Search results for: low-rank matrix
2041 Monomial Form Approach to Rectangular Surface Modeling
Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong
Abstract:
Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications
Procedia PDF Downloads 1462040 Optimization of Machining Parameters in AlSi/10%AlN Metal Matrix Composite Material by TiN Coating Insert
Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Rusli Othman
Abstract:
This paper presents the surface roughness of the aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN). Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to a standard orthogonal array L27 of Taguchi method using TiN coating tool of insert. The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of cutting speeds, feed rates and depths of cut in measuring the surface roughness during the milling operation. The surface roughness was observed using Mitutoyo Formtracer CS-500 and analyzed using the Taguchi method. From the Taguchi analysis, it was found that cutting speed of 230 m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.3 mm were the optimum machining parameters using TiN coating insert.Keywords: AlSi/AlN metal matrix composite (MMC), surface roughness, Taguchi method, machining parameters
Procedia PDF Downloads 4322039 Study of Biodegradable Composite Materials Based on Polylactic Acid and Vegetal Reinforcements
Authors: Manel Hannachi, Mustapha Nechiche, Said Azem
Abstract:
This study focuses on biodegradable materials made from Poly-lactic acid (PLA) and vegetal reinforcements. Three materials are developed from PLA, as a matrix, and : (i) olive kernels (OK); (ii) alfa (α) short fibers and (iii) OK+ α mixture, as reinforcements. After processing of PLA pellets and olive kernels in powder and alfa stems in short fibers, three mixtures, namely PLA-OK, PLA-α, and PLA-OK-α are prepared and homogenized in Turbula®. These mixtures are then compacted at 180°C under 10 MPa during 15 mn. Scanning Electron Microscopy (SEM) examinations show that PLA matrix adheres at surface of all reinforcements and the dispersion of these ones in matrix is good. X-ray diffraction (XRD) analyses highlight an increase of PLA inter-reticular distances, especially for the PLA-OK case. These results are explained by the dissociation of some molecules derived from reinforcements followed by diffusion of the released atoms in the structure of PLA. This is consistent with Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) analysis results.Keywords: alfa short fibers, biodegradable composite, olive kernels, poly-lactic acid
Procedia PDF Downloads 1472038 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites
Authors: Mohammad M. Khan, Pankaj Agarwal
Abstract:
The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM
Procedia PDF Downloads 1502037 Development of an Optimised, Automated Multidimensional Model for Supply Chains
Authors: Safaa H. Sindi, Michael Roe
Abstract:
This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.Keywords: Leagile, automation, heuristic learning, supply chain models
Procedia PDF Downloads 3882036 Flexural Analysis of Palm Fiber Reinforced Hybrid Polymer Matrix Composite
Authors: G.Venkatachalam, Gautham Shankar, Dasarath Raghav, Krishna Kuar, Santhosh Kiran, Bhargav Mahesh
Abstract:
Uncertainty in the availability of fossil fuels in the future and global warming increased the need for more environment-friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as a reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.Keywords: Adhesion, CNSL, Flexural Analysis, Hybrid Matrix Composite, Palm Fiber
Procedia PDF Downloads 4052035 Development of an Erodable Matrix Drug Delivery Platform for Controled Delivery of Non Steroidal Anti Inflamatory Drugs Using Melt Granulation Process
Authors: A. Hilsana, Vinay U. Rao, M. Sudhakar
Abstract:
Even though a number of non-steroidal anti-inflammatory drugs (NSAIDS) are available with different chemistries, they share a common solubility characteristic that is they are relatively more soluble in alkaline environment and practically insoluble in acidic environment. This work deals with developing a wax matrix drug delivery platform for controlled delivery of three model NSAIDS, Diclofenac sodium (DNa), Mefenamic acid (MA) and Naproxen (NPX) using the melt granulation technique. The aim of developing the platform was to have a general understanding on how an erodible matrix system modulates drug delivery rate and extent and how it can be optimized to give a delivery system which shall release the drug as per a common target product profile (TPP). Commonly used waxes like Cetostearyl alcohol and stearic acid were used singly an in combination to achieve a TPP of not 15 to 35% in 1 hour and not less than 80% Q in 24 hours. Full factorial design of experiments was followed for optimization of the formulation.Keywords: NSAIDs, controlled delivery, target product profile, melt granulation
Procedia PDF Downloads 3342034 Computable Difference Matrix for Synonyms in the Holy Quran
Authors: Mohamed Ali Al Shaari, Khalid M. El Fitori
Abstract:
In the field of Quran Studies known as Ghareeb A Quran (the study of the meanings of strange words and structures in Holy Quran), it is difficult to distinguish some pragmatic meanings from conceptual meanings. One who wants to study this subject may need to look for a common usage between any two words or more; to understand general meaning, and sometimes may need to look for common differences between them, even if there are synonyms (word sisters). Some of the distinguished scholars of Arabic linguistics believe that there are no synonym words, they believe in varieties of meaning and multi-context usage. Based on this viewpoint, our method was designed to look for synonyms of a word, then the differences that distinct the word and their synonyms. There are many available books that use such a method e.g. synonyms books, dictionaries, glossaries, and some books on the interpretations of strange vocabulary of the Holy Quran, but it is difficult to look up words in these written works. For that reason, we proposed a logical entity, which we called Differences Matrix (DM). DM groups the synonyms words to extract the relations between them and to know the general meaning, which defines the skeleton of all word synonyms; this meaning is expressed by a word of its sisters. In Differences Matrix, we used the sisters(words) as titles for rows and columns, and in the obtained cells we tried to define the row title (word) by using column title (her sister), so the relations between sisters appear, the expected result is well defined groups of sisters for each word. We represented the obtained results formally, and used the defined groups as a base for building the ontology of the Holy Quran synonyms.Keywords: Quran, synonyms, differences matrix, ontology
Procedia PDF Downloads 4192033 Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery
Authors: S. Benkraouda, Z. Djelloul-Khedda, B. Yagoubi
Abstract:
we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection.Keywords: forest fire, forest fire detection, satellite image, normal distribution, theoretical gaussian model, thermal infrared matrix image
Procedia PDF Downloads 1422032 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method
Authors: Balwinder Singh
Abstract:
The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.Keywords: reinforcement, silicon carbide, fly ash, red mud
Procedia PDF Downloads 1592031 Mobile Application Testing Matrix and Challenges
Authors: Bakhtiar Amen, Sardasht Mahmood, Joan Lu
Abstract:
The adoption of smartphones and the usages of mobile applications are increasing rapidly. Consequently, within limited time-range, mobile Internet usages have managed to take over the desktop usages particularly since the first smartphone-touched application released by iPhone in 2007. This paper is proposed to provide solution and answer the most demandable questions related to mobile application automated and manual testing limitations. Moreover, Mobile application testing requires agility and physically testing. Agile testing is to detect bugs through automated tools, whereas the compatibility testing is more to ensure that the apps operates on mobile OS (Operation Systems) as well as on the different real devices. Moreover, we have managed to answer automated or manual questions through two mobile application case studies MES (Mobile Exam System) and MLM (Mobile Lab Mate) by creating test scripts for both case studies and our experiment results have been discussed and evaluated on whether to adopt test on real devices or on emulators? In addition to this, we have introduced new mobile application testing matrix for the testers and some enterprises to obtain knowledge from.Keywords: mobile app testing, testing matrix, automated, manual testing
Procedia PDF Downloads 4782030 Visualizing Matrix Metalloproteinase-2 Activity Using Extracellular Matrix-Immobilized Fluorescence Resonance Energy Transfer Bioprobe in Cancer Cells
Authors: Hawon Lee, Young-Pil Kim
Abstract:
Visualizing matrix metalloproteinases (MMPs) activity is necessary for understanding cancer metastasis because they are implicated in cell migration and invasion by degrading the extracellular matrix (ECM). While much effort has been made to sense the MMP activity, but extracellularly long-term monitoring of MMP activity still remains challenging. Here, we report a collagen-bound fluorescent bioprobe for the detection of MMP-2 activity in the extracellular environment. This bioprobe consists of ECM-immobilized part (including collagen-bound protein) and MMP-sensing part (including peptide substrate linked with fluorescence resonance energy transfer (FRET) coupler between donor green fluorescent protein (GFP) and acceptor TAMRA dye), which was constructed through intein-mediated self-splicing conjugation. Upon being immobilized on the collagen-coated surface, this bioprobe enabled efficient long-lasting observation of MMP-2 activity in the cultured cells without affecting cell growth and viability. As a result, the FRET ratio (acceptor/donor) decreased as the MMP2 activity increased in cultured cancer cells. Furthermore, unlike wild-type MMP-2, mutated MMP-2 expression (Y580A in the hemopexin region) gave rise to lowering the secretion of MMP-2 in HeLa. Conclusively, our method is anticipated to find applications for tracing and visualizing enzyme activity.Keywords: collagen, ECM, FRET, MMP
Procedia PDF Downloads 2022029 Modal Analysis of Small Frames using High Order Timoshenko Beams
Authors: Chadi Azoury, Assad Kallassy, Pierre Rahme
Abstract:
In this paper, we consider the modal analysis of small frames. Firstly, we construct the 3D model using H8 elements and find the natural frequencies of the frame focusing our attention on the modes in the XY plane. Secondly, we construct the 2D model (plane stress model) using Q4 elements. We concluded that the results of both models are very close to each other’s. Then we formulate the stiffness matrix and the mass matrix of the 3-noded Timoshenko beam that is well suited for thick and short beams like in our case. Finally, we model the corners where the horizontal and vertical bar meet with a special matrix. The results of our new model (3-noded Timoshenko beam for the horizontal and vertical bars and a special element for the corners based on the Q4 elements) are very satisfying when performing the modal analysis.Keywords: corner element, high-order Timoshenko beam, Guyan reduction, modal analysis of frames, rigid link, shear locking, and short beams
Procedia PDF Downloads 3182028 A Multistep Broyden’s-Type Method for Solving Systems of Nonlinear Equations
Authors: M. Y. Waziri, M. A. Aliyu
Abstract:
The paper proposes an approach to improve the performance of Broyden’s method for solving systems of nonlinear equations. In this work, we consider the information from two preceding iterates rather than a single preceding iterate to update the Broyden’s matrix that will produce a better approximation of the Jacobian matrix in each iteration. The numerical results verify that the proposed method has clearly enhanced the numerical performance of Broyden’s Method.Keywords: mulit-step Broyden, nonlinear systems of equations, computational efficiency, iterate
Procedia PDF Downloads 6382027 Influence of Natural Rubber on the Frictional and Mechanical Behavior of the Composite Brake Pad Materials
Authors: H. Yanar, G. Purcek, H. H. Ayar
Abstract:
The ingredients of composite materials used for the production of composite brake pads play an important role in terms of safety braking performance of automobiles and trains. Therefore, the ingredients must be selected carefully and used in appropriate ratios in the matrix structure of the brake pad materials. In the present study, a non-asbestos organic composite brake pad materials containing binder resin, space fillers, solid lubricants, and friction modifier was developed, and its fillers content was optimized by adding natural rubber with different rate into the specified matrix structure in order to achieve the best combination of tribo-performance and mechanical properties. For this purpose, four compositions with different rubber content (2.5wt.%, 5.0wt.%, 7.5wt.% and 10wt.%) were prepared and then test samples with the diameter of 20 mm and length of 15 mm were produced to evaluate the friction and mechanical behaviors of the mixture. The friction and wear tests were performed using a pin-on-disc type test rig which was designed according to NF-F-11-292 French standard. All test samples were subjected to two different types of friction tests defined as periodic braking and continuous braking (also known as fade test). In this way, the coefficient of friction (CoF) of composite sample with different rubber content were determined as a function of number of braking cycle and temperature of the disc surface. The results demonstrated that addition of rubber into the matrix structure of the composite caused a significant change in the CoF. Average CoF of the composite samples increased linearly with increasing rubber content into the matrix. While the average CoF was 0.19 for the rubber-free composite, the composite sample containing 20wt.% rubber had the maximum CoF of about 0.24. Although the CoF of composite sample increased, the amount of specific wear rate decreased with increasing rubber content into the matrix. On the other hand, it was observed that the CoF decreased with increasing temperature generated in-between sample and disk depending on the increasing rubber content. While the CoF decreased to the minimum value of 0.15 at 400 °C for the rubber-free composite sample, the sample having the maximum rubber content of 10wt.% exhibited the lowest one of 0.09 at the same temperature. Addition of rubber into the matrix structure decreased the hardness and strength of the samples. It was concluded from the results that the composite matrix with 5 wt.% rubber had the best composition regarding the performance parameters such as required frictional and mechanical behavior. This composition has the average CoF of 0.21, specific wear rate of 0.024 cm³/MJ and hardness value of 63 HRX.Keywords: brake pad composite, friction and wear, rubber, friction materials
Procedia PDF Downloads 1372026 Solid-Liquid-Solid Interface of Yakam Matrix: Mathematical Modeling of the Contact Between an Aircraft Landing Gear and a Wet Pavement
Authors: Trudon Kabangu Mpinga, Ruth Mutala, Shaloom Mbambu, Yvette Kalubi Kashama, Kabeya Mukeba Yakasham
Abstract:
A mathematical model is developed to describe the contact dynamics between the landing gear wheels of an aircraft and a wet pavement during landing. The model is based on nonlinear partial differential equations, using the Yakam Matrix to account for the interaction between solid, liquid, and solid phases. This framework incorporates the influence of environmental factors, particularly water or rain on the runway, on braking performance and aircraft stability. Given the absence of exact analytical solutions, our approach enhances the understanding of key physical phenomena, including Coulomb friction forces, hydrodynamic effects, and the deformation of the pavement under the aircraft's load. Additionally, the dynamics of aquaplaning are simulated numerically to estimate the braking performance limits on wet surfaces, thereby contributing to strategies aimed at minimizing risk during landing on wet runways.Keywords: aircraft, modeling, simulation, yakam matrix, contact, wet runway
Procedia PDF Downloads 72025 Feasibility and Efficacy of Matrix Model in Arabic Countries
Authors: Yasin Ibrahim, Hisham Almohandes, Chia Hsu, Regina Baronia, Jesse Worsham, Sara Abdelgawad, Mansour Shawky, Mohammed Abdelfattah, Nesif Alhemiary
Abstract:
Background: The matrix model (MM) is an evidence-based program for treating substance use disorders. Since first translated into Arabic in 2010, the MM has been gaining popularity in Arabic countries. However, there is no published data as pertains to its efficacy and feasibility in Arabic communities. Here we aimed at exploring providers’ perspectives on its feasibility and efficacy. Methods: Eight addiction treatment centers from four Arabic countries, namely Egypt, Kingdom of Saudi Arabia, the United Arab Emirates, and Iraq, were contacted via email. They were asked to fill in a 21-item questionnaire. Results: Matrix model continues to be utilized in 6 out of the 8 contacted programs. One center in Egypt has discontinued the MM as the providers felt it was not suitable for substance disorders other than stimulants, which are not common in Egypt. Baghdad University Medical Center has substituted MM with Colombo Program as there have been more training opportunities available for it. Data showed wide variability in regards to number of clients treated with the MM (from 300 to 2500). The Arabic version was utilized for training providers in 5 out of the 8 centers while the providers of the other 3 have been trained in the United States. All providers reported that MM made their job significantly easier, and seven providers believed that MM has favorably affected the relapse rate. In all of the six centers, MM is being utilized for many substance use disorders in addition to stimulant use disorders. Reported challenges included the acceptability of patients and their families, difficulty understanding some concepts, and high drop rates in some centers. Conclusion: Matrix model seems to be a valuable modality for the treatment of substance use disorders in Arabic countries. It has its own challenges and limitations that call for more culturally adapted versions.Keywords: addiction, Arabic countries, developing countries, matrix model
Procedia PDF Downloads 1542024 Surface Roughness of AlSi/10%AlN Metal Matrix Composite Material Using the Taguchi Method
Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Mohd Asri Selamat
Abstract:
This paper presents the surface roughness of the Aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN), with three types of carbide inserts. Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to the Taguchi method, using a standard orthogonal array L27 (34). The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of machining parameters in measuring the surface roughness during the milling operation. The analysis of results, using the Taguchi method concluded that a combination of low feed rate, medium depth of cut, low cutting speed, and insert TiB2 give a better value of surface roughness. From Taguchi method, it was found that cutting speed of 230m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.5mm and type of insert of TiB2 were the optimal machining parameters that gave the optimal value of surface roughness.Keywords: AlSi/AlN Metal Matrix Composite (MMC), surface roughness, Taguchi method
Procedia PDF Downloads 4622023 Increasing Toughness of Oriented Polyvinyl Alcohol (PVA)/Fe3O4 Nanocomposite
Authors: Mozhgan Chaichi, Farhad Sharif, Saeede Mazinani
Abstract:
Polymer nanocomposites are a new class of materials for fabricating future multifunctional and lightweight structures. To obtain good mechanical, thermal and electrical properties, it is essential to achieve uniform dispersion of nanoparticles in polymer matrix. Alignment of nanoparticles in matrix can enhance mechanical, thermal, electrical and barrier properties of nanocomposites in oriented direction. Fe3O4 nanoparticles have generated huge activity in many areas of science and engineering due to its magnetic properties. Magnetic nanoparticles have been investigated for a wide range of applications in sensors, magnetic energy storage, environmental remediation, heterogeneous catalysts and drug delivery. The magnetic response from the Fe3O4 nanoparticles can facilitate with the alignment of nanofillers in a polymer matrix under magnetic field, aiming at fabricating composites with directional properties and functions. Here we report oriented nanocomposites based on Fe3O4 nanoparticles and poly (vinyl alcohol) (PVA), which prepared via a facile aqueous solution by applying a low external magnetic field (750 G). A significant enhancement of mechanical properties, and especially toughness of nanofilms, of oriented PVA/ Fe3O4 nanocomposites is obtained at low nanoparticles loading. Orientation of nanoparticles can align polymer chains and enhance mechanical properties. For example, orientation of 0.1 wt. % Fe3O4 nanoparticles increase 31% toughness and 23% modulus of oriented nanocomposite in compare of pure films, which indicate good dispersion of nanoparticles and efficient load transfer between nanoparticles and matrix.Keywords: magnetic nanoparticles, nanocomposites, toughness, orientation
Procedia PDF Downloads 3292022 The Effect of Arbitrary Support Conditions on the Static Behavior of Curved Beams Using the Finite Element Method
Authors: Hossein Mottaghi T., Amir R. Masoodi
Abstract:
This study presents a finite curved element for analyzing the static behavior of curved beams within the elastic range. The objective is to enhance accuracy while reducing the number of elements by incorporating first-order shear deformations of Timoshenko beams. Initially, finite element formulations are developed by considering polynomial initial functions for axial, shear, and rotational deformations for a three-node element. Subsequently, nodal interpolation functions for this element are derived, followed by the construction of the element stiffness matrix. To enable the utilization of the stiffness matrix in the static analysis of curved beams, the constructed matrix in the local coordinates of the element is transformed to the global coordinate system using the rotation matrix. A numerical benchmark example is investigated to assess the accuracy and effectiveness of this method. Moreover, the influence of spring stiffness on the rotation of the endpoint of a clamped beam is examined by substituting each support reaction of the beam with a spring. In the parametric study, the effect of the central angle of the beam on the rotation of the beam's endpoint in a cantilever beam under a concentrated load is examined. This research encompasses various mechanical, geometrical, and boundary configurations to evaluate the static characteristics of curved beams, thus providing valuable insights for their analysis and examination.Keywords: curved beam, finite element method, first-order shear deformation theory, elastic support
Procedia PDF Downloads 692021 Change Point Detection Using Random Matrix Theory with Application to Frailty in Elderly Individuals
Authors: Malika Kharouf, Aly Chkeir, Khac Tuan Huynh
Abstract:
Detecting change points in time series data is a challenging problem, especially in scenarios where there is limited prior knowledge regarding the data’s distribution and the nature of the transitions. We present a method designed for detecting changes in the covariance structure of high-dimensional time series data, where the number of variables closely matches the data length. Our objective is to achieve unbiased test statistic estimation under the null hypothesis. We delve into the utilization of Random Matrix Theory to analyze the behavior of our test statistic within a high-dimensional context. Specifically, we illustrate that our test statistic converges pointwise to a normal distribution under the null hypothesis. To assess the effectiveness of our proposed approach, we conduct evaluations on a simulated dataset. Furthermore, we employ our method to examine changes aimed at detecting frailty in the elderly.Keywords: change point detection, hypothesis tests, random matrix theory, frailty in elderly
Procedia PDF Downloads 522020 Parametric Optimization of Wire Electric Discharge Machining (WEDM) for Aluminium Metal Matrix Composites
Authors: G. Rajyalakhmi, C. Karthik, Gerson Desouza, Rimmie Duraisamy
Abstract:
In this present work, metal matrix composites with combination of aluminium with (Sic/Al2O3) were fabricated using stir casting technique. The objective of the present work is to optimize the process parameters of Wire Electric Discharge Machining (WEDM) composites. Pulse ON Time, Pulse OFF Time, wire feed and sensitivity are considered as input process parameters with responses Material Removal Rate (MRR), Surface Roughness (SR) for optimization of WEDM process. Taguchi L18 Orthogonal Array (OA) is used for experimentation. Grey Relational Analysis (GRA) is coupled with Taguchi technique for multiple process parameters optimization. ANOVA (Analysis of Variance) is used for finding the impact of process parameters individually. Finally confirmation experiments were carried out to validate the predicted results.Keywords: parametric optimization, particulate reinforced metal matrix composites, Taguchi-grey relational analysis, WEDM
Procedia PDF Downloads 5802019 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches
Authors: Bin Liu
Abstract:
As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines
Procedia PDF Downloads 1252018 A Time-Reducible Approach to Compute Determinant |I-X|
Authors: Wang Xingbo
Abstract:
Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.Keywords: algorithm, determinant, computation, eigenvalue, time complexity
Procedia PDF Downloads 4152017 Prognostic Value of Serum Matrix Metalloproteinase (MMP-9) in Critically Ill Septic Patients
Authors: Sherif Sabri, Nael Samir, Mohamed Ali, Ahmed ElSakhawy
Abstract:
Introduction: There is growing evidence to support the hypothesis that serum matrix metalloproteinase -9 in could be an early predictor of mortality in septic patients. Aim of the work: Study the relationship of matrix metalloproteinase 9 in patients with SIRS in comparison to septic patients in day 0 and day 2. Patients and Methods: This is a prospective observational study conducted on 40 adult critically ill patients staying more than 24 hours in ICU either surgical or medical department, El Fayoum General Hospital in the period from November 2014 to March 2015. Patients met at least two of the criteria for severe inflammatory response syndrome (SIRS). Diagnostic criteria include several clinical and laboratory findings of sepsis induced tissue hypoperfusion or organ dysfunction. Samples were grouped as drawn either at admission, or at day 2 after admission. Results: Patients were divided into two groups: The non-sepsis (SIRS) group, which included 15 (37.5%) patients with no later evidence of sepsis were enrolled as controls. The Sepsis group, which included 25 patients diagnosed to have SIRS with later evidence of sepsis with positive culture. Exploring serum level of MMP-9 in non-survivors and survivors, there was significant increase in non-survivors if compared to survivors at admission p-value 0.001 (mean value in survivors 4.4mg/dl±4.1mg/dl at admission versus mean value in non-survivors 11.9mg/dl±5.8mg/dl) and after two days of admission was also significant increase p-value 0.001 (mean value in survivors 10.9mg/dl ±9.4mg/dl versus mean value in non-survivors 22.6mg/dl±10.4). Conclusion: MMP-9 levels in septic patients have a beneficial role in ICU for high-risk stratification as it is an independent marker of mortality in severe sepsis.Keywords: matrix metalloproteinase (MMP-9), sepsis, septic shock, systemic inflamatory response syndrome
Procedia PDF Downloads 2242016 Feedback Matrix Approach for Relativistic Runaway Electron Avalanches Dynamics in Complex Electric Field Structures
Authors: Egor Stadnichuk
Abstract:
Relativistic runaway electron avalanches (RREA) are a widely accepted source of thunderstorm gamma-radiation. In regions with huge electric field strength, RREA can multiply via relativistic feedback. The relativistic feedback is caused both by positron production and by runaway electron bremsstrahlung gamma-rays reversal. In complex multilayer thunderstorm electric field structures, an additional reactor feedback mechanism appears due to gamma-ray exchange between separate strong electric field regions with different electric field directions. The study of this reactor mechanism in conjunction with the relativistic feedback with Monte Carlo simulations or by direct solution of the kinetic Boltzmann equation requires a significant amount of computational time. In this work, a theoretical approach to study feedback mechanisms in RREA physics is developed. It is based on the matrix of feedback operators construction. With the feedback matrix, the problem of the dynamics of avalanches in complex electric structures is reduced to the problem of finding eigenvectors and eigenvalues. A method of matrix elements calculation is proposed. The proposed concept was used to study the dynamics of RREAs in multilayer thunderclouds.Keywords: terrestrial Gamma-ray flashes, thunderstorm ground enhancement, relativistic runaway electron avalanches, gamma-rays, high-energy atmospheric physics, TGF, TGE, thunderstorm, relativistic feedback, reactor feedback, reactor model
Procedia PDF Downloads 1722015 Competitor Integration with Voice of Customer Ratings in QFD Studies Using Geometric Mean Based on AHP
Authors: Zafar Iqbal, Nigel P. Grigg, K. Govindaraju, Nicola M. Campbell-Allen
Abstract:
Quality Function Deployment (QFD) is structured approach. It has been used to improve the quality of products and process in a wide range of fields. Using this systematic tool, practitioners normally rank Voice of Customer ratings (VoCs) in order to produce Improvement Ratios (IRs) which become the basis for prioritising process / product design or improvement activities. In one matrix of the House of Quality (HOQ) competitors are rated. The method of obtaining improvement ratios (IRs) does not always integrate the competitors’ rating in a systematic way that fully utilises competitor rating information. This can have the effect of diverting QFD practitioners’ attention from a potentially important VOC to less important VOC. In order to enhance QFD analysis, we present a more systematic method for integrating competitor ratings, utilising the geometric mean of the customer rating matrix. In this paper we develop a new approach, based on the Analytic Hierarchy Process (AHP), in which we generating a matrix of multiple comparisons of all competitors, and derive a geometric mean for each competitor. For each VOC an improved IR is derived which-we argue herein - enhances the initial VOC importance ratings by integrating more information about competitor performance. In this way, our method can help overcome one of the possible shortcomings of QFD. We then use a published QFD example from literature as a case study to demonstrate the use of the new AHP-based IRs, and show how these can be used to re-rank existing VOCs to -arguably- better achieve the goal of customer satisfaction in relation VOC ratings and competitors’ rankings. We demonstrate how two dimensional AHP-based geometric mean derived from the multiple competitor comparisons matrix can be useful for analysing competitors’ rankings. Our method utilises an established methodology (AHP) applied within an established application (QFD), but in an original way (through the competitor analysis matrix), to achieve a novel improvement.Keywords: quality function deployment, geometric mean, improvement ratio, AHP, competitors ratings
Procedia PDF Downloads 3662014 External Sulphate Attack: Advanced Testing and Performance Specifications
Authors: G. Massaad, E. Roziere, A. Loukili, L. Izoret
Abstract:
Based on the monitoring of mass, hydrostatic weighing, and the amount of leached OH- we deduced the nature of leached and precipitated minerals, the amount of lost aggregates and the evolution of porosity and cracking during the sulphate attack. Using these information, we are able to draw the volume / mass changes brought by mineralogical variations and cracking of the cement matrix. Then we defined a new performance indicator, the averaged density, capable to resume along the test of sulphate attack the occurred physicochemical variation occurred in the cementitious matrix and then highlight.Keywords: monitoring strategy, performance indicator, sulphate attack, mechanism of degradation
Procedia PDF Downloads 3212013 Flammability of Banana Fibre Reinforced Epoxy/Sodium Bromate Blend: Investigation of Variation in Mechanical Properties
Authors: S. Badrinarayanan, R. Vimal, H. Sivaraman, P. Deepak, R. Vignesh Kumar, A. Ponshanmugakumar
Abstract:
In the present study, the flammability properties of banana fibre reinforced epoxy/ sodium bromate blended composites are studied. Two sets of composite material were prepared, one formed by blending sodium bromate with epoxy matrix and other with neat epoxy matrix. Epoxy resin was blended with various weight fractions of sodium bromate, 4%, 8% and 12%. The composite made with plain epoxy matrix was used as the standard reference material. The mechanical tests, heat deflection tests and flammability tests were carried out on all the composite samples. Flammability test shows the improved flammability properties of the sodium bromated banana-epoxy composite. The modification in flammability properties of the composites by the addition of sodium bromate results in the reduced mechanical properties. The fractured surfaces under various mechanical testing were analysed using morphological analysis done using scanning electron microscope.Keywords: banana fibres, epoxy resin, sodium bromate, flammability test, heat deflection
Procedia PDF Downloads 2972012 On the Construction of Lightweight Circulant Maximum Distance Separable Matrices
Authors: Qinyi Mei, Li-Ping Wang
Abstract:
MDS matrices are of great significance in the design of block ciphers and hash functions. In the present paper, we investigate the problem of constructing MDS matrices which are both lightweight and low-latency. We propose a new method of constructing lightweight MDS matrices using circulant matrices which can be implemented efficiently in hardware. Furthermore, we provide circulant MDS matrices with as few bit XOR operations as possible for the classical dimensions 4 × 4, 8 × 8 over the space of linear transformations over finite field F42 . In contrast to previous constructions of MDS matrices, our constructions have achieved fewer XORs.Keywords: linear diffusion layer, circulant matrix, lightweight, maximum distance separable (MDS) matrix
Procedia PDF Downloads 410