Search results for: student performance prediction
16413 Degree Tracking System (DTS) to Improve the Efficiency and Effectiveness of Open Distance Learning System: A Case Study of Islamabad Allama Iqbal Open University (AIOU)
Authors: Hatib Shabbir
Abstract:
Student support services play an important role in providing technical and motivational support to distance learner. ICT based systems have improved the efficiency and effectiveness of support services. In distance education, students being at distant require quick responses from their institution. In the manual system, it is practically hard to give prompt response to each and every student, so as a result student has to suffer a lot. The best way to minimize inefficiencies is to use automated systems. This project involves the development of centralized automated software that would not only replace the manual degree issuance system of 1.3 million students studying at AIOU but also provide online tracking to all the students applying for Degrees. DTS is also the first step towards the paperless culture which is adopted by the major organizations of the world. DTS would not only save university cost but also save students cost and time too by conveying all the information/objection through email and SMS. Moreover, DTS also monitors the performance of each and every individual working in the exam department AIOU and generates daily, monthly and yearly reports of every individual which helps a lot in continuous performance monitoring of the employees.Keywords: aiou dts, dts aiou, dts, degree tracking aiou
Procedia PDF Downloads 21916412 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 36416411 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations
Authors: Xiao Zhou, Jianlin Cheng
Abstract:
A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining
Procedia PDF Downloads 47116410 Modeling and Shape Prediction for Elastic Kinematic Chains
Authors: Jiun Jeon, Byung-Ju Yi
Abstract:
This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling
Procedia PDF Downloads 60616409 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks
Authors: Tanu Aneja, Harsha Malaviya
Abstract:
Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks
Procedia PDF Downloads 2016408 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 30716407 Impact of Gaming Environment in Education
Authors: Md. Ataur Rahman Bhuiyan, Quazi Mahabubul Hasan, Md. Rifat Ullah
Abstract:
In this research, we did explore the effectiveness of the gaming environment in education and compared it with the traditional education system. We take several workshops in both learning environments. We measured student’s performance by providing a grading score (by professional academics) on their attitude in different criteria. We also collect data from survey questionnaires to understand student’s experiences towards education and study. Finally, we examine the impact of the different learning environments by applying statistical hypothesis tests, the T-test, and the ANOVA test.Keywords: gamification, game-based learning, education, statistical analysis, human-computer interaction
Procedia PDF Downloads 23316406 The Role of Teacher-Student Relationship on Teachers’ Attitudes towards School Bullying
Authors: Ghada Shahrour, Nusiebeh Ananbh, Heyam Dalky, Mohammad Rababa, Fatmeh Alzoubi
Abstract:
Positive teacher-student relationship has been found to affect students’ attitudes towards bullying and, in turn, their engagement in bullying behavior. However, no investigation has been conducted to explore whether teacher-student relationship affects teachers’ attitudes towards bullying. The aim of this study was to examine the role of teacher-student relationship on teachers’ attitudes towards bullying in terms of bullying seriousness, empathic responding, and likelihood to intervene in bullying situation. A cross-sectional, descriptive design was employed among a convenience sample of 173 school teachers (50.9% female) of 12 to 17-year-old students. The teachers were recruited from secondary public schools of three governorates in the Northern district of Jordan. Each group of students has multiple teachers for different subjects. Results showed that teacher-student relationship is partially related to teachers’ attitudes towards bullying. More specifically, having a close teacher-student relationship significantly increased teachers’ perception of bullying seriousness and empathy but not the likelihood to intervene. Research is needed to examine teachers’ obstacles for not providing bullying interventions, as the barriers may be culturally contextualized. Meanwhile, interventions that promote quality teacher-student relationship are necessary to increase teachers’ perception of bullying seriousness and empathy. Students have been found to adopt the values of their teachers, and this may deter them from engaging in bullying behavior.Keywords: school bullying, teachers’ attitudes, teacher-student relationship, adolescent students
Procedia PDF Downloads 10216405 Spatial Variation of WRF Model Rainfall Prediction over Uganda
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Triphonia Ngailo
Abstract:
Rainfall is a major climatic parameter affecting many sectors such as health, agriculture and water resources. Its quantitative prediction remains a challenge to weather forecasters although numerical weather prediction models are increasingly being used for rainfall prediction. The performance of six convective parameterization schemes, namely the Kain-Fritsch scheme, the Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D scheme, the Grell-Fretas scheme, the New Tiedke scheme of the weather research and forecast (WRF) model regarding quantitative rainfall prediction over Uganda is investigated using the root mean square error for the March-May (MAM) 2013 season. The MAM 2013 seasonal rainfall amount ranged from 200 mm to 900 mm over Uganda with northern region receiving comparatively lower rainfall amount (200–500 mm); western Uganda (270–550 mm); eastern Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A spatial variation in simulated rainfall amount by different convective parameterization schemes was noted with the Kain-Fritsch scheme over estimating the rainfall amount over northern Uganda (300–750 mm) but also presented comparable rainfall amounts over the eastern Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny, and the Grell-3D underestimated the rainfall amount over most parts of the country especially the eastern region (300–600 mm). The Grell-Fretas captured rainfall amount over the northern region (250–450 mm) but also underestimated rainfall over the lake Victoria Basin (150–300 mm) while the New Tiedke generally underestimated rainfall amount over many areas of Uganda. For deterministic rainfall prediction, the Grell-Fretas is recommended for rainfall prediction over northern Uganda while the Kain-Fritsch scheme is recommended over eastern region.Keywords: convective parameterization schemes, March-May 2013 rainfall season, spatial variation of parameterization schemes over Uganda, WRF model
Procedia PDF Downloads 31116404 Disparities in Suicide and Mental Health among Student Athletes of Ethnic and Racial Minorities Compared to Their White Non-latinx Counterparts
Authors: Elizabeth Russo, Angelica Terepka
Abstract:
The present paper reviews literature examining trends among suicide, suicidal ideation, and mental illness rates in ethnic and racial minority student-athletes. While the rates of suicide amongst student athlete populations is lower than rates of suicide seen in the general student populations, there is a discrepancy amongst rates of suicide in student athletes; specifically, those identifying with racial and ethnic minority backgrounds endorse higher rates of suicidal ideation. The samples from the existing literature consisted of White, Black, Hispanic/Latinx, Asian/ Pacific Islander, Multiracial, and Native American student-athletes. Studies suggest that ethnic and racial minority students are more susceptible to suicide, depression, and other mental health concerns compared to their white counterparts. Across the literature, White student athletes appeared to have more social and academic support from fellow classmates, university administration and professors, and staff within their athletic departments. Student athletes who did not identify as White endorsed higher rates of loneliness, felt ethnically and racially underrepresented within their athletic department, and endorsed lack of appropriate medical treatment for injuries by athletic department medical staff. Additionally, non-White student athletes receive less peer support and must balance additional stressors such as discrimination in contrast to their White/non-Latinx peers. Recommendations for athletic departments and mental health providers supporting student athletes who identify as racial and ethnic minorities are discussed.Keywords: racial and ethnic minority, suicide, student-athlete, suicidal ideation
Procedia PDF Downloads 8216403 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.Keywords: model tree, CART, logistic regression, soil shear strength
Procedia PDF Downloads 19716402 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity
Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish
Abstract:
Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow
Procedia PDF Downloads 13216401 Comparative Analysis of High Lift Airfoils for Motorsports Applications
Authors: M. Fozan Ur Rab, Mahrukh, M. Alam, N. Sheikh
Abstract:
The purpose of this study is to analyze various high lift low Reynolds number airfoils using two-dimensional Computational Fluid Dynamics (CFD) code in the isolated flow field and select optimum airfoil to suit the motorsports application. The airfoil is selected after comparing the stall behavior, transition location, pressure recovery, pressure distribution and boundary layer characteristics of various airfoils. The prime consideration while selecting airfoil is highest Cl while achieving the sustainable performance over a range of Reynolds numbers encountered on the race track. The increase in Cl is always accompanied by the increase in Cd but this must be compromised since the main goal is to increase an aerodynamic grip. It is always desirable to increase the down-force in Formula One (F1)/Formula Student (FS) to gain reduction in lap time. This paper establishes the criteria for selection of high lift low Reynolds number airfoil while considering various parameters which affect the performance of airfoils.Keywords: aerodynamics, airfoil, downforce, formula student, lap time
Procedia PDF Downloads 28816400 The Impact of International Student Mobility on Trade and Gross Domestic Product: The Case of China
Authors: Yasir Khan
Abstract:
The continued growth in international students coming to China for higher education had a significant positive impact on trade and GDP in China. Student mobility may expend trade with their country of origin, owing to superior knowledge, or preferential access to market opportunities. We test this hypothesis using Chinese trade data from 1999 to 2017. In fully-modify (OLS) and dynamic (OLS) testing estimation, we find that a 1.24 percent increase in student inward mobility is associated with a 1 percent increase in Chinese export trade. On the other hand, we find that a 1.18 percent increase in the student inward mobility to China is associated with a 1 percent increase in import trade. In addition, we find that a 1.13 percent increase in international student inward mobility is associated with a 1 percent increase in the GDP. The outcome suggests that international students have a strong influence on Gross Domestic Product (GDP), exports and imports trade. However, the study holds that the government should attach great attachment and importance to the role of international students in the export and import trade.Keywords: international student mobility, China, export, import, GDP, FMOLS, DOLS
Procedia PDF Downloads 21916399 Formation of Academia-Industry Collaborative Model to Improve the Quality of Teaching-Learning Process
Authors: M. Dakshayini, P. Jayarekha
Abstract:
In traditional output-based education system, class room lecture and laboratory are the traditional delivery methods used during the course. Written examination and lab examination have been used as a conventional tool for evaluating student’s performance. Hence, there are certain apprehensions that the traditional education system may not efficiently prepare the students for competent professional life. This has led for the change from Traditional output-based education to Outcome-Based Education (OBE). OBE first sets the ideal programme learning outcome consecutively on increasing degree of complexity that students are expected to master. The core curriculum, teaching methodologies and assessment tools are then designed to achieve the proposed outcomes mainly focusing on what students can actually attain after they are taught. In this paper, we discuss a promising applications based learning and evaluation component involving industry collaboration to improve the quality of teaching and student learning process. Incorporation of this component definitely improves the quality of student learning in engineering education and helps the student to attain the competency as per the graduate attributes. This may also reduce the Industry-academia gap.Keywords: outcome-based education, programme learning outcome, teaching-learning process, evaluation, industry collaboration
Procedia PDF Downloads 44916398 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece
Authors: Dimitrios Triantakonstantis, Demetris Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction
Procedia PDF Downloads 53016397 Performance Complexity Measurement of Tightening Equipment Based on Kolmogorov Entropy
Authors: Guoliang Fan, Aiping Li, Xuemei Liu, Liyun Xu
Abstract:
The performance of the tightening equipment will decline with the working process in manufacturing system. The main manifestations are the randomness and discretization degree increasing of the tightening performance. To evaluate the degradation tendency of the tightening performance accurately, a complexity measurement approach based on Kolmogorov entropy is presented. At first, the states of performance index are divided for calibrating the discrete degree. Then the complexity measurement model based on Kolmogorov entropy is built. The model describes the performance degradation tendency of tightening equipment quantitatively. At last, a study case is applied for verifying the efficiency and validity of the approach. The research achievement shows that the presented complexity measurement can effectively evaluate the degradation tendency of the tightening equipment. It can provide theoretical basis for preventive maintenance and life prediction of equipment.Keywords: complexity measurement, Kolmogorov entropy, manufacturing system, performance evaluation, tightening equipment
Procedia PDF Downloads 26016396 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction
Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung
Abstract:
In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality
Procedia PDF Downloads 47416395 The Triad Experience: Benefits and Drawbacks of the Paired Placement of Student Teachers in Physical Education
Authors: Todd Pennington, Carol Wilkinson, Keven Prusak
Abstract:
Traditional models of student teaching practices typically involve the placement of a student teacher with an experienced mentor teacher. However, due to the ever-decreasing number of quality placements, an alternative triad approach is the paired placement of student teachers with one mentor teacher in a community of practice. This study examined the paired-placement of student teachers in physical education to determine the benefits and drawbacks after a 14-week student teaching experience. PETE students (N = 22) at a university in the United States were assigned to work in a triad with a student teaching partner and a mentor teacher, making up eleven triads for the semester. The one exception was a pair that worked for seven weeks at an elementary school and then for seven weeks at a junior high school, thus having two mentor teachers and participating in two triads. A total of 12 mentor teachers participated in the study. All student teachers and mentor teachers volunteered and agreed to participate. The student teaching experience was structured so that students engaged in: (a) individual teaching (one teaching the lesson with the other observing), (b) co-planning, and (c) peer coaching. All students and mentor teachers were interviewed at the conclusion of the experience. Using interview data, field notes, and email response data, the qualitative data was analyzed using the constant comparative method. The benefits of the paired placement experience emerged into three categories (a) quality feedback, (b) support, and (c) collaboration. The drawbacks emerged into four categories (a) unrealistic experience, (b) laziness in preparation, (c) lack of quality feedback, and (d) personality mismatch. Recommendations include: providing in-service training prior to student teaching to optimize the triad experience, ongoing seminars throughout the experience specifically designed for triads, and a hybrid model of paired placement for the first half of student teaching followed by solo student teaching for the second half of the experience.Keywords: community of practice, paired placement, physical education, student teaching
Procedia PDF Downloads 40216394 Initiative Programme to Reform Education in Thailand
Authors: Piyapat Chitpirom, Teerakiat Jareonsettasin, Chintida Vichitsophaphan
Abstract:
The Foundation of Virtuous Youth was established and supported by the Crown Property Bureau, with the intention to instill goodness in Thai youth. The Centre for Educational Psychology is one of the three units under the foundation. We aim to develop programmes that can be used to improve the quality of education in schools. Translation of the King’s message in keeping with the modern research from various sources, our team create 6 programmes: (1) Teacher-Student Relationship (2) Growth Mindset (3) Socratic Teaching (4) Peer Tutoring (5) Parental Involvement (6) Inclusion. After nine months of implementing the programmes in the schools, we found that there were more cooperation between student-student, teacher-student, teacher-parent, and student-parent and the school regained trust from the community. Our ideas were accepted well by the government as our director was promoted to be the Vice Minister of Education in order to implement our programmes into national education system. We consider that the key of our success is that we do practical things. We are still continuing, improving, and learning from our work with hope that the quality of Thai education will improve in near future.Keywords: education reform, educational psychology, effective teaching, teacher-student relationship
Procedia PDF Downloads 44016393 Investigating the Relationship of Social Capital with Student's Aggressive Behavior: Case Study of Male Students of Middle School in Isfahan
Authors: Mohammadreza Kolaei, Vahid Ghasemi, Ebrahim Ansari
Abstract:
This research was carried out with the aim of investigating the relationship between social capital and aggressive behavior of students (Case study: male students of middle school in Isfahan). In terms of methodology, this research is an applied research which is done by descriptive-analytical method and survey method. The instrument for collecting the data was a questionnaire consisting of: questionnaire for measuring aggressive behavior and social capital questionnaire, which was used after the validity and reliability of this questionnaire. On the other hand, the statistical population of the study consisted of all students in the guidance school of Isfahan in the academic year of 2016. For determining the sample size, the Kerjesy and Morgan tables were used and the sampling method of this multi-stage random sampling was used. After collecting the data, they were analyzed by SPSS software. The findings of the research showed that at 95% confidence level, the student's social capital increases, reducing his aggressiveness. Also, the amount of student aggression is estimated at 4% according to its social capital. Also, with increasing social capital of the school, the student's student aggression is reduced, with the student's student aggression's exposure to her social capital being estimated at 3%. On the other hand, increasing the amount of mother's presence in the home decreases the amount of student aggression. Also, the amount of student aggression is estimated at 1% according to the amount of mother's presence in her home. Ultimately, the amount of student aggression decreases with increasing presence of father at home. Also, the amount of student aggression is estimated at 2% according to the variable of father's presence in his home.Keywords: investigating, social capital, aggressive behavior, students, middle school, Isfahan
Procedia PDF Downloads 28716392 Cross Project Software Fault Prediction at Design Phase
Authors: Pradeep Singh, Shrish Verma
Abstract:
Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.Keywords: software metrics, fault prediction, cross project, within project.
Procedia PDF Downloads 34416391 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem
Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.Keywords: alzheimer's disease, missing value, machine learning, performance evaluation
Procedia PDF Downloads 25516390 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 7316389 A Literature Review on Successful Implementation of Online Education in Higher Education Institutions
Authors: Desiree Wieser
Abstract:
Online education can be one way to differentiate for higher education institutions (HEI). Nevertheless, it is often not that clear how to successfully implement online education and what it actually means. Literature reveals that it is often linked to student success and satisfaction. However, while researchers succeeded in identifying the determinants impacting on student success and satisfaction, they often ignored expectations. In fact, learning success and satisfaction alone often fall short to explain if and why online education has been implemented successfully and why students perceive the study experience as positive or negative. The present study reveals that considering expectations can contribute to a better understanding of the overall study experience.Keywords: expectations, online education, student satisfaction, student success
Procedia PDF Downloads 31916388 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 31716387 Student's Perception of Home Background and the Acquisition of English Language in Mbonge Municipality, Cameroon
Authors: Japhet Asanji
Abstract:
The bases of this research were to explore student’s perception of home background and the acquisition of English Language in Mbonge Municipality by examining how financial status, level of education, marital status and parenting styles of their parents influence English Language Acquisition. Using random sampling techniques, closed-ended questionnaires were administered to 60 students, and the data was analysed using descriptive statistical analysis. The results reaffirm the positive relationship between student’s perception of home background and the acquisition of English language. Contributions, limitations, and direction for further research are also discussed.Keywords: student, home background, English language acquisition, Cameroon
Procedia PDF Downloads 37516386 Prediction of CO2 Concentration in the Korea Train Express (KTX) Cabins
Authors: Yong-Il Lee, Do-Yeon Hwang, Won-Seog Jeong, Duckshin Park
Abstract:
Recently, because of the high-speed trains forced ventilation, it is important to control the ventilation. The ventilation is for controlling various contaminants, temperature, and humidity. The high-speed train route is straight to a destination having a high speed. And there are many mountainous areas in Korea. So, tunnel rate is higher then other country. KTX HVAC block off the outdoor air, when entering tunnel. So the high tunnel rate is an effect of ventilation in the KTX cabin. It is important to reduction rate in CO2 concentration prediction. To meet the air quality of the public transport vehicles recommend standards, the KTX cabin of CO2 concentration should be managed. In this study, the concentration change was predicted by CO2 prediction simulation in route to be opened.Keywords: CO2 prediction, KTX, ventilation, infrastructure and transportation engineering
Procedia PDF Downloads 54716385 Intelligent Platform for Photovoltaic Park Operation and Maintenance
Authors: Andreas Livera, Spyros Theocharides, Michalis Florides, Charalambos Anastassiou
Abstract:
A main challenge in the quest for ensuring quality of operation, especially for photovoltaic (PV) systems, is to safeguard the reliability and optimal performance by detecting and diagnosing potential failures and performance losses at early stages or before the occurrence through real-time monitoring, supervision, fault detection, and predictive maintenance. The purpose of this work is to present the functionalities and results related to the development and validation of a software platform for PV assets diagnosis and maintenance. The platform brings together proprietary hardware sensors and software algorithms to enable the early detection and prediction of the most common and critical faults in PV systems. It was validated using field measurements from operating PV systems. The results showed the effectiveness of the platform for detecting faults and losses (e.g., inverter failures, string disconnections, and potential induced degradation) at early stages, forecasting PV power production while also providing recommendations for maintenance actions. Increased PV energy yield production and revenue can be thus achieved while also minimizing operation and maintenance (O&M) costs.Keywords: failure detection and prediction, operation and maintenance, performance monitoring, photovoltaic, platform, recommendations, predictive maintenance
Procedia PDF Downloads 5216384 Foreign Language Classroom Anxiety: An International Student's Perspective on Indonesian Language Learning
Authors: Ukhtie Nantika Mena, Ahmad Juntika Nurihsan, Ilfiandra
Abstract:
This study aims to explore perspective on Foreign Language Classroom Anxiety (FLCA) of an international student. Descriptive narrative is used to discover written and spoken responses from the student. An online survey was employed as a secondary data to identify the level of FLCA among six UPI international students. A student with the highest score volunteered to be interviewed. Several symptoms were found; lack of concentration, excessive worry, fear, unwanted thoughts, and sweating. The results showed that difficulties to understand lecturers' correction, presentation, and fear of getting left behind are three major causes of his anxiety.Keywords: foreign language classroom anxiety, FLCA, international students, language anxiety
Procedia PDF Downloads 140