease of economic value and competitivity of the Portuguese forest, the actual middle annual production is less than 10 mil tones.year-1 (lesser 92%). This significant decrease representing an annual economic loss of approximately 130-140 million Euros. year⁻¹ for forest primary sector in Portugal. The Biopinus project design new forestry approach and strategic biotechnologies knowledge to increase the economic value of Pine resin in Portugal, with an impact on the growth of the economic value of Pine resin from 1,1 to 1,5 Euros/kg.

Keywords: pine resin, bioeconomy, economic value, biotecnology

Procedia PDF Downloads 69
838 Heat and Humidity Induced Plastic Changes in Body Lipids and Starvation Resistance in the Tropical Zaprionus indianus of Wet-Dry Seasons

Authors: T. N. Girish, B. E. Pradeep, Ravi Parkash

Abstract:

Insects from tropical wet or dry seasons are likely to cope starvation stress through seasonal phenotypic plasticity in energy metabolites. Accordingly, we analyzed such plastic changes in Zaprionus indianus flies reared under wet or dry season-specific conditions; and also after adult acclimation at 32℃ for 1 to 6 days; and to low (40% RH) or high (70% RH) humidity. Both thermal or humidity acclimation revealed significant accumulation of body lipids for wet season flies but low humidity acclimation did not change the level of body lipids in dry season flies. Developmental and adult acclimation showed sex specific differences i.e., starvation resistance and body lipids were higher in the males of dry season but in females of wet season. We found seasonal and sex specific differences in the relative level for body lipids at death; and in the rates of accumulation or utilization of energy metabolites (body lipids, carbohydrates and proteins). Body lipids constitute the preferred energy source under starvation for flies of both the seasons. However, utilization of carbohydrates (~20% to 30%) and proteins (~20% to 25%) was evident only in dry season flies. Higher starvation resistance after thermal or humidity acclimation is achieved by increased accumulation of lipids. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity despite reduction in fecundity under starvation. Thus, thermal or humidity induced plastic responses in body lipids support starvation resistance under wet or dry seasons.

Keywords: heat or humidity acclimation, plastic changes in body lipids and starvation resistance, tropical drosophilid, Wet- or Dry seasons, Zaprionus indianus

Procedia PDF Downloads 153
837 Two Component Source Apportionment Based on Absorption and Size Distribution Measurement

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Gábor Szabó, Zoltán Bozóki

Abstract:

Beyond its climate and health related issues ambient light absorbing carbonaceous particulate matter (LAC) has also become a great scientific interest in terms of its regulations recently. It has been experimentally demonstrated in recent studies, that LAC is dominantly composed of traffic and wood burning aerosol particularly under wintertime urban conditions, when the photochemical and biological activities are negligible. Several methods have been introduced to quantitatively apportion aerosol fractions emitted by wood burning and traffic but most of them require costly and time consuming off-line chemical analysis. As opposed to chemical features, the microphysical properties of airborne particles such as optical absorption and size distribution can be easily measured on-line, with high accuracy and sensitivity, especially under highly polluted urban conditions. Recently a new method has been proposed for the apportionment of wood burning and traffic aerosols based on the spectral dependence of their absorption quantified by the Aerosol Angström Exponent (AAE). In this approach the absorption coefficient is deduced from transmission measurement on a filter accumulated aerosol sample and the conversion factor between the measured optical absorption and the corresponding mass concentration (the specific absorption cross section) are determined by on-site chemical analysis. The recently developed multi-wavelength photoacoustic instruments provide novel, in-situ approach towards the reliable and quantitative characterization of carbonaceous particulate matter. Therefore, it also opens up novel possibilities on the source apportionment through the measurement of light absorption. In this study, we demonstrate an in-situ spectral characterization method of the ambient carbon fraction based on light absorption and size distribution measurements using our state-of-the-art multi-wavelength photoacoustic instrument (4λ-PAS) and Single Mobility Particle Sizer (SMPS) The carbonaceous particulate selective source apportionment study was performed for ambient particulate matter in the city center of Szeged, Hungary where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. The proposed model is based on the parallel, in-situ measurement of optical absorption and size distribution. AAEff and AAEwb were deduced from the measured data using the defined correlation between the AOC(1064nm)/AOC(266nm) and N100/N20 ratios. σff(λ) and σwb(λ) were determined with the help of the independently measured temporal mass concentrations in the PM1 mode. Furthermore, the proposed optical source apportionment is based on the assumption that the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed here by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data. The results by the proposed novel optical absorption based source apportionment method prove its applicability whenever measurements are performed at an urban site where traffic and wood burning are the dominant carbonaceous sources of emission.

Keywords: absorption, size distribution, source apportionment, wood burning, traffic aerosol

Procedia PDF Downloads 227
836 Impact of Climate Change on Forest Ecosystem Services: In situ Biodiversity Conservation and Sustainable Management of Forest Resources in Tropical Forests

Authors: Rajendra Kumar Pandey

Abstract:

Forest genetic resources not only represent regional biodiversity but also have immense value as the wealth for securing livelihood of poor people. These are vulnerable to ecological due to depletion/deforestation and /or impact of climate change. These resources of various plant categories are vulnerable on the floor of natural tropical forests, and leading to the threat on the growth and development of future forests. More than 170 species, including NTFPs, are in critical condition for their survival in natural tropical forests of Central India. Forest degradation, commensurate with biodiversity loss, is now pervasive, disproportionately affecting the rural poor who directly depend on forests for their subsistence. Looking ahead the interaction between forest and water, soil, precipitation, climate change, etc. and its impact on biodiversity of tropical forests, it is inevitable to develop co-operation policies and programmes to address new emerging realities. Forests ecosystem also known as the 'wealth of poor' providing goods and ecosystem services on a sustainable basis, are now recognized as a stepping stone to move poor people beyond subsistence. Poverty alleviation is the prime objective of the Millennium Development Goals (MDGs). However, environmental sustainability including other MDGs, is essential to ensure successful elimination of poverty and well being of human society. Loss and degradation of ecosystem are the most serious threats to achieving development goals worldwide. Millennium Ecosystem Assessment (MEA, 2005) was an attempt to identify provisioning and regulating cultural and supporting ecosystem services to provide livelihood security of human beings. Climate change may have a substantial impact on ecological structure and function of forests, provisioning, regulations and management of resources which can affect sustainable flow of ecosystem services. To overcome these limitations, policy guidelines with respect to planning and consistent research strategy need to be framed for conservation and sustainable development of forest genetic resources.

Keywords: climate change, forest ecosystem services, sustainable forest management, biodiversity conservation

Procedia PDF Downloads 297
835 Binderless Naturally-extracted Metal-free Electrocatalyst for Efficient NOₓ Reduction

Authors: Hafiz Muhammad Adeel Sharif, Tian Li, Changping Li

Abstract:

Recently, the emission of nitrogen-sulphur oxides (NOₓ, SO₂) has become a global issue and causing serious threats to health and the environment. Catalytic reduction of NOx and SOₓ gases into friendly gases is considered one of the best approaches. However, regeneration of the catalyst, higher bond-dissociation energy for NOx, i.e., 150.7 kcal/mol, escape of intermediate gas (N₂O, a greenhouse gas) with treated flue-gas, and limited activity of catalyst remains a great challenge. Here, a cheap, binderless naturally-extracted bass-wood thin carbon electrode (TCE) is presented, which shows excellent catalytic activity towards NOx reduction. The bass-wood carbonization at 900 ℃ followed by thermal activation in the presence of CO2 gas at 750 ℃. The thermal activation resulted in an increase in epoxy groups on the surface of the TCE and enhancement in the surface area as well as the degree of graphitization. The TCE unique 3D strongly inter-connected network through hierarchical micro/meso/macro pores that allow large electrode/electrolyte interface. Owing to these characteristics, the TCE exhibited excellent catalytic efficiency towards NOx (~83.3%) under ambient conditions and enhanced catalytic response under pH and sulphite exposure as well as excellent stability up to 168 hours. Moreover, a temperature-dependent activity trend was found where the highest catalytic activity was achieved at 80 ℃, beyond which the electrolyte became evaporative and resulted in a performance decrease. The designed electrocatalyst showed great potential for effective NOx-reduction, which is highly cost-effective, green, and sustainable.

Keywords: electrocatalyst, NOx-reduction, bass-wood electrode, integrated wet-scrubbing, sustainable

Procedia PDF Downloads 77
834 Hygro-Thermal Modelling of Timber Decks

Authors: Stefania Fortino, Petr Hradil, Timo Avikainen

Abstract:

Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.

Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM

Procedia PDF Downloads 175
833 Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific

Authors: Debashis Nath

Abstract:

Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity (PV) intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric (UT, 200 hPa) equatorial westerly wind and subtropical jets (STJ) during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical UT, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10–25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude UT and lower stratosphere (LS) during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals. The results demonstrate a long-term increase in outer tropical Pacific PV intrusions linked with the strengthening of the upper tropospheric equatorial westerlies and weakening of the STJ. Zonal variation in SST, characterized by gradual warming in the western Pacific–warm pool and cooling in the central–eastern Pacific, is associated with the strengthening of the Pacific Walker circulation. In the Western Pacific enhanced convective activity leads to precipitation, and the latent heat released in the process strengthens the Pacific Walker circulation. However, it is linked with the trend in global mean temperature, which is related to the emerging anthropogenic greenhouse signal and negative phase of PDO. On the other hand, the central-eastern Pacific cooling trend is linked to the weakening of the central–eastern Pacific Hadley circulation. It suppresses the convective activity due to sinking air motion and imports less angular momentum to the STJ leading to a weakened STJ. While, more PV intrusions result from this weaker STJ on its equatorward side; significantly increase the stratosphere-troposphere exchange processes on the longer timescale. This plays an important role in determining the atmospheric composition, particularly of tropospheric ozone, in the northern outer tropical central Pacific. It may lead to more ozone of stratospheric origin in the LT and even in the marine boundary, which may act as harmful pollutants and affect the radiative processes by changing the global budgets of atmospheric hydroxyl radicals.

Keywords: PV intrusion, westerly duct, ozone, Central Pacific

Procedia PDF Downloads 237
832 Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub Saharan City of Accra

Authors: Eric Mensah

Abstract:

The effects of rapid urbanisation of tropical sub-Saharan developing cities on local and global climate are of great concern due to the negative impacts of Urban Heat Island (UHI) effects. The importance of urban parks, vegetative cover and forest reserves in these tropical cities have been undervalued with a rapid degradation and loss of these vegetative covers to urban developments which continue to cause an increase in daily mean temperatures and changes to local climatic conditions. Using Landsat data of the same months and period intervals, the spatial variations of land cover changes, temperature, and vegetation were examined to determine how vegetation improves local temperature and the effects of urbanisation on daily mean temperatures over the past 12 years. The remote sensing techniques of maximum likelihood supervised classification, land surface temperature retrieval technique, and normalised differential vegetation index techniques were used to analyse and create the land use land cover (LULC), land surface temperature (LST), and vegetation and non-vegetation cover maps respectively. Results from the study showed an increase in daily mean temperature by 0.80 °C as a result of rapid increase in urban area by 46.13 sq. km and loss of vegetative cover by 46.24 sq. km between 2005 and 2017. The LST map also shows the existence of UHI within the urban areas of Accra, the potential mitigating effects offered by the existence of forest and vegetative cover as demonstrated by the existence of cool islands around the Achimota ecological forest and University of Ghana botanical gardens areas.

Keywords: land surface temperature, climate, remote sensing, urbanisation

Procedia PDF Downloads 320
831 Testing of the Decreasing Bond Strength of Polyvinyl Acetate Adhesive by Low Temperatures

Authors: Pavel Boška, Jan Bomba, Tomáš Beránek, Jiří Procházka

Abstract:

When using wood products bonded by polyvinyl acetate, glues such as windows are the most limiting element of degradation of the glued joint due to weather changes. In addition to moisture and high temperatures, the joint may damage the low temperature below freezing point, where dimensional changes in the material and distortion of the adhesive film occur. During the experiments, the joints were exposed to several degrees of sub-zero temperatures from 0 °C to -40 °C and then to compare how the decreasing temperature affects the strength of the joint. The experiment was performed on wood beech samples (Fagus sylvatica), bonded with PVAc with D3 resistance and the shear strength of bond was measured. The glued and treated samples were tested on a laboratory testing machine, recording the strength of the joint. The statistical results have given us information that the strength of the joint gradually decreases with decreasing temperature, but a noticeable and statistically significant change is achieved only at very low temperatures.

Keywords: adhesives, bond strength, low temperatures, polyvinyl acetate

Procedia PDF Downloads 348
830 Fire Safety Engineering of Wood Dust Layer or Cloud

Authors: Marzena Półka, Bożena Kukfisz

Abstract:

This paper presents an analysis of dust explosion hazards in the process industries. It includes selected testing method of dust explosibility and presentation two of them according to experimental standards used by Department of Combustion and Fire Theory in The Main School of Fire Service in Warsaw. In the article are presented values of maximum acceptable surface temperature (MAST) of machines operating in the presence of dust cloud and chosen dust layer with thickness of 5 and 12,5mm. The comparative analysis, points to the conclusion that the value of the minimum ignition temperature of the layer (MITL) and the minimum ignition temperature of dust cloud (MTCD) depends on the granularity of the substance. Increasing the thickness of the dust layer reduces minimum ignition temperature of dust layer. Increasing the thickness of dust at the same time extends the flameless combustion and delays the ignition.

Keywords: fire safety engineering, industrial hazards, minimum ignition temperature, wood dust

Procedia PDF Downloads 319
829 Conservation of Ibis Statue Made of Composite Materials Dating to 3RD Intermediate Period - Late Period

Authors: Badawi Mahmoud, Eid Mohamed, Salih Hytham, Tahoun Mamdouh

Abstract:

Cultural properties made of types of materials; we can classify them broadly into three categories. There are organic cultural properties which have their origin in the animal and plant kingdoms. There are the inorganic cultural properties made of metal or stone. Then there are those made of both organic and inorganic materials such as metal with wood. Most cultural properties are made from several materials rather than from one single material. Cultural properties reveal a lot of information about the past and often have great artistic value. It is important to extend the life of cultural properties and preserve themif possible, that is intended to preserve them for future generations. The study of metallic relics usually includes examining the techniques used to make them and the extent to which they have corroded. The conservation science of archaeological artifacts demands an accurate grasp of the interior of the article, which cannot be seen. This is essential to elucidate the method of manufacture and provides information that is important for cleaning, restoration, and other processes of conservation. Conservation treatment does not ensure the prevention of further degradation of the archaeological artifact. Instead, it is an attempt to inhibit further degradation as much as possible. Ancient metallic artifacts are made of many materials. Some are made of a single metal, such as iron, copper, or bronze. There are also composite relics made of several metals. Almost all metals (except gold) corrode while they rest underground. Corrosion is caused by the interaction of oxygen, water, and various ions. Chloride ions play a major role in the advance of corrosion. Excavated metallic relics are usually scientifically examined as to their structure and materials and treated for preservation before being displayed for exhibition or stored in a storehouse. Bird statue hermit body is made of wood and legs and beak bronze, the object broken separated to three parts. This statue came to Grand Egyptian Museum – Conservation Centre (GEM-CC) Inorganic Lab. Statuette representing the god djehoty shaped of the bird (ibis) sculpture made of bronze and wood the body of statues made from wood and bronze from head and leg and founded remains of black resin maybe it found with mummy, the base installed by wooden statue of the ancient writings there dating, the archaeological unit decided the dating is 3rd intermediate period - late period. This study aims to do conservation process for this statue, attempt to inhibit further degradation as much as possible and fill fractures and cracks in the wooden part.

Keywords: inorganic materials, metal, wood, corrosion, ibis

Procedia PDF Downloads 254
828 Characteristics of Old-Growth and Secondary Forests in Relation to Age and Typhoon Disturbance

Authors: Teng-Chiu Lin, Pei-Jen Lee Shaner, Shin-Yu Lin

Abstract:

Both forest age and physical damages due to weather events such as tropical cyclones can influence forest characteristics and subsequently its capacity to sequester carbon. Detangling these influences is therefore a pressing issue under climate change. In this study, we compared the compositional and structural characteristics of three forests in Taiwan differing in age and severity of typhoon disturbances. We found that the two forests (one old-growth forest and one secondary forest) experiencing more severe typhoon disturbances had shorter stature, higher wood density, higher tree species diversity, and lower typhoon-induced tree mortality than the other secondary forest experiencing less severe typhoon disturbances. On the other hand, the old-growth forest had a larger amount of woody debris than the two secondary forests, suggesting a dominant role of forest age on woody debris accumulation. Of the three forests, only the two experiencing more severe typhoon disturbances formed new gaps following two 2015 typhoons, and between these two forests, the secondary forest gained more gaps than the old-growth forest. Consider that older forests generally have more gaps due to a higher background tree mortality, our findings suggest that the age effects on gap dynamics may be reversed by typhoon disturbances. This study demonstrated the effects of typhoons on forest characteristics, some of which could negate the age effects and rejuvenate older forests. If cyclone disturbances were to intensity under climate change, the capacity of older forests to sequester carbon may be reduced.

Keywords: typhoon, canpy gap, coarse woody debris, forest stature, forest age

Procedia PDF Downloads 269
827 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 125
826 Suitability of Wood Sawdust Waste Reinforced Polymer Composite for Fireproof Doors

Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari

Abstract:

The susceptibility of natural fibre polymer composites to flame has necessitated research to improve and develop flame retardant (FR) to delay the escape of combustible volatiles. Previous approaches relied mostly on FR such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) to improve fire performances of wood sawdust polymer composites (WSPC) with emphasis on non-structural building applications. In this paper, APP was modified with gum Arabic powder (GAP) and then hybridized with ATH at 0, 12 and 18% loading ratio to form new FR species; WSPC12%APP-GAP and WSPC18%ATH/APP-GAP. The FR species were incorporated in wood sawdust waste reinforced in polyester resin to form panels for fireproof doors. The panels were produced using hand lay compression moulding technique and cured at room temperature. Specimen cut from panels were then tested for tensile strength (TS), flexural strength (FS) and impact strength (IS) using universal testing machine and impact tester; thermal stability using (TGA/DSC 1: Metler Toledo); time-to-ignition (Tig), heat release rates (HRR); peak HRR (HRRp), average HRR (HRRavg), total HRR (THR), peak mass loss rate (MLRp), average smoke production rate (SPRavg) and carbon monoxide production (COP ) were obtained using the cone calorimeter apparatus. From the mechanical properties obtained, improvements of IS for the panels were not noticeable whereas TS and FS for WSPC12%APP-GAP respectively stood at 12.44 MPa and 85.58 MPa more than those without FR (WSPC0%). For WSC18%ATH/APP-GAP TS and FS respectively stood at 16.45 MPa and 50.49 MPa more compared to (WSPC0%). From the thermal analysis, the panels did not exhibit any significant change as early degradation was observed. At 900 OC, the char residues improved by 15% for WSPC12%APP-GAP and 19% for WSPC18%ATH/APP-GAP more than (WSC0%) at 5%, confirming the APP-GAP to be a good FR. At 50 kW/m2 heat flux (HF), WSPC12%APP-GAP improved better the fire behaviour of the panels when compared to WSC0% as follows; Tig = 46 s, HRRp = 56.1 kW/2, HRRavg = 32.8 kW/m2, THR = 66.6 MJ/m2, MLRp = 0.103 g/s, TSR = 0.04 m2/s and COP = 0.051 kg/kg. These were respectively more than WSC0%. It can be concluded that the new concept of modifying FR with GAP in WSC could meet the requirement of a fireproof door for building applications.

Keywords: composite, flame retardant, wood sawdust, fireproof doors

Procedia PDF Downloads 107
825 Effects of Large Woody Debris on the Abundance and Diversity of Freshwater Invertebrates and Vertebrates

Authors: M. J. Matulino, Carissa Ganong, Mark Mills, Jazmine Harry

Abstract:

Large Woody Debris (LWD), defined as wooden debris with a diameter of at least 10 cm and a length of 2 m, serves as a crucial resource and habitat for aquatic organisms. While research on the ecological impacts of LWD has been conducted in temperate streams, LWD's influence on tropical stream biodiversity remains understudied, making this investigation particularly valuable for future conservation efforts. The Sura River in La Selva Biological Station includes both LWD and open channel sites. We sampled paired LWD and open-channel sites using minnow traps, Promar traps, and dip nets. Vertebrates were identified as species, while macroinvertebrates were identified to order level. We quantified abundance, richness, and Shannon diversity at each. We captured a total of 467 individuals, including 2 turtles, 17 fishes, 1 freshwater crab, 39 shrimp, and 408 other macroinvertebrates. Total abundance was significantly higher in LWD sites. Species richness was marginally higher in LWD sites, but the Shannon diversity index did not differ significantly with habitat. Shrimp (Macrobrachium olfersi) length was significantly higher in LWD areas. Increased food resources and microhabitat availability could contribute to higher abundance, richness, and organismal size in LWD environments. This study fills a critical gap by investigating LWD effects in a tropical environment, providing valuable insights for conservation efforts and the preservation of aquatic biodiversity.

Keywords: large woody debris (LWD), aquatic organisms, ecological impacts, tropical stream biodiversity, conservation efforts

Procedia PDF Downloads 91
824 Phytoplankton Community Composition in Laguna de Terminos, Mexico, and Its Relationship to Environmental Variables

Authors: Enrique Nunez L., Maria Cortes L., Sandra Laffon L., Ana M. Cupul V.

Abstract:

The phytoplankton community composition was studied in a tropical coastal lagoon of Mexico and relationships with environmental variables were evaluated. Six sites inside the tropical Terminos Lagoon were sampled in order to determine abundances and ecological indexes for phytoplankton from May to December 2017. Water samples were also collected to determine the values of pigments, nutrients, and water solids. Results showed that the composition and abundance of the phytoplankton community were influenced by physicochemical factors, nutrients, water solids, and climate seasons. Sixty-six species were identified as potential HAB producers (44.29% from total). However, abundances were not related to the occurrence of HAB during the study. Multidimensional ANOVA indicated no significant differences between sites while some months revealed significant differences. The canonical analysis suggested that environmental variables explained 49% of community variation of potential phytoplankton species producers of HAB.

Keywords: phytoplankton, environment, lagoon, biodiversity

Procedia PDF Downloads 138
823 Properties of Triadic Concrete Containing Rice Husk Ash and Wood Waste Ash as Partial Cement Replacement

Authors: Abdul Rahman Mohd. Sam, Olukotun Nathaniel, Dunu Williams

Abstract:

Concrete is one of the most popular materials used in construction industry. However, one of the setbacks is that concrete can degrade with time upon exposure to an aggressive environment that leads to decrease in strength. Thus, research works and innovative ways are needed to enhance the strength and durability of concrete. This work tries to look into the potential use of rice husk ash (RHA) and wood waste ash (WWA) as cement replacement material. These are waste materials that may not only enhance the properties of concrete but also can serves as a viable method of disposal of waste for sustainability. In addition, a substantial replacement of Ordinary Portland Cement (OPC) with these pozzolans will mean reduction in CO₂ emissions and high energy requirement associated with the production of OPC. This study is aimed at assessing the properties of triadic concrete produced using RHA and WWA as a partial replacement of cement. The effects of partial replacement of OPC with 10% RHA and 5% WWA on compressive and tensile strength of concrete among other properties were investigated. Concrete was produced with nominal mix of 1:2:4 and 0.55 water-cement ratio, prepared, cured and subjected to compressive and tensile strength test at 3, 7, 14, 28 and 90days. The experimental data demonstrate that concrete containing RHA and WWA produced lighter weight in comparison with OPC sample. Results also show that combination of RHA and WWA help to prolong the initial and final setting time by about 10-30% compared to the control sample. Furthermore, compressive strength was increased by 15-30% with 10% RHA and 5% WWA replacement, respectively above the control, RHA and WWA samples. Tensile strength test at the ages of 3, 7, 14, 28 and 90 days reveals that a replacement of 15% RHA and 5% WWA produced samples with the highest tensile capacity compared to the control samples. Thus, it can be concluded that RHA and WWA can be used as partial cement replacement materials in concrete.

Keywords: concrete, rice husk ash, wood waste ash, ordinary Portland cement, compressive strength, tensile strength

Procedia PDF Downloads 259
822 The Introduction of Medicine Plants in Bogor Agricultural University: A Case Study in Cikabayan and Tropical Medicinal Plant Conservation Laboratory

Authors: Eki Devung, Eka Tyastutik, Indha Annisa, Digdaya Anoraga, Jamaluddin Arsyad

Abstract:

Plant medicine is a whole species of plants are known to have medicinal properties. Bogor Agricultural University has high biodiversity, one of which flora potential as a drug. This study was conducted from 19 September to 10 October 2016 at Bogor Agricultural University using literature study and field observation. There are 85 species of medicinal plants which include a medicinal plant cultivation and wild plants. Family herbs most commonly found in Cikabayan that while the Euphorbiaceae, family which is found in the Tropical Medicinal Plant Conservation Laboratory is the family of Achantaceae. Species of medicinal plants is dominated by herbs and shrubs. Part herbs most widely used are the leaves. The diversity of diseases that can be treated with medicine plants include digestive system diseases and metabolic disorder.

Keywords: benefits, biodiversity, Bogor Agricultural University, medicinal plants

Procedia PDF Downloads 358
821 The Potential of Sown Pastures as Feedstock for Biofuels in Brazil

Authors: Danilo G. De Quadros

Abstract:

Biofuels are a priority in the renewable energy agenda. The utilization of tropical grasses to ethanol production is a real opportunity to Brazil reaches the world’s leadership in biofuels production because there are 100 million hectares of sown pastures, which represent 20% of all land and 80% of agricultural areas. Basically, nowadays tropical grasses are used to raise livestock. The results obtained in this research could bring tremendous advance not only to national technology and economy but also to improve social and environmental aspects. Thus, the objective of this work was to estimate, through well-established international models, the potential of biofuels production using sown tropical pastures as feedstocks and to compare the results with sugarcane ethanol, considering state-of-art of conversion technology, advantages and limitations factors. There were used data from national and international literature about forage yield and biochemical conversion yield. Some scenarios were studied to evaluate potential advantages and limitations for cellulosic ethanol production, since non-food feedstock appeal to conversion strategies, passing through harvest, densification, logistics, environmental impacts (carbon and water cycles, nutrient recycling and biodiversity), and social aspects. If Brazil used only 1% of sown pastures to ethanol production by biochemical pathway, with average dry matter yield of 15 metric tons per hectare per year (there are results of 40 tons), resulted annually in 721 billion liters, that represents 10 times more than sugarcane ethanol projected by the Government in 2030. However, more research is necessary to take the results to commercial scale with competitive costs, considering many strategies and methods applied in ethanol production using cellulosic feedstock.

Keywords: biofuels, biochemical pathway, cellulosic ethanol, sustainability

Procedia PDF Downloads 263