Search results for: finite impulse response filter
8015 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams
Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha
Abstract:
The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation
Procedia PDF Downloads 4318014 Potential Enhancement of Arsenic Removal Filter Commonly Used in South Asia: A Review
Authors: Sarthak Karki, Haribansha Timalsina
Abstract:
Kanchan Arsenic Filter is an economical low cost and termed the most efficient arsenic removal filter system in South Asian countries such as Nepal. But when the effluent quality was evaluated, it was seen to possess a lower removal rate of arsenite species. In addition to that, greater pathogenic growth and loss in overall efficacy with time due to precipitation of iron sulphates were the further complications. This brings the health issue on the front line as millions of people rely on groundwater sources for general water necessities. With this paper, we analyzed the mechanisms and changes in the efficiency of the extant filter system when integrated with activated laterite and hair column beds, plus an additional charcoal layer for inhibiting pathogen colonies. Hair column have rich keratin protein that binds with arsenic species, and similarly, raw laterite has huge deposits of iron and aluminum, all of these factors helping to remove heavy metal contaminants from water sources. Further study on the commercialized mass production of the new proposed filter and versatility analysis is required.Keywords: laterite, charcoal, arsenic removal, hair column
Procedia PDF Downloads 888013 Compact Dual-Band Bandpass Filter Based on Quarter Wavelength Stepped Impedance Resonators
Authors: Yu-Fu Chen, Zih-Jyun Dai, Chen-Te Chiu, Shiue-Chen Chiou, Yung-Wei Chen, Yu-Ming Lin, Kuan-Yu Chen, Hung-Wei Wu, Hsin-Ying Lee, Yan-Kuin Su, Shoou-Jinn Chang
Abstract:
This paper presents a compact dual-band bandpass filter that involves using the quarter wavelength stepped impedance resonators (SIRs) for achieving simultaneously compact circuit size and good dual-band performance. The filter is designed at 2.4 / 3.5 GHz and constructed by two pairs of quarter wavelength SIRs and source-load lines. By properly tuning the impedance ratio, length ratio and radius of via hole of the SIRs, dual-passbands performance can be easily determined. To improve the passband selectivity, the use of source-load lines is to increase coupling energy between the resonators. The filter is showing simple configuration, effective design method and small circuit size. The measured results are in good agreement with the simulation results.Keywords: dual-band, bandpass filter, stepped impedance resonators, SIR
Procedia PDF Downloads 5168012 Statically Fused Unbiased Converted Measurements Kalman Filter
Authors: Zhengkun Guo, Yanbin Li, Wenqing Wang, Bo Zou
Abstract:
The statically fused converted position and doppler measurements Kalman filter (SF-CMKF) with additive debiased measurement conversion has been previously presented to combine the resulting states of converted position measurements Kalman filter (CPMKF) and converted doppler measurement Kalman filter (CDMKF) to yield the final state estimates under minimum mean squared error (MMSE) criterion. However, the exact compensation for the bias in the polar-to-cartesian and spherical-to-cartesian conversion are multiplicative and depend on the statistics of the cosine of the angle measurement errors. As a result, the consistency and performance of the SF-CMKF may be suboptimal in large-angle error situations. In this paper, the multiplicative unbiased position and Doppler measurement conversion for 2D (polar-to-cartesian) tracking are derived, and the SF-CMKF is improved to use those conversions. Monte Carlo simulations are presented to demonstrate the statistical consistency of the multiplicative unbiased conversion and the superior performance of the modified SF-CMKF (SF-UCMKF).Keywords: measurement conversion, Doppler, Kalman filter, estimation, tracking
Procedia PDF Downloads 2088011 Extended Kalman Filter Based Direct Torque Control of Permanent Magnet Synchronous Motor
Authors: Liang Qin, Hanan M. D. Habbi
Abstract:
A robust sensorless speed for permanent magnet synchronous motor (PMSM) has been presented for estimation of stator flux components and rotor speed based on The Extended Kalman Filter (EKF). The model of PMSM and its EKF models are modeled in Matlab /Sirnulink environment. The proposed EKF speed estimation method is also proved insensitive to the PMSM parameter variations. Simulation results demonstrate a good performance and robustness.Keywords: DTC, Extended Kalman Filter (EKF), PMSM, sensorless control, anti-windup PI
Procedia PDF Downloads 6648010 Carbon Capture: Growth and Development of Membranes in Gas Sequestration
Authors: Sreevalli Bokka
Abstract:
Various technologies are emerging to capture or reduce carbon intensity from a gas stream, such as industrial effluent air and atmosphere. Of these technologies, filter membranes are emerging as a key player in carbon sequestering. The key advantages of these membranes are their high surface area and porosity. Fabricating a filter membrane that has high selectivity for carbon sequestration is challenging as material properties and processing parameters affect the membrane properties. In this study, the growth of the filter membranes and the critical material properties that impact carbon sequestration are presented.Keywords: membranes, filtration, separations, polymers, carbon capture
Procedia PDF Downloads 698009 Design and Synthesis of Two Tunable Bandpass Filters Based on Varactors and Defected Ground Structure
Authors: M'Hamed Boulakroune, Mouloud Challal, Hassiba Louazene, Saida Fentiz
Abstract:
This paper presents a new ultra wideband (UWB) microstrip bandpass filter (BPF) at microwave frequencies. The first one is based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The second structure is a tunable bandpass filters using planar patch resonators based on diode varactor. This filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactors are connected. Indeed, this filter is initially centered at 2.4 GHz, the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses, and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere.Keywords: defected ground structure, diode varactor, microstrip bandpass filter, multiple-mode resonator
Procedia PDF Downloads 3118008 Numerical Studying the Real Analysis of the Seismic Response of the Soil
Authors: Noureddine Litim
Abstract:
This work is to theoretical and numerical studying the real analysis of the seismic response of the soil with an Elasto-plastic behavior. To perform this analysis, we used different core drilling performed at the tunnel T4 in El Horace section of the highway east-west. The two-dimensional model (2d) was established by the code of finite element plaxis to estimate the displacement amplification and accelerations caused by the seismic wave in the different core drilling and compared with the factor of acceleration given by the RPA (2003) in the area studying. Estimate the displacement amplification and accelerations caused by the seismic wave.Keywords: seismic response, deposition of soil, plaxis, elasto-plastic
Procedia PDF Downloads 1058007 Speech Enhancement Using Kalman Filter in Communication
Authors: Eng. Alaa K. Satti Salih
Abstract:
Revolutions Applications such as telecommunications, hands-free communications, recording, etc. which need at least one microphone, the signal is usually infected by noise and echo. The important application is the speech enhancement, which is done to remove suppressed noises and echoes taken by a microphone, beside preferred speech. Accordingly, the microphone signal has to be cleaned using digital signal processing DSP tools before it is played out, transmitted, or stored. Engineers have so far tried different approaches to improving the speech by get back the desired speech signal from the noisy observations. Especially Mobile communication, so in this paper will do reconstruction of the speech signal, observed in additive background noise, using the Kalman filter technique to estimate the parameters of the Autoregressive Process (AR) in the state space model and the output speech signal obtained by the MATLAB. The accurate estimation by Kalman filter on speech would enhance and reduce the noise then compare and discuss the results between actual values and estimated values which produce the reconstructed signals.Keywords: autoregressive process, Kalman filter, Matlab, noise speech
Procedia PDF Downloads 3448006 The Different Ways to Describe Regular Languages by Using Finite Automata and the Changing Algorithm Implementation
Authors: Abdulmajid Mukhtar Afat
Abstract:
This paper aims at introducing finite automata theory, the different ways to describe regular languages and create a program to implement the subset construction algorithms to convert nondeterministic finite automata (NFA) to deterministic finite automata (DFA). This program is written in c++ programming language. The program reads FA 5tuples from text file and then classifies it into either DFA or NFA. For DFA, the program will read the string w and decide whether it is acceptable or not. If accepted, the program will save the tracking path and point it out. On the other hand, when the automation is NFA, the program will change the Automation to DFA so that it is easy to track and it can decide whether the w exists in the regular language or not.Keywords: finite automata, subset construction, DFA, NFA
Procedia PDF Downloads 4268005 Structural Testing and the Finite Element Modelling of Anchors Loaded Against Partially Confined Surfaces
Authors: Ali Karrech, Alberto Puccini, Ben Galvin, Davide Galli
Abstract:
This paper summarises the laboratory tests, numerical models and statistical approach developed to investigate the behaviour of concrete blocks loaded in shear through metallic anchors. This research is proposed to bridge a gap in the state of the art and practice related to anchors loaded against partially confined concrete surfaces. Eight concrete blocks (420 mm x 500 mm x 1000 mm) with 150 and/or 250 deep anchors were tested. The stainless-steel anchors of diameter 16 mm were bonded with HIT-RE 500 V4 injection epoxy resin and were subjected to shear loading against partially supported edges. In addition, finite element models were constructed to validate the laboratory tests and explore the influence of key parameters such as anchor depth, anchor distance from the edge, and compressive strength on the stability of the block. Upon their validation experimentally, the numerical results were used to populate, develop and interpret a systematic parametric study based on the Design of Experiment approach through the Box-Behnken design and Response Surface Methodology. An empirical model has been derived based on this approach, which predicts the load capacity with the desirable intervals of confidence.Keywords: finite element modelling, design of experiment, response surface methodology, Box-Behnken design, empirical model, interval of confidence, load capacity
Procedia PDF Downloads 248004 The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind
Authors: Melusi Khumalo, Anastacia Dlamini
Abstract:
In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method.Keywords: finite element method, Galerkin approach, Fredholm integral equations, nonlinear integral equations
Procedia PDF Downloads 3768003 Real-Time Radar Tracking Based on Nonlinear Kalman Filter
Authors: Milca F. Coelho, K. Bousson, Kawser Ahmed
Abstract:
To accurately track an aerospace vehicle in a time-critical situation and in a highly nonlinear environment, is one of the strongest interests within the aerospace community. The tracking is achieved by estimating accurately the state of a moving target, which is composed of a set of variables that can provide a complete status of the system at a given time. One of the main ingredients for a good estimation performance is the use of efficient estimation algorithms. A well-known framework is the Kalman filtering methods, designed for prediction and estimation problems. The success of the Kalman Filter (KF) in engineering applications is mostly due to the Extended Kalman Filter (EKF), which is based on local linearization. Besides its popularity, the EKF presents several limitations. To address these limitations and as a possible solution to tracking problems, this paper proposes the use of the Ensemble Kalman Filter (EnKF). Although the EnKF is being extensively used in the context of weather forecasting and it is being recognized for producing accurate and computationally effective estimation on systems with a very high dimension, it is almost unknown by the tracking community. The EnKF was initially proposed as an attempt to improve the error covariance calculation, which on the classic Kalman Filter is difficult to implement. Also, in the EnKF method the prediction and analysis error covariances have ensemble representations. These ensembles have sizes which limit the number of degrees of freedom, in a way that the filter error covariance calculations are a lot more practical for modest ensemble sizes. In this paper, a realistic simulation of a radar tracking was performed, where the EnKF was applied and compared with the Extended Kalman Filter. The results suggested that the EnKF is a promising tool for tracking applications, offering more advantages in terms of performance.Keywords: Kalman filter, nonlinear state estimation, optimal tracking, stochastic environment
Procedia PDF Downloads 1468002 Investigation of Overstrength of Dual System by Non-Linear Static and Dynamic Analyses
Authors: Nina Øystad-Larsen, Miran Cemalovic, Amir M. Kaynia
Abstract:
The nonlinear static and dynamic analysis procedures presented in EN 1998-1 for the structural response of a RC wall-frame building are assessed. The structure is designed according to the guidelines for high ductility (DCH) in 1998-1. The finite element packages SeismoStruct and OpenSees are utilized and evaluated. The structural response remains nearly in the elastic range even though the building was designed for high ductility. The overstrength is a result of oversized and heavily reinforced members, with emphasis on the lower storey walls. Nonlinear response history analysis in the software packages give virtually identical results for displacements.Keywords: behaviour factor, dual system, OpenSEES, overstrength, seismostruct
Procedia PDF Downloads 4078001 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation
Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang
Abstract:
Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven
Procedia PDF Downloads 138000 The Use of Random Set Method in Reliability Analysis of Deep Excavations
Authors: Arefeh Arabaninezhad, Ali Fakher
Abstract:
Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty
Procedia PDF Downloads 2687999 Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios
Authors: Doo Byong Bae, Jae Jun Yoo, Il Gyu Park, Choi Seowon, Oh Chang Kook
Abstract:
There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended.Keywords: wind load, finite element analysis, linear bifurcation analysis, geometrically nonlinear analysis
Procedia PDF Downloads 6377998 Numerical Investigation on the Interior Wind Noise of a Passenger Car
Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian
Abstract:
With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.Keywords: wind noise, computational fluid dynamics, finite element method, passenger car
Procedia PDF Downloads 1717997 An Algorithm Based on the Nonlinear Filter Generator for Speech Encryption
Authors: A. Belmeguenai, K. Mansouri, R. Djemili
Abstract:
This work present a new algorithm based on the nonlinear filter generator for speech encryption and decryption. The proposed algorithm consists on the use a linear feedback shift register (LFSR) whose polynomial is primitive and nonlinear Boolean function. The purpose of this system is to construct Keystream with good statistical properties, but also easily computable on a machine with limited capacity calculated. This proposed speech encryption scheme is very simple, highly efficient, and fast to implement the speech encryption and decryption. We conclude the paper by showing that this system can resist certain known attacks.Keywords: nonlinear filter generator, stream ciphers, speech encryption, security analysis
Procedia PDF Downloads 2967996 Noncommutative Differential Structure on Finite Groups
Authors: Ibtisam Masmali, Edwin Beggs
Abstract:
In this paper, we take example of differential calculi, on the finite group A4. Then, we apply methods of non-commutative of non-commutative differential geometry to this example, and see how similar the results are to those of classical differential geometry.Keywords: differential calculi, finite group A4, Christoffel symbols, covariant derivative, torsion compatible
Procedia PDF Downloads 2527995 Impact of Import Restriction on Rice Production in Nigeria
Authors: C. O. Igberi, M. U. Amadi
Abstract:
This research paper on the impact of import restriction on rice production in Nigeria is aimed at finding/proffering valid solutions to the age long problem of rice self-sufficiency, through a better understanding of policy measures used in the past, in this case, the effectiveness of rice import restriction of the early 90’s. It tries to answer the questions of; import restriction boosting domestic rice production and the macroeconomic determining factors of Gross Domestic Rice Product (GDRP). The research probe is investigated through literature and analytical frameworks, such that time series data on the GDRP, Gross Fixed Capital Formation (GFCF), average foreign rice producers’ prices(PPF), domestic producers’ prices (PPN) and the labour force (LABF) are collated for analysis (with an import restriction dummy variable, POL1). The research objectives/hypothesis are analysed using; Cointegration, Vector Error Correction Model (VECM), Impulse Response Function (IRF) and Granger Causality Test(GCT) methodologies. Results show that in the short-run error correction specification for GDRP, a percentage (1%) deviation away from the long-run equilibrium in a current quarter is only corrected by 0.14% in the subsequent quarter. Also, the rice import restriction policy had no significant effect on the GDRP at this time. Other findings show that the policy period has, in fact, had effects on the PPN and LABF. The choice variables used are valid macroeconomic factors that explain the GDRP of Nigeria, as adduced from the IRF and GCT, and in the long-run. Policy recommendations suggest that the import restriction is not disqualified as a veritable tool for improving domestic rice production, rather better enforcement procedures and strict adherence to the policy dictates is needed. Furthermore, accompanying policies which drive public and private capital investment and accumulation must be introduced. Also, employment rate and labour substitution in the agricultural sector should not be drastically changed, rather its welfare and efficiency be improved.Keywords: import restriction, gross domestic rice production, cointegration, VECM, Granger causality, impulse response function
Procedia PDF Downloads 2067994 Micromechanical Analysis of Interface Properties Effects on Transverse Tensile Response of Fiber-Reinforced Composites
Authors: M. Naderi, N. Iyyer, K. Goel, N. Phan
Abstract:
A micromechanical analysis of the influence of fiber-matrix interface fracture properties on the transverse tensile response of fiber-reinforced composite is investigated. Augmented finite element method (AFEM) is used to provide high-fidelity damage initiation and propagation along the micromechanical analysis. Effects of fiber volume fraction and fiber shapes are also studies in representative volume elements (RVE) to capture the stochastic behavior of the composite under loading. In addition, defects and voids influence on the composite response are investigated in micromechanical analysis. The results reveal that the response of RVE with constant interface properties overestimates the composite transverse strength. It is also seen that the damage initiation and propagation locations are controlled by the distributions of fracture properties, fibers’ shapes, and defects.Keywords: cohesive model, fracture, computational mechanics, micromechanics
Procedia PDF Downloads 2917993 Application of Single Tuned Passive Filters in Distribution Networks at the Point of Common Coupling
Authors: M. Almutairi, S. Hadjiloucas
Abstract:
The harmonic distortion of voltage is important in relation to power quality due to the interaction between the large diffusion of non-linear and time-varying single-phase and three-phase loads with power supply systems. However, harmonic distortion levels can be reduced by improving the design of polluting loads or by applying arrangements and adding filters. The application of passive filters is an effective solution that can be used to achieve harmonic mitigation mainly because filters offer high efficiency, simplicity, and are economical. Additionally, possible different frequency response characteristics can work to achieve certain required harmonic filtering targets. With these ideas in mind, the objective of this paper is to determine what size single tuned passive filters work in distribution networks best, in order to economically limit violations caused at a given point of common coupling (PCC). This article suggests that a single tuned passive filter could be employed in typical industrial power systems. Furthermore, constrained optimization can be used to find the optimal sizing of the passive filter in order to reduce both harmonic voltage and harmonic currents in the power system to an acceptable level, and, thus, improve the load power factor. The optimization technique works to minimize voltage total harmonic distortions (VTHD) and current total harmonic distortions (ITHD), where maintaining a given power factor at a specified range is desired. According to the IEEE Standard 519, both indices are viewed as constraints for the optimal passive filter design problem. The performance of this technique will be discussed using numerical examples taken from previous publications.Keywords: harmonics, passive filter, power factor, power quality
Procedia PDF Downloads 3067992 Thermal Effect on Wave Interaction in Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry
Abstract:
There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.Keywords: finite element, temperature dependency, wave dispersion characteristics, wave finite element, wave scattering properties
Procedia PDF Downloads 3087991 On the Cyclic Property of Groups of Prime Order
Authors: Ying Yi Wu
Abstract:
The study of finite groups is a central topic in algebraic structures, and one of the most fundamental questions in this field is the classification of finite groups up to isomorphism. In this paper, we investigate the cyclic property of groups of prime order, which is a crucial result in the classification of finite abelian groups. We prove the following statement: If p is a prime, then every group G of order p is cyclic. Our proof utilizes the properties of group actions and the class equation, which provide a powerful tool for studying the structure of finite groups. In particular, we first show that any non-identity element of G generates a cyclic subgroup of G. Then, we establish the existence of an element of order p, which implies that G is generated by a single element. Finally, we demonstrate that any two generators of G are conjugate, which shows that G is a cyclic group. Our result has significant implications in the classification of finite groups, as it implies that any group of prime order is isomorphic to the cyclic group of the same order. Moreover, it provides a useful tool for understanding the structure of more complicated finite groups, as any finite abelian group can be decomposed into a direct product of cyclic groups. Our proof technique can also be extended to other areas of group theory, such as the classification of finite p-groups, where p is a prime. Therefore, our work has implications beyond the specific result we prove and can contribute to further research in algebraic structures.Keywords: group theory, finite groups, cyclic groups, prime order, classification.
Procedia PDF Downloads 847990 Fast and Robust Long-term Tracking with Effective Searching Model
Authors: Thang V. Kieu, Long P. Nguyen
Abstract:
Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.Keywords: correlation filter, long-term tracking, random fern, real-time tracking
Procedia PDF Downloads 1387989 Operator Splitting Scheme for the Inverse Nagumo Equation
Authors: Sharon-Yasotha Veerayah-Mcgregor, Valipuram Manoranjan
Abstract:
A backward or inverse problem is known to be an ill-posed problem due to its instability that easily emerges with any slight change within the conditions of the problem. Therefore, only a limited number of numerical approaches are available to solve a backward problem. This paper considers the Nagumo equation, an equation that describes impulse propagation in nerve axons, which also models population growth with the Allee effect. A creative operator splitting numerical scheme is constructed to solve the inverse Nagumo equation. Computational simulations are used to verify that this scheme is stable, accurate, and efficient.Keywords: inverse/backward equation, operator-splitting, Nagumo equation, ill-posed, finite-difference
Procedia PDF Downloads 987988 Finite Element Modeling of Stockbridge Damper and Vibration Analysis: Equivalent Cable Stiffness
Authors: Nitish Kumar Vaja, Oumar Barry, Brian DeJong
Abstract:
Aeolian vibrations are the major cause for the failure of conductor cables. Using a Stockbridge damper reduces these vibrations and increases the life span of the conductor cable. Designing an efficient Stockbridge damper that suits the conductor cable requires a robust mathematical model with minimum assumptions. However it is not easy to analytically model the complex geometry of the messenger. Therefore an equivalent stiffness must be determined so that it can be used in the analytical model. This paper examines the bending stiffness of the cable and discusses the effect of this stiffness on the natural frequencies. The obtained equivalent stiffness compensates for the assumption of modeling the messenger as a rod. The results from the free vibration analysis of the analytical model with the equivalent stiffness is validated using the full scale finite element model of the Stockbridge damper.Keywords: equivalent stiffness, finite element model, free vibration response, Stockbridge damper
Procedia PDF Downloads 2857987 Behavior of Laminated Plates under Mechanical Loading
Authors: Mahmoudi Noureddine
Abstract:
In this study the use of two variable refined plate theories of laminated composite plates to static response of laminated plates. The plate theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. The validity of the present theory is demonstrated by comparison with solutions available in the literature and finite element method. The result is presented for the static response of simply supported rectangular plates under uniform sinusoidal mechanical loadings.Keywords: bending, composite, laminate, plates, fem
Procedia PDF Downloads 4067986 The Effect of Chemical Degradation of a Nonwoven Filter Media Membrane in Polyester
Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh
Abstract:
The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester non-woven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibers. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media
Procedia PDF Downloads 318