Search results for: particulate organic carbon (POC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5249

Search results for: particulate organic carbon (POC)

5069 Developing Emission Factors of Fugitive Particulate Matter Emissions for Construction Sites in the Middle East Area

Authors: Hala A. Hassan, Vasiliki K. Tsiouri, Konstantinos E. Konstantinos

Abstract:

Fugitive particulate matter (PM) is a major source of airborne pollution in the Middle East countries. The meteorological conditions and topography of the area make it highly susceptible to wind-blown particles which raise many air quality concerns. Air quality tools such as field monitoring, emission factors, and dispersion modeling have been used in previous research studies to analyze the release and impacts of fugitive PM in the region. However, these tools have been originally developed based on experiments made for European and North American regions. In this work, an experimental campaign was conducted on April-May 2014 in a construction site in Doha city, Qatar. The ultimate goal is to evaluate the applicability of the existing emission factors for construction sites in dry and arid areas like the Middle East. This publication was made possible by a NPRP award [NPRP 7-649-2-241] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: particulate matter, emissions, fugitive, construction, air pollution

Procedia PDF Downloads 351
5068 Organic Geochemical Evaluation of the Ecca Group Shale: Implications for Hydrocarbon Potential

Authors: Temitope L. Baiyegunhi, Kuiwu Liu, Oswald Gwavava, Christopher Baiyegunhi

Abstract:

Shale gas has recently been the exploration focus for future energy resource in South Africa. Specifically, the black shales of the lower Ecca Group in the study area are considered to be one of the most prospective targets for shale gas exploration. Evaluation of this potential resource has been restricted due to the lack of exploration and scarcity of existing drill core data. Thus, only limited previous geochemical data exist for these formations. In this study, outcrop and core samples of the Ecca Group were analysed to assess their total organic carbon (TOC), organic matter type, thermal maturity and hydrocarbon generation potential (SP). The results show that these rocks have TOC ranging from 0.11 to 7.35 wt.%. The SP values vary from 0.09 to 0.53 mg HC/g, suggesting poor hydrocarbon generative potential. The plot of S1 versus TOC shows that the source rocks were characterized by autochthonous hydrocarbons. S2/S3 values range between 0.40 and 7.5, indicating Type- II/III, III, and IV kerogen. With the exception of one sample from the collingham formation which has HI value of 53 mg HC/g TOC, all other samples have HI values of less than 50 mg HC/g TOC, thus suggesting Type-IV kerogen, which is mostly derived from reworked organic matter (mainly dead carbon) with little or no potential for hydrocarbon generation. Tmax values range from 318 to 601℃, indicating immature to over-maturity of hydrocarbon. The vitrinite reflectance values range from 2.22 to 3.93%, indicating over-maturity of the kerogen. Binary plots of HI against OI and HI versus Tmax show that the shales are of Type II and mixed Type II-III kerogen, which are capable of generating both natural gas and minor oil at suitable burial depth. Based on the geochemical data, it can be inferred that the source rocks are immature to over-matured variable from localities and have potential of producing wet to dry gas at present-stage. Generally, the Whitehill formation of the Ecca Group is comparable to the Marcellus and Barnett Shales. This further supports the assumption that the Whitehill Formation has a high probability of being a profitable shale gas play, but only when explored in dolerite-free area and away from the Cape Fold Belt.

Keywords: source rock, organic matter type, thermal maturity, hydrocarbon generation potential, Ecca Group

Procedia PDF Downloads 143
5067 Influence of Particulate Fractions on Air Quality for Four Major Congested Cities of India over a Period of Four Years from 2006-2009

Authors: I. Mukherjee, J. Ghose, T. Chakraborty, S. Chaudhury, R. Majumder

Abstract:

India is the second most populated nation in the world. With the Indian population hitting the 1.26 billion mark in the year 2014, there has been an unprecedented rise in power and energy requirements throughout the nation. This mammoth demand for energy, both at the industrial as well as at the domestic household level, as well as the increase in the usage of automobiles has led to a corresponding increase in the total tonnage of fuels being burnt every year. This, in turn, has led to an increase in the concentration of atmospheric pollutants over the years with enhanced particulate concentrations being reported for different parts of the country. Considering the adverseness of the particulates, the paper analyses the role of the particulates on the air quality of four major congested cities of the country namely, Kolkata (22034’ N, 88024’ E), Delhi (28038’N , 77012’ E), Bangalore (12058’ N , 77038’E) and Mumbai (18.9750° N, 72.8258° E) over a period of four years from 2006-2009. The fractional contribution of the finer fractions to the coarser one has been considered in the study in addition to the relative occurrences of the particulate fractions with respect to the other gaseous pollutants such as sulphur dioxide (SO2) and nitrogen oxides (NOX).

Keywords: air quality, particulates, yearly variation, relative occurrence, SO2, NOX

Procedia PDF Downloads 368
5066 Organic Geochemistry and Oil-Source Correlation of Cretaceous Sediments in the Kohat Basin, Pakistan

Authors: Syed Mamoon Siyar, Fayaz Ali, Sajjad Ahmad, Samina Jahandad, George Kontakiotis, Hammad T. Janjuhah, Assimina Antonarakou, Waqas Naseem

Abstract:

The Cretaceous Chichali Formation in the Chanda-01, Chanda-02, Chanda-03 and Mela-05 wells and the oil samples from Chanda-01 and Chanda-01 wells located in the Kohat Basin, Pakistan, were analyzed with the objectives of evaluating the hydrocarbon generation potential, source, thermal maturity and depositional of organic matter, and oil-source correlation by employing geochemical screening techniques and biomarker studies. The total organic carbon (TOC) values in Chanda-02, Chanda-03 and Mela-05 indicate, in general, poor to fair, fair and fair to good source rock potential with low genetic potential, respectively. The nature of organic matter has been determined by standard cross plots of Rock Eval pyrolysis parameters, indicating that studied cuttings from the Chichali Formation dominantly contain type III kerogen at present and show maturity for oil generation in the studied wells. The organic petrographic study also confirmed the vitrinite (type III) as a major maceral in the investigated Chichali Shales and its reflectance values show maturity for oil. The different ratios of non-biomarkers and biomarkers i.e., steranes, terpenes and aromatics parameters, indicate the marine source of organic matter deposited in the anoxic environment for the Chichali Formation in Chanda-01 and Chanda-02 wells and mixed source input of organic matter deposited in suboxic conditions for oil in the same wells. The CPI, and different biomarkers parameters such as C29 S/S+R, ββ/αα+ββ), M29/H30, Ts/Ts+Tm, H31 (S/S+R) and aromatic compounds methyl phenanthrene index (MPI) and organic petrographic analysis (vitrinite reflectance) suggest mature stage of oil generation for Chichali Shales and oil samples in the study area with little high thermal maturity in case of oils. Based on source and thermal maturity biomarkers and non-biomarkers parameters, the produced oils have no correlation with the Cretaceous Chichali Formation in the studied Chanda-01 and Chanda-02 wells in Kohat Basin, Pakistan, but it has been suggested that these oils have been generated by the strata containing high terrestrial organic input compare to Chichali Shales.

Keywords: Organic geochemistry, Chichali Shales and crude oils, Kohat Basin, Pakistan

Procedia PDF Downloads 83
5065 Viable Use of Natural Extract Solutions from Tuberous and Cereals to Enhance the Synthesis of Activated Carbon-Graphene Composite

Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang

Abstract:

Enhancing the properties of activated carbon is very imperative for various applications. Indeed, the activated carbon has promising physicochemical properties desired for a considerable number of applications. In this regard, we are proposing an enhanced and green technology for increasing the efficiency and performance of the activated carbon to various applications. The technique poses on the use of natural extracts from tuberous and cereals based-solutions. These solutions showed high potentiality to be used in the synthesis of activated carbon-graphene composite with only 3 mL. The extracted liquid from tuberous sourcing was enough to induce precipitation within a fraction of a minute in contrast to that from cereal sourced. Using these extracts, a synthesis of activated carbon-graphene composite was successful. Different characterization techniques such as XRD, SEM, FTIR, BET, and Raman spectroscopy were performed to investigate the composite materials. The results confirmed a conjugation between activated carbon and graphene material.

Keywords: activated carbon, cereals, extract solution, graphene, tuberous

Procedia PDF Downloads 146
5064 Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications.

Keywords: fly-ash, carbon black, nanotechnology, geopolymer

Procedia PDF Downloads 113
5063 Experimental Study of Particle Deposition on Leading Edge of Turbine Blade

Authors: Yang Xiao-Jun, Yu Tian-Hao, Hu Ying-Qi

Abstract:

Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition.

Keywords: deposition, experiment, film cooling, leading edge, paraffin particles

Procedia PDF Downloads 146
5062 Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups

Authors: Sadao Araki, Daisuke Gondo, Satoshi Imasaka, Hideki Yamamoto

Abstract:

The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K.

Keywords: hydrophobic, membrane, Hansen solubility parameter, functional group

Procedia PDF Downloads 378
5061 Characterization of Carbon Dioxide-Rich Flue Gas Sources for Conversion to Chemicals and Fuels

Authors: Adesola Orimoloye, Edward Gobina

Abstract:

Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever - present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors.

Keywords: Flue gas, carbon dioxide, membrane, catalyst, syngas

Procedia PDF Downloads 674
5060 Deteriorating Ambient Air Quality Resulted from Invasion of Foreign Air Pollutants

Authors: Kuo-C. Lo, Chung-H. Hung

Abstract:

Invasion of foreign air pollutants to deteriorate local air quality has become an emerging international issue of concern. This study aimed to apply meteorological and air quality model, WRF-Chem (V3.1), for simulating and analyzing the phenomenon of forming of high-concentrated particulate matters, PM10 and PM2.5, in ambient air of Taiwan during January 17th to 19th, 2014. The foreign air pollutants were mainly from long-distance transport of air pollutants of China being transported with a strong continental cold high. It was observed that PM10 and PM2.5 peaked as high as 182~588 μg/m3 and 95~165 μg/m3, respectively, in the ambient air of west side of Taiwan. They were about 2~3 folds higher than the usual concentrations of particulate matters in these seasons.

Keywords: WRF-Chem, air pollution, PM2.5, ambient air quality

Procedia PDF Downloads 459
5059 Electromagnetic Radiation Absorbers on the Basis of Fibrous Materials with the Content of Allotropic Carbon Forms

Authors: Elena S. Belousova, Olga V. Boiprav

Abstract:

A technique for incorporating particles of allotropic forms of carbon into a fibrous material has been developed. It can be used for the manufacture of composite electromagnetic radiation absorbers. The frequency characteristics of electromagnetic radiation reflection and transmission coefficients in the microwave range of absorbers on the basis of powdered carbon black, activated carbon, shungite, graphite, manufactured in accordance with the developed technique, have been studied.

Keywords: carbon, graphite, electromagnetic radiation absorber, shungite

Procedia PDF Downloads 163
5058 Experimental Study on Tensile Strength of Polyethylene/Carbon Injected Composites

Authors: Armin Najipour, A. M. Fattahi

Abstract:

The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM:D638 standard. The effects of carbon nanotube addition in 4 different levels on the tensile strength, elastic modulus and elongation of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving tensile strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the tensile strength 23.4%,elastic modulus 60.4%and elongation 29.7% of the samples improved. Also, according to the results, Manera approximation model at percentages about 0.5% weight and modified Halpin-Tsai at percentages about 1% weight lead to favorite and reliable results.

Keywords: carbon nanotube, injection molding, Mechanical properties, Nanocomposite, polyethylene

Procedia PDF Downloads 270
5057 Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials

Authors: Bashir Ahmmad, Kensaku Kanomata, Fumihiko Hirose

Abstract:

The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water/alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO2, repectively. The order of H2 gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO2, various parameters of experimental conditions were changed. Also, a comparison between Pt/TiO2, WNTs/TiO2 and GS/TiO2 was made for the amount of H2 gas production. Finally, the recyclability of SWNTs/TiO2 and GS/TiO2 were tested.

Keywords: photocatalysis, carbon materials, alcohol reforming, hydrogen production, titanium oxide

Procedia PDF Downloads 489
5056 A Universal Hybrid Adsorbent Based on Chitosan for Water Treatment

Authors: Sandrine Delpeux-Ouldriane, Min Cai, Laurent Duclaux, Laurence Reinert, Fabrice Muller

Abstract:

A novel hybrid adsorbent, based on chitosan biopolymer, clays and activated carbon was prepared. Hybrid chitosan beads containing dispersed clays and activated carbons were prepared by precipitation in basic medium. Such a composite material is still very porous and presents a wide adsorption spectrum. The obtained composite adsorbent is able to handle all the pollution types including heavy metals, polar and hydrophobic organic molecules and nitrates. It could find a place of choice in tertiary water treatment processes or for an ‘at source’ treatment concerning chemical or pharmaceutical industries.

Keywords: adsorption, chitosan, clay mineral, activated carbon

Procedia PDF Downloads 400
5055 Production and Application of Organic Waste Compost for Urban Agriculture in Emerging Cities

Authors: Alemayehu Agizew Woldeamanuel, Mekonnen Maschal Tarekegn, Raj Mohan Balakrishina

Abstract:

Composting is one of the conventional techniques adopted for organic waste management, but the practice is very limited in emerging cities despite the most of the waste generated is organic. This paper aims to examine the viability of composting for organic waste management in the emerging city of Addis Ababa, Ethiopia, by addressing the composting practice, quality of compost, and application of compost in urban agriculture. The study collects data using compost laboratory testing and urban farm households’ survey and uses descriptive analysis on the state of compost production and application, physicochemical analysis of the compost samples, and regression analysis on the urban farmer’s willingness to pay for compost. The findings of the study indicated that there is composting practice at a small scale, most of the producers use unsorted feedstock materials, aerobic composting is dominantly used, and the maturation period ranged from four to ten weeks. The carbon content of the compost ranges from 30.8 to 277.1 due to the type of feedstock applied, and this surpasses the ideal proportions for C:N ratio. The total nitrogen, pH, organic matter, and moisture content are relatively optimal. The levels of heavy metals measured for Mn, Cu, Pb, Cd and Cr⁶⁺ in the compost samples are also insignificant. In the urban agriculture sector, chemical fertilizer is the dominant type of soil input in crop productions but vegetable producers use a combination of both fertilizer and other organic inputs, including compost. The willingness to pay for compost depends on income, household size, gender, type of soil inputs, monitoring soil fertility, the main product of the farm, farming method and farm ownership. Finally, this study recommends the need for collaboration among stakeholders’ along the value chain of waste, awareness creation on the benefits of composting and addressing challenges faced by both compost producers and users.

Keywords: composting, emerging city, organic waste management, urban agriculture

Procedia PDF Downloads 308
5054 Choosing Local Organic Food: Consumer Motivations and Ethical Spaces

Authors: Artur Saraiva, Moritz von Schwedler, Emília Fernandes

Abstract:

In recent years, the organic sector has increased significantly. However, with the ‘conventionalization’ of these products, it has been questioned whether these products have been losing their original vision. Accordingly, this research based on 31 phenomenological interviews with committed organic consumers in urban and rural areas of Portugal, aims to analyse how ethical motivations and ecological awareness are related to organic food consumption. The content thematic analysis highlights aspects related to society and environmental concerns. On an individual level, the importance of internal coherence, peace of mind and balance that these consumers find in the consumption of local organic products was stressed. For these consumers, local organic products consumption made for significant changes in their lives, aiding in the establishment of a green identity, and involves a certain philosophy of life. This vision of an organic lifestyle is grounded in a political and ecological perspective, beyond the usual organic definition, as a ‘post-organic era’. The paper contributes to better understand how an ideological environmental discourse allows highlighting the relationship between consumers’ environmental concerns and the politics of food, resulting in a possible transition to new sustainable consumption practices.

Keywords: organic consumption, localism, content thematic analysis, pro-environmental discourse, political consumption, Portugal

Procedia PDF Downloads 212
5053 Influence of Preparation, Characterisation and Application of Carbon Nano Tube

Authors: Dhaivat S. Soni, Snehal Thakor, Afroz Bhatti

Abstract:

The prepare CNTs in bulk quantity by as easiest as possible method with highly pure and small diameter. Prepared CNTs first charactered its structural parameter for the conformation of CNTs and purity. Surface morphology of CNTs stured by using various instruments finally study application of prepared CNTs in various field. Carbon nanotubes (CNTs) were synthesized in large scale by pyrolyzing activated carbon in sealed autoclaves.

Keywords: nanostructures, nanotubes, carbon, pyrolysis

Procedia PDF Downloads 398
5052 Carbon Stock of the Moist Afromontane Forest in Gesha and Sayilem Districts in Kaffa Zone: An Implication for Climate Change Mitigation

Authors: Admassu Addi, Sebesebe Demissew, Teshome Soromessa, Zemede Asfaw

Abstract:

This study measures the carbon stock of the Moist Afromontane Gesha-Sayilem forest found in Gesha and Sayilem District in southwest Ethiopia. A stratified sampling method was used to identify the number of sampling point through the Global Positioning System. A total of 90 plots having nested plots to collect tree species and soil data were demarcated. The results revealed that the total carbon stock of the forest was 362.4 t/ha whereas the above ground carbon stock was 174.95t/ha, below ground litter, herbs, soil, and dead woods were 34.3,1.27, 0.68, 128 and 23.2 t/ha (up to 30 cm depth) respectively. The Gesha- Sayilem Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. Thus conservation of the forest through introduction REDD+ activities is considered an appropriate action for mitigating climate change.

Keywords: carbon sequestration, carbon stock, climate change, allometric, Ethiopia

Procedia PDF Downloads 160
5051 Perceptions of Farmers against Liquid Fertilizer Benefits of Beef Cattle Urine

Authors: Sitti Nurani Sirajuddin, Ikrar Moh. Saleh, Kasmiyati Kasim

Abstract:

The aim of this study was to know the perception of livestock farmers on the use of liquid organic fertilizer from urine of cattle at Sinjai Regency, South Sulawesi Province. The choice of location for a farmer group manufactures and markets liquid organic fertilizer from cattle urine. This research was conducted in May to July 2013.The population were all livestock farmers who use organic liquid fertilizer from cattle urine samples while livestock farmers who are directly involved in the manufacture of liquid organic fertilizer totaled 42 people. Data were collected through observation and interview. Data were analyzed descriptively. The results showed that the perception of livestock farmers of using liquid organic fertilizer from cattle urine provide additional revenue benefits, cost minimization farming, reducing environmental pollution which not contrary to the customs.

Keywords: liquid organic fertilizer, perceptions, farmers, beef cattle

Procedia PDF Downloads 473
5050 Simultaneous Adsorption and Characterization of NOx and SOx Emissions from Power Generation Plant on Sliced Porous Activated Carbon Prepared by Physical Activation

Authors: Muhammad Shoaib, Hassan M. Al-Swaidan

Abstract:

Air pollution has been a major challenge for the scientists today, due to the release of toxic emissions from various industries like power plants, desalination plants, industrial processes and transportation vehicles. Harmful emissions into the air represent an environmental pressure that reflects negatively on human health and productivity, thus leading to a real loss in the national economy. Variety of air pollutants in the form of carbon oxides, hydrocarbons, nitrogen oxides, sulfur oxides, suspended particulate material etc. are present in air due to the combustion of different types of fuels like crude oil, diesel oil and natural gas. Among various pollutants, NOx and SOx emissions are considered as highly toxic due to its carcinogenicity and its relation with various health disorders. In Kingdom of Saudi Arabia electricity is generated by burning of crude, diesel or natural gas in the turbines of electricity stations. Out of these three, crude oil is used extensively for electricity generation. Due to the burning of the crude oil there are heavy contents of gaseous pollutants like sulfur dioxides (SOx) and nitrogen oxides (NOx), gases which are ultimately discharged in to the environment and is a serious environmental threat. The breakthrough point in case of lab studies using 1 gm of sliced activated carbon adsorbant comes after 20 and 30 minutes for NOx and SOx, respectively, whereas in case of PP8 plant breakthrough point comes in seconds. The saturation point in case of lab studies comes after 100 and 120 minutes and for actual PP8 plant it comes after 60 and 90 minutes for NOx and SOx adsorption, respectively. Surface characterization of NOx and SOx adsorption on SAC confirms the presence of peaks in the FT-IR spectrum. CHNS study verifies that the SAC is suitable for NOx and SOx along with some other C and H containing compounds coming out from stack emission stream from the turbines of a power plant.

Keywords: activated carbon, flue gases, NOx and SOx adsorption, physical activation, power plants

Procedia PDF Downloads 347
5049 Research on the Influencing Factors of Residents' Energy Consumption and Carbon Emission in Different Types of Communities - Taking Caijia New Town of Chongqing as an Example

Authors: Shuo Lei

Abstract:

In order to explore the influencing factors of residents' energy consumption and carbon emissions in different types of communities, this paper conducted research on residents' household energy consumption and carbon emissions in different types of communities in Caijia New Town, Chongqing. By calculating the carbon emissions of residents' household energy consumption, we analyze the structure and characteristics of the energy consumption of households in each type of community. At the same time, the key influencing factors affecting the carbon emissions of residents' energy consumption in Caijia New Town are analyzed from both social and spatial perspectives. The results of the study show that: (1) different types of neighborhoods have a clustering and locking effect on different types of resident groups, which makes the distribution of household energy consumption and carbon emissions closely related to the characteristics of the residents; (2) social and spatial factors have an impact on the residents' energy consumption and carbon emissions, and there is a significant difference in the carbon emission levels of different types of neighborhoods. Accordingly, an identification method is proposed to recognize the carbon emissions of Caijia New Town and even Chongqing City, which provides technical reference for the sustainable planning of low-carbon communities.

Keywords: community type, residential energy consumption and carbon emissions, residential differentiation, influencing factors, low-carbon community

Procedia PDF Downloads 20
5048 Process Development for the Conversion of Organic Waste into Valuable Products

Authors: Ife O. Bolaji

Abstract:

Environmental concerns arising from the use of fossil fuels has increased the interest in the development of renewable and sustainable sources of energy. This would minimize the dependence on fossil fuels and serve as future alternatives. Organic wastes contain carbohydrates, proteins and lipids, which can be utilised as carbon sources for the production of bio-based products. Cellulose is the most abundant natural biopolymer, being the main structural component of lignocellulosic materials. The aim of this project is to develop a biological process for the hydrolysis and fermentation of organic wastes into ethanol and organic acids. The hydrolysis and fermentation processes are integrated in a single vessel using undefined mixed culture microorganisms. The anaerobic fermentation of microcrystalline cellulose was investigated in continuous and batch reactors at 25°C with an appropriate growth medium for cellulase formation, hydrolysis, and fermentation. The reactors were inoculated with soil (B1, C1, C3) or sludge from an anaerobic digester (B2, C2) and the breakdown of cellulose was monitored by measuring the production of ethanol, organic acids and the residual cellulose. The batch reactors B1 and B2 showed negligible microbial activity due to inhibition while the continuous reactors, C1, C2 and C3, exhibited little cellulose hydrolysis which was concealed by the cellulose accumulation in the reactor. At the end of the continuous operation, the reactors C1, C2 and C3 were operated under batch conditions. 48%, 34% and 42% cellulose had been fermented by day 88, 55 and 55 respectively of the batch fermentation. Acetic acid, ethanol, propionic acid and butyric acids were the main fermentation products in the reactors. A stable concentration of 0.6 g/l ethanol and 5 g/L acetic acid was maintained in C3 for several weeks due to reduced activity of methanogens caused by the decrease in pH. Thus far, the results have demonstrated that mixed microbial culture is capable of hydrolysing and fermenting cellulose under lenient conditions. The fermentation of cellulose has been found effective in a combination of continuous and batch processes.

Keywords: cellulose, hydrolysis, mixed culture, organic waste

Procedia PDF Downloads 367
5047 Elimination of Phosphorus by Activated Carbon Prepared from Algerian Dates Stones

Authors: A. Kamarchoua, A. A. Bebaa, A. Douadi

Abstract:

The current work has a goal of the preparation of activated carbon from the stones of dates from southern Algeria (El-Oued province) using a simple pyrolysis proceeded by chemical impregnation in sulphuric acid. For the preparation of the carbon, we choose the diameter of the pellets (0.5-1)mm, activation by acid and water (1:1), carbonization at 450˚C. The prepared carbon has the following characteristics: specific surface 125.86 m2/g, methylene blue number 40, CCE = 0.3meq.g/l, IR and micrographics SEM. The activated carbon thus obtained is used at the water purification in wastewater treatment plant (WWTP) at Kouinine, El- Oued province, to totally eliminate phosphorus. We analyzed the water at the WWTP before the purification procedure. In this study, we have looked at the effect of the following parameters on the adsorption of carbon: the pH, the contact time (Tc) and the agitation speed (Va). The best conditions for phosphorus adsorption are: pH=4 or pH >5, Tc = 60 min and Va = 900 rotations per minute.

Keywords: activated carbon, date stones, pyrolysis, phosphate pollutants

Procedia PDF Downloads 379
5046 Design, Development and Application of a Green Manure Fertilizer Based on Mucuna Pruriens (L.) in Pelletized Presentation

Authors: Andres Zuñiga Orozco

Abstract:

Green manure fertilizers have special importance in the development of organic and sustainable agriculture as a substitute or complement to chemical fertilization. They have many advantages, but they have application limitations in greenhouse crops and in open field crops that have low growing size. On the other hand, the logistics of sowing, harvesting and applying have been difficult for producers to adopt. For this reason, a pelletized presentation was designed in conjunction with Trichoderma harzianum. The biopellet was applied in pineapple as the first experience, managing to improve carbon levels in the soil and some nutrients. Then it was applied to tomatoes where it was proven that, nutritionally, it is possible to nourish the crop up to day 60 only with the biopellet, improve carbon levels in soil and control the fungus Fusarium oxysporum. Subsequently, it was applied to coffee seedlings with an organo-mineral formulation. Here, the improvement in the growth and nutrition of the plants was notable, as well as the increase in the microbial activity of the soil. M. pruriens biopellets allow crops to be nourished, allow biocontrolers to be added, improve soil conditions to promote greater microbial activity, reincorporate carbon and CO2 into the soil, are easily applicable, allow dosing and have a favorable shelf-life. They can be applied to all types of crops, both in the greenhouse and in the field.

Keywords: Mucuna pruriens, pellets, carbon, Trichoderma, Fusarium

Procedia PDF Downloads 59
5045 Comparative Analysis of Biodegradation on Polythene and Plastics Buried in Fadama Soil Amended With Organic and Inorganic Fertilizer

Authors: Baba John, Abdullahi Mohammed

Abstract:

The aim of this research is to compare the analysis of biodegradation on polythene and plastics buried in fadama soil amended with Organic and Inorganic fertilizer. Physico- chemical properties of the samples were determined. Bacteria and Fungi implicated in the biodegradation were identified and enumerated. Physico- chemical properties before the analysis indicated pH range of the samples from 4.28 – 5.80 , While the percentage Organic carbon and Organic matter was highest in cow dung samples with 3.89% and 6.69% respectively. The total Nitrogen percentage was recorded to be highest in Chicken dropping (0.68), while the availability of Phosphorus (P), Sodium (Na), Pottasium (K), and Magnessium (mg) was recorded to be highest in F – soil (Control), with values to be 37ppm, 1.63 Cmolkg-1, 0.35 Cmolkg-1 and 1.18 Cmolkg-1 respectively, except for calcium which was recorded to be highest in Cow dung (5.80 Cmolkg-1). However, physico – chemical properties of the samples after analysis indicated pH range of 4.6 – 5.80, Percentage Organic carbon and Organic matter was highest in Fadama soil mixed with fertilizer, having 0.7% and 1.2% respectively. Total Percentage Nitrogen content was found to be highest (0.56) in Fadama soil mixed with poultry dropping. Availability of Sodium (Na), Pottasium (K), and Calcium (Ca) was recorded to be highest in Fadama Soil mixed with Cow dung with values to be 0.64 Cmolkg-1, 2.07 Cmolkg-1 and 3.36 Cmolkg-1 respectively. The percentage weight loss of polythene and plastic bags after nine months in fadama soil mixed with poultry dropping was 11.9% for polythene and 6.0% for plastics. Weight loss in fadama soil mixed with cow dung was 18.1% for polythene and 4.7% for plastics. Weight loss of polythene and plastic in fadama soil mixed with fertilizer (NPK) was 7.4% for polythene and 3.3% for plastics. While, the percentage weight loss of polythene and plastics after nine months of burial in fadama soil (control) was 3.5% and 0.0% respectively. The bacteria species isolated from Fadama soil, organic and inorganic fertilizers before amendments include: S. aureus, Micrococcus sp, Streptococcus. pyogenes, Psuedomonas aeruginosa Bacillus subtilis and Bacillus cereus. The fungi species include: Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Fusarium sp, Mucor sp Penicillium sp and Candida sp. The bacteria species isolated and characterized after nine months of seeding include: S. aureus, Micrococcus sp, S. pyogenes, P. aeruginosa and B. subtilis. The fungi species are: A. niger A. flavus, A. fumigatus, Mucor sp, Penicillium sp and Fusarium sp. The result of this study indicated that plastic materials can be degraded in the fadama soil irrespective of whether the soil is amended or not. The Period of composting also has a significant impact on the rate at which polythene and plastics are degraded.

Keywords: Fadama, fertilizer, plastic and polythene, biodegradation

Procedia PDF Downloads 543
5044 Biodegradable Drinking Straws Made From Naturally Dried and Fallen Coconut Leaves: Impact on Rural Circular Economy and Environmental Sustainability

Authors: Saji Varghese

Abstract:

Naturally dried and fallen coconut leaves and found in abundance in India and other coconut growing regions of the world. These fallen coconut leaves are usually burnt by farmers in landfills and open kitchens, leading to CO2 and particulate emissions. The innovation of biodegradable drinking straws from naturally dried and fallen coconut leaves by this researcher and his team has opened up opportunities to create value out of this agri-waste leading to i. prevention of burning of these discarded leaves ii. income generating opportunities to women in rural areas of coconut growing regions iii. an alternative to single use plastic straws. The team has developed five special purpose machines, which are deployed in the three villages on a pilot basis where 36 women are employed. The women are trained in the use of these machines, and the straws which are in good demand are sold globally. The present paper analyses the prospective impact of this innovation on the incomes of women working at the straw production centres and the consequent impact on their standards of living, The paper also analyses the impact of this innovation in the reduction of CO2 and particulate emissions and makes a case for support from Govt and Non Govt organizations in coconut growing regions to set up straw production centres to boost rural circular economy and to reduce carbon footprint and eliminate plastic pollution

Keywords: drinking straws, coconut leaves, circular economy, sustainability

Procedia PDF Downloads 137
5043 Removal of Chromium (VI) from Contaminated Synthetic Groundwater Using Functionalized Carbon Nanomaterials Modified with Zinc and Potassium

Authors: P. D. Ibikunle, D. O. Bala, A. P. Olawolu, A. A. Adebayo

Abstract:

Chromium has been discovered as a significant contributor to water pollution that causes cancer. Modified carbon nanotubes' (CNTs) potential as an adsorbent hasn't been thoroughly investigated. The study aimed at investigating the potentials of various functionalized carbon nanomaterials for Cr (VI) removal from contaminated synthetic groundwater. Functionalized carbon nanomaterials with layered and tube-like structures were designed based on thermal (KOH-activated micrographite sheets) and impregnation methods by anchoring K and Zn on carbon nanotubes (CNTs), respectively for the removal of Cr (VI) from contaminated synthetic groundwater. Zinc acetate modified carbon nanotubes (Zn-CNTs) and potassium hydroxide modified carbon nanotubes (K-CNTs) exhibited greater adsorption capacity for the Cr (VI) adsorbate compared to KOH-activated graphite (AC-1 and AC-0). Maximum removal efficiency for both adsorbents occurred at pH 2. Omu Aran Hand dug wells can therefore be treated with K–CNTs, since the experimental outcomes showed that CNTs adsorbent could operate well in a range of the experimental scenarios.

Keywords: carbon nanotubes, Chromium (VI), adsorption, water treatment, graphitic carbon, kinetics

Procedia PDF Downloads 37
5042 Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite

Authors: Illyas Md Isa, Maryam Musfirah Che Sobry, Mohamad Syahrizal Ahmad, Nurashikin Abd Azis

Abstract:

A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods.

Keywords: bisphenol A, magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite, Nanocomposite, uric acid

Procedia PDF Downloads 212
5041 Soil Organic Carbon and Nutrients in Smallholding Land Uses in Southern Ethiopia

Authors: Mekdes Lulu

Abstract:

This study assessed the soil organic C (SOC) and soil nutrients in smallholding home garden, woodlot, grazing land, and cropland at two soil depths and two sites in Wolaita Zone, southern Ethiopia. The results showed that soil properties were significantly influenced by land use. The home garden had significantly higher (p < 0.05) SOC and soil nutrients when compared to the cropland. When the home garden was compared to the woodlot and grazing land uses, it had significantly higher (p < 0.05) values except in SOC, total N (TN), cation exchange capacity (CEC), and exchangeable Ca. Cropland, in comparison with grazing land and woodlot, had a non-significant difference except TN. The SOC stock (0–40 cm) in the home garden, woodlot, grazing land and cropland was 79.5, 68.0, 65.0, and 58.1 Mg ha–1, respectively. Home garden significantly differed (p <0.05) in SOC only from cropland, and this was attributed not only to the relatively higher organic input in the home garden but also to the little organic matter input and frequently tillage of the cropland. The similar SOC among the home garden, woodlot and grazing lands may imply that the balance between inputs and outputs could be nearly similar for the land uses. Soil TN and CEC had a nearly similar pattern of difference as in SOC among the land uses because of their close relationship with SOC. In general, the land use influence on soil nutrients can be in the order: home garden > wood land » grazing land » cropland, with home garden showing the least difference from the woodlot and the greatest from the cropland. In the agroecosystem, in general, the influence of smallholding home garden on SOC and soil nutrient was marginally different from Eucalyptus woodlot and grazing lands but evidently different from cropland.

Keywords: cropland, grazing land, home garden, soc stock, soil nutrients, woodlot

Procedia PDF Downloads 26
5040 Carbon Storage in Natural Mangrove Biomass: Its Destruction and Potential Impact on Climate Change in the UAE

Authors: Hedaya Ali Al Ameri, Alya A. Arabi

Abstract:

Measuring the level of carbon storage in mangroves’ biomass has a potential impact in the climate change of UAE. Carbon dioxide is one of greenhouse gases. It is considered to be a main reason for global warming. Deforestation is a key source of the increase in carbon dioxide whereas forests such as mangroves assist in removing carbon dioxide from atmosphere by storing them in its biomass and soil. By using Kauffman and Donato methodology, above- and below-ground biomass and carbon stored in UAE’s natural mangroves were quantified. Carbon dioxide equivalent (CO2eq) released to the atmosphere was then estimated in case of mangroves deforestation in the UAE. The results show that the mean total biomass of mangroves in the UAE ranged from 15.75 Mg/ha to 3098.69 Mg/ha. The estimated CO2eq released upon deforestation in the UAE was found to have a minimal effect on the temperature increase and thus global warming.

Keywords: carbon stored in biomass, mangrove deforestation, temperature change, United Arab Emirate

Procedia PDF Downloads 396