Search results for: energy consumption
10175 Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach
Authors: L. L. Ivy-Yap, H. A. Bekhet
Abstract:
As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 periods. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationary of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modeled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions.Keywords: co-integration, elasticity, granger causality, Malaysia, residential electricity consumption
Procedia PDF Downloads 26610174 Evaluation of PV Orientation Effect on Mismatch between Consumption Load and PV Power Profiles
Authors: Iyad M. Muslih, Yehya Abdellatif, Sara Qutishat
Abstract:
Renewable energy and in particular solar photovoltaic energy is emerging as a reasonable power generation source. The intermittent and unpredictable nature of solar energy can represent a serious challenge to the utility grids, specifically at relatively high penetration. To minimize the impact of PV power systems on the grid, self-consumption is encouraged. Self-consumption can be improved by matching the PV power generation with the electrical load consumption profile. This study will focus in studying different load profiles and comparing them to typical solar PV power generation at the selected sites with the purpose of analyzing the mismatch in consumption load profile for different users; residential, commercial, and industrial versus the solar photovoltaic output generation. The PV array orientation can be adjusted to reduce the mismatch effects. The orientation shift produces a corresponding shift in the energy production curve. This shift has a little effect on the mismatch for residential loads due to the fact the peak load occurs at night due to lighting loads. This minor gain does not justify the power production loss associated with the orientation shift. The orientation shift for both commercial and industrial cases lead to valuable decrease in the mismatch effects. Such a design is worth considering for reducing grid penetration. Furthermore, the proposed orientation shift yielded better results during the summer time due to the extended daylight hours.Keywords: grid impact, HOMER, power mismatch, solar PV energy
Procedia PDF Downloads 60610173 Optimal Economic Restructuring Aimed at an Optimal Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions
Authors: Alexander Vaninsky
Abstract:
The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.Keywords: economic restructuring, input-output analysis, divisia index, factorial decomposition, E3 models
Procedia PDF Downloads 31410172 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Turkey: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests no effects of the CO2 emissions and energy use on the GDP in Turkey. There exists a short-run bidirectional relationship between the electricity and natural gas consumption, and also there is a negative unidirectional causality running from the GDP to electricity use. Overall, the results partly support arguments that there are relationships between energy use and economic output; however, the effects may differ due to the source of energy such as in the case of Turkey for the period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis
Procedia PDF Downloads 50410171 Optimization for the Hydraulic Clamping System of an Internal Circulation Two-Platen Injection Molding Machine
Authors: Jian Wang, Lu Yang, Jiong Peng
Abstract:
Internal circulation two-platen clamping system for injection molding machine (IMM) has many potential advantages on energy-saving. In order to estimate its properties, experiments in this paper were carried out. Displacement and pressure of the components were measured. In comparison, the model of hydraulic clamping system was established by using AMESim. The related parameters as well as the energy consumption could be calculated. According to the analysis, the hydraulic system was optimized in order to reduce the energy consumption.Keywords: AMESim, energy-saving, injection molding machine, internal circulation
Procedia PDF Downloads 55310170 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones
Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu
Abstract:
In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV
Procedia PDF Downloads 17610169 Study on Eco-Feedback of Thermal Comfort and Cost Efficiency for Low Energy Residence
Authors: Y. Jin, N. Zhang, X. Luo, W. Zhang
Abstract:
China with annual increasing 0.5-0.6 billion squares city residence has brought in enormous energy consumption by HVAC facilities and other appliances. In this regard, governments and researchers are encouraging renewable energy like solar energy, geothermal energy using in houses. However, high cost of equipment and low energy conversion result in a very low acceptable to residents. So what’s the equilibrium point of eco-feedback to reach economic benefit and thermal comfort? That is the main question should be answered. In this paper, the objective is an on-site solar PV and heater house, which has been evaluated as a low energy building. Since HVAC system is considered as main energy consumption equipment, the residence with 24-hour monitoring system set to measure temperature, wind velocity and energy in-out value with no HVAC system for one month of summer and winter. Thermal comfort time period will be analyzed and confirmed; then the air-conditioner will be started within thermal discomfort time for the following one summer and winter month. The same data will be recorded to calculate the average energy consumption monthly for a purpose of whole day thermal comfort. Finally, two analysis work will be done: 1) Original building thermal simulation by computer at design stage with actual measured temperature after construction will be contrastive analyzed; 2) The cost of renewable energy facilities and power consumption converted to cost efficient rate to assess the feasibility of renewable energy input for residence. The results of the experiment showed that a certain deviation exists between actual measured data and simulated one for human thermal comfort, especially in summer period. Moreover, the cost-effectiveness is high for a house in targeting city Guilin now with at least 11 years of cost-covering. The conclusion proves that an eco-feedback of a low energy residence is never only consideration of its energy net value, but also the cost efficiency that is the critical factor to push renewable energy acceptable by the public.Keywords: cost efficiency, eco-feedback, low energy residence, thermal comfort
Procedia PDF Downloads 25710168 Modelling Home Appliances for Energy Management System: Comparison of Simulation Results with Measurements
Authors: Aulon Shabani, Denis Panxhi, Orion Zavalani
Abstract:
This paper presents the modelling and development of a simulator for residential electrical appliances. The simulator is developed on MATLAB providing the possibility to analyze and simulate energy consumption of frequently used home appliances in Albania. Modelling of devices considers the impact of different factors, mentioning occupant behavior and climacteric conditions. Most devices are modeled as an electric circuit, and the electric energy consumption is estimated by the solutions of the guiding differential equations. The provided models refer to devices like a dishwasher, oven, water heater, air conditioners, light bulbs, television, refrigerator water, and pump. The proposed model allows us to simulate beforehand the energetic behavior of the largest consumption home devices to estimate peak consumption and improving its reduction. Simulated home prototype results are compared to real measurement of a considered typical home. Obtained results from simulator framework compared to monitored typical household using EmonTxV3 show the effectiveness of the proposed simulation. This conclusion will help for future simulation of a large group of typical household for a better understanding of peak consumption.Keywords: electrical appliances, energy management, modelling, peak estimation, simulation, smart home
Procedia PDF Downloads 16510167 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland
Authors: Ahmed Aisa, Tariq Iqbal
Abstract:
This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.Keywords: water heating, thermal storage, capital cost solar, consumption
Procedia PDF Downloads 43110166 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Egypt: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), CO2 emissions and gross domestic product (GDP) for Egypt using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests some negative impacts of the CO2 emissions and the coal and natural gas use on the GDP. Conversely, a positive long-run causality from the electricity consumption to the GDP is found to be significant in Egypt during the period. In the short-run, some positive unidirectional causalities exist, running from the coal consumption to the GDP, and the CO2 emissions and the natural gas use. Further, the GDP and the electricity use are positively influenced by the consumption of petroleum products and the direct combustion of crude oil. Overall, the results support arguments that there are relationships among environmental quality, energy use, and economic output in both the short term and long term; however, the effects may differ due to the sources of energy, such as in the case of Egypt for the period of 1980-2010.Keywords: CO2 emissions, Egypt, energy consumption, GDP, time series analysis
Procedia PDF Downloads 61510165 Diabetes Mellitus and Food Balance in the Kingdom of Saudi Arabia
Authors: Aljabryn Dalal Hamad
Abstract:
The present explanatory study concerns with the relation between Diabetes Mellitus and Food Balance in the Kingdom of Saudi Arabia during 2005-2010, using published data. Results illustrated that Saudi citizen daily protein consumption (DPC) during 2005-2007 (g/capita/day) is higher than the average global consumption level of protein with 15.27%, daily fat consumption (DFC) with 24.56% and daily energy consumption (DEC) with 16.93% and increases than recommended level by International Nutrition Organizations (INO) with 56% for protein, 60.49% for fat and 27.37% for energy. On the other hand, DPC per capita in Saudi Arabia decreased during the period 2008-2010 from 88.3 to 82.36 gram/ day. Moreover, DFC per capita in Saudi Arabia decreased during the period 2008-2010 from 3247.90 to 3176.43 Cal/capita/ day, and daily energy consumption (DEC) of Saudi citizen increases than world consumption with 16.93%, while increases with 27.37% than INO. Despite this, DPC, DFC and DEC per capita in Saudi Arabia still higher than world mean. On the other side, results illustrated that the number of diabetic patients in Saudi Arabia during the same period (2005-2010). The curve of diabetic patient’s number in Saudi Arabia during 2005-2010 is regular ascending with increasing level ranged between 7.10% in 2005 and 12.44% in 2010. It is essential to devise Saudi National programs to educate the public about the relation of food balances and diabetes so it could be avoided, and provide citizens with healthy dietary balances tables.Keywords: Diabetes mellitus, food balance, energy, fat, protein, Saudi Arabia
Procedia PDF Downloads 46110164 Understanding Consumption Planning Behaviors
Authors: Gaosheng Ju
Abstract:
Our empirical evidence supports a model of consumption planning behaviors with the following two characteristics. First, households formulate a rational consumption target based on their desired target, displaying a diminishing sensitivity to the discrepancy between them. Second, the established target is a reference point for their planned consumption. The diminishing sensitivity leads to opposite reactions in higher and lower quantiles of both consumption targets and consumption growth to changes in economic conditions. This phenomenon accounts for the perplexingly low correlation between consumption and other macroeconomic variables. Furthermore, the opposing movements of consumption targets offer new insights into consumption-based asset pricing.Keywords: consumption planning, reference point, diminishing sensitivity, quantile regression, asset pricing puzzles
Procedia PDF Downloads 8310163 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon
Authors: Nadine Yehya, Chantal Maatouk
Abstract:
Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach
Procedia PDF Downloads 22210162 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence
Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej
Abstract:
In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction
Procedia PDF Downloads 10610161 Experimental Analysis of the Plate-on-Tube Evaporator on a Domestic Refrigerator’s Performance
Authors: Mert Tosun, Tuğba Tosun
Abstract:
The evaporator is the utmost important component in the refrigeration system, since it enables the refrigerant to draw heat from the desired environment, i.e. the refrigerated space. Studies are being conducted on this component which generally affects the performance of the system, where energy efficient products are important. This study was designed to enhance the effectiveness of the evaporator in the refrigeration cycle of a domestic refrigerator by adjusting the capillary tube length, refrigerant amount, and the evaporator pipe diameter to reduce energy consumption. The experiments were conducted under identical thermal and ambient conditions. Experiment data were analysed using the Design of Experiment (DOE) technique which is a six-sigma method to determine effects of parameters. As a result, it has been determined that the most important parameters affecting the evaporator performance among the selected parameters are found to be the refrigerant amount and pipe diameter. It has been determined that the minimum energy consumption is 6-mm pipe diameter and 16-g refrigerant. It has also been noted that the overall consumption of the experiment sample decreased by 16.6% with respect to the reference system, which has 7-mm pipe diameter and 18-g refrigerant.Keywords: heat exchanger, refrigerator, design of experiment, energy consumption
Procedia PDF Downloads 15310160 Applying Energy Consumption Schedule and Comparing It with Load Shifting Technique in Residential Load
Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasy
Abstract:
Energy consumption schedule (ECS) technique shifts usage of loads from on peak hours and redistributes them throughout the day according to residents’ operating time preferences. This technique is used as form of indirect control from utility to improve the load curve and hence its load factor and reduce customer’s total electric bill as well. Similarly, load shifting technique achieves ECS purposes but as direct control form applied from utility. In this paper, ECS is simulated twice as optimal constrained mathematical formula, solved by using CVX program in MATLAB® R2013b. First, it is utilized for single residential building with ten apartments to determine max allowable energy consumption per hour for each residential apartment. Then, it is used for single apartment with number of shiftable domestic devices, where operating schedule is deduced using previous simulation output results as constraints. The paper ends by giving differences between ECS technique and load shifting technique via literature and simulation. Based on results assessment, it will be shown whether using ECS or load shifting is more beneficial to both customer and utility.Keywords: energy consumption schedule, load shifting, comparison, demand side mangement
Procedia PDF Downloads 18410159 Comparison of Power Consumption of WiFi Inbuilt Internet of Things Device with Bluetooth Low Energy
Authors: Darshana Thomas, Edward Wilkie, James Irvine
Abstract:
The Internet of things (IoT) is currently a highly researched topic, especially within the context of the smart home. These are small sensors that are capable of gathering data and transmitting it to a server. The majority of smart home products use protocols such as ZigBee or Bluetooth Low Energy (BLE). As these small sensors are increasing in number, the need to implement these with much more capable and ubiquitous transmission technology is necessary. The high power consumption is the reason that holds these small sensors back from using other protocols such as the most ubiquitous form of communication, WiFi. Comparing the power consumption of existing transmission technologies to one with WiFi inbuilt, would provide a better understanding for choosing between these technologies. We have developed a small IoT device with WiFi capability and proven that it is much more efficient than the first protocol, 433 MHz. We extend our work in this paper and compare WiFi power consumption with the other most widely used protocol BLE. The experimental results in this paper would conclude whether the developed prototype is capable in terms of power consumption to replace the existing protocol BLE with WiFi.Keywords: bluetooth, internet of things (IoT), power consumption, WiFi
Procedia PDF Downloads 26710158 Transition From Economic Growth-Energy Use to Green Growth-Green Energy Towards Environmental Quality: Evidence from Africa Using Econometric Approaches
Authors: Jackson Niyongabo
Abstract:
This study addresses a notable gap in the existing literature on the relationship between energy consumption, economic growth, and CO₂ emissions, particularly within the African context. While numerous studies have explored these dynamics globally and regionally across various development levels, few have delved into the nuances of regions and income levels specific to African countries. Furthermore, the evaluation of the interplay between green growth policies, green energy technologies, and their impact on environmental quality has been underexplored. This research aims to fill these gaps by conducting a comprehensive analysis of the transition from conventional economic growth and energy consumption to a paradigm of green growth coupled with green energy utilization across the African continent from 1980 to 2018. The study is structured into three main parts: an empirical examination of the long-term effects of energy intensity, renewable energy consumption, and economic growth on CO₂ emissions across diverse African regions and income levels; an estimation of the long-term impact of green growth and green energy use on CO₂ emissions for countries implementing green policies within Africa, as well as at regional and global levels; and a comparative analysis of the impact of green growth policies on environmental degradation before and after implementation. Employing advanced econometric methods and panel estimators, the study utilizes a testing framework, panel unit tests, and various estimators to derive meaningful insights. The anticipated results and conclusions will be elucidated through causality tests, impulse response, and variance decomposition analyses, contributing valuable knowledge to the discourse on sustainable development in the African context.Keywords: economic growth, green growth, energy consumption, CO₂ emissions, econometric models, green energy
Procedia PDF Downloads 5910157 Energy Management of Hybrid Energy Source Composed of a Fuel Cell and Supercapacitor for an Electric Vehicle
Authors: Mejri Achref
Abstract:
This paper proposes an energy management strategy for an electrical hybrid vehicle which is composed of a Proton Exchange Membrane (PEM) fuel cell and a supercapacitor storage device. In this paper, the mathematical model for the proposed power train, comprising the PEM Fuel Cell, supercapacitor, boost converter, inverter, and vehicular structure, was modeled in MATLAB/Simulink. The proposed algorithm is evaluated for the Highway Fuel Economy Test (HWFET) driving cycle. The obtained results demonstrate the effectiveness of the proposed energy management strategy in reduction of hydrogen consumption.Keywords: proton exchange membrane fuel cell, hybrid vehicle, hydrogen consumption, energy management strategy
Procedia PDF Downloads 17810156 The Influence of Microcapsulated Phase Change Materials on Thermal Performance of Geopolymer Concrete
Authors: Vinh Duy Cao, Shima Pilehvar, Anna M. Szczotok, Anna-Lena Kjøniksen
Abstract:
The total energy consumption is dramatically increasing on over the world, especially for building energy consumption where a significant proportion of energy is used for heating and cooling purposes. One of the solutions to reduce the energy consumption for the building is to improve construction techniques and enhance material technology. Recently, microcapsulated phase change materials (MPCM) with high energy storage capacity within the phase transition temperature of the materials is a potential method to conserve and save energy. A new composite materials with high energy storage capacity by mixing MPCM into concrete for passive building technology is the promising candidate to reduce the energy consumption. One of the most untilized building materials for mixing with MPCM is Portland cement concrete. However, the emission of carbon dioxide (CO2) due to producing cement which plays the important role in the global warming is the main drawback of PCC. Accordingly, an environmentally friendly building material, geopolymer, which is synthesized by the reaction between the industrial waste material (aluminosilicate) and a strong alkali activator, is a potential materials to mixing with MPCM. Especially, the effect of MPCM on the thermal and mechanical properties of geopolymer concrete (GPC) is very limited. In this study, high thermal energy storage capacity materials were fabricated by mixing MPCM into geopolymer concrete. This article would investigate the effect of MPCM concentration on thermal and mechanical properties of GPC. The target is to balance the effect of MPCM on improving the thermal performance and maintaining the compressive strength of the geopolymer concrete at an acceptable level for building application.Keywords: microencapsulated phase change materials, geopolymer concrete, energy storage capacity, thermal performance
Procedia PDF Downloads 30910155 Solar Energy Generation Based Urban Development: A Case of Jodhpur City
Authors: A. Kumar, V. Devadas
Abstract:
India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.Keywords: city, consumption, energy, generation
Procedia PDF Downloads 13010154 Enhancing Seawater Desalination Efficiency with Combined Reverse Osmosis and Vibratory Shear-Enhanced Processing for Higher Conversion Rates and Reduced Energy Consumption
Authors: Reda Askouri, Mohamed Moussetad, Rhma Adhiri
Abstract:
Reverse osmosis (RO) is one of the most widely used techniques for seawater desalination. However, the conversion rate of this method is generally limited to 35-45% due to the high-pressure capacity of the membranes. Additionally, the specific energy consumption (SEC) for seawater desalination is high, necessitating energy recovery systems to minimise energy consumption. This study aims to enhance the performance of seawater desalination by combining RO with a vibratory shear-enhanced processing (VSEP) technique. The RO unit in this study comprises two stages, each powered by a hydraulic turbocharger that increases the pressure in both stages. The concentrate from the second stage is then directly processed by VSEP technology. The results demonstrate that the permeate water obtained exhibits high quality and that the conversion rate is significantly increased, reaching high percentages with low SEC. Furthermore, the high concentration of total solids in the concentrate allows for potential exploitation within the environmental protection framework. By valorising the concentrated waste, it’s possible to reduce the environmental impact while increasing the overall efficiency of the desalination process.Keywords: specific energy consumption, vibratory shear enhanced process, environmental challenge, water recovery
Procedia PDF Downloads 1310153 Temporal Trends in the Urban Metabolism of Riyadh, Saudi Arabia
Authors: Naif Albelwi, Alan Kwan, Yacine Rezgui
Abstract:
Cities with rapid growth face tremendous challenges not only to provide services to meet this growth but also to assure that this growth occurs in a sustainable way. The consumption of material, energy, and water resources is inextricably linked to population growth with a unique impact in urban areas, especially in light of significant investments in infrastructure to support urban development. Urban Metabolism (UM) is becoming popular as it provides a framework accounting the mass and energy flows through a city. The objective of this study is to determine the energy and material flows of Riyadh, Saudi Arabia using locally generated data from 1996 and 2012 and analyzing the temporal trends of energy and material flows. Preliminary results show that while the population of Riyadh grew 90% since 1996, the input and output flows have increased at higher rate. Results also show increasing in energy mobile consumption from 61k TJ in 1996 to 157k TJ in 2012 which points to Riyadh’s inefficient urban form. The study findings highlight the importance to develop effective policies for improving the use of resources.Keywords: energy and water consumption, sustainability, urban development, urban metabolism
Procedia PDF Downloads 27310152 Modeling and Benchmarking the Thermal Energy Performance of Palm Oil Production Plant
Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen
Abstract:
Thermal energy consumption in palm oil production plant comprises mainly of steam, hot water and hot air. In most efficient plants, hot water and air are generated from the steam supply system. Research has shown that thermal energy utilize in palm oil production plants is about 70 percent of the total energy consumption of the plant. In order to manage the plants’ energy efficiently, the energy systems are modelled and optimized. This paper aimed to present the model of steam supply systems of a typical palm oil production plant in Ghana. The models include exergy and energy models of steam boiler, steam turbine and the palm oil mill. The paper further simulates the virtual plant model to obtain the thermal energy performance of the plant under study. The simulation results show that, under normal operating condition, the boiler energy performance is considerably below the expected level as a result of several factors including intermittent biomass fuel supply, significant moisture content of the biomass fuel and significant heat losses. The total thermal energy performance of the virtual plant is set as a baseline. The study finally recommends number of energy efficiency measures to improve the plant’s energy performance.Keywords: palm biomass, steam supply, exergy and energy models, energy performance benchmark
Procedia PDF Downloads 35010151 A Genetic Algorithm Based Sleep-Wake up Protocol for Area Coverage in WSNs
Authors: Seyed Mahdi Jameii, Arash Nikdel, Seyed Mohsen Jameii
Abstract:
Energy efficiency is an important issue in the field of Wireless Sensor Networks (WSNs). So, minimizing the energy consumption in this kind of networks should be an essential consideration. Sleep/wake scheduling mechanism is an efficient approach to handling this issue. In this paper, we propose a Genetic Algorithm-based Sleep-Wake up Area Coverage protocol called GA-SWAC. The proposed protocol puts the minimum of nodes in active mode and adjusts the sensing radius of each active node to decrease the energy consumption while maintaining the network’s coverage. The proposed protocol is simulated. The results demonstrate the efficiency of the proposed protocol in terms of coverage ratio, number of active nodes and energy consumption.Keywords: wireless sensor networks, genetic algorithm, coverage, connectivity
Procedia PDF Downloads 52410150 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 18610149 Challenges and Opportunities in Modelling Energy Behavior of Household in Malaysia
Authors: Zuhaina Zakaria, Noraliza Hamzah, Siti Halijjah Shariff, Noor Aizah Abdul Karim
Abstract:
The residential sector in Malaysia has become the single largest energy sector accounting for 21% of the entire energy usage of the country. In the past 10 years, a number of energy efficiency initiatives in the residential sector had been undertaken by the government including. However, there is no clear evidence that the total residential energy consumption has been reduced substantially via these strategies. Household electrical appliances such as air conditioners, refrigerators, lighting and televisions are used depending on the consumers’ activities. The behavior of household occupants played an important role in energy consumption and influenced the operation of the physical devices. Therefore, in order to ensure success in energy efficiency program, it requires not only the technological aspect but also the consumers’ behaviors component. This paper focuses on the challenges and opportunities in modelling residential consumer behavior in Malaysia. A field survey to residential consumers was carried out and responses from the survey were analyzed to determine the consumers’ level of knowledge and awareness on energy efficiency. The analyses will be used in determining a right framework to explain household energy use intentions and behavior. These findings will be beneficial to power utility company and energy regulator in addressing energy efficiency related issues.Keywords: consumer behavior theories, energy efficiency, household occupants, residential consumer
Procedia PDF Downloads 33310148 Energy Use, Emissions, Economic Growth and Trade: Evidence from Mauritius
Authors: B. Seetanah, H. Neeliah
Abstract:
This paper investigates the relationship among energy, emissions and economic growth in Mauritius in the presence of trade activities, with capital and labour as other control variables. Using annual data from 1960 to 2011, it is found that the variables are non-stationary and cointegrated. The relationship among the various variables are thus examined in a dynamic VECM framework. Our empirical results comply with the growth hypothesis. Output elasticities of 0.17, 0.25 and 0.43 show that increases in energy consumption cause increases in economic growth, capital accumulation and trade in the long run. We also found that CO2 negatively affects output, but has no significant effect on trade. Findings for the long-run generally tend to tally with those in the short-run. Interestingly we found that energy consumption has a significant impact on CO2 emissions. Our results tend to suggest that implementing energy conservation strategies to mitigate the negative impact of CO2 emissions can dent economic growth, and that promoting cleaner energy production could be a better alternative for Mauritius.Keywords: energy, emissions, economic growth, export, VECM
Procedia PDF Downloads 47910147 Passive Retrofitting Strategies for Windows in Hot and Humid Climate Vijayawada
Authors: Monica Anumula
Abstract:
Nowadays human beings attain comfort zone artificially for heating, cooling and lighting the spaces they live, and their main importance is given to aesthetics of building and they are not designed to protect themselves from climate. They depend on artificial sources of energy resulting in energy wastage. In order to reduce the amount of energy being spent in the construction industry and Energy Package goals by 2020, new ways of constructing houses is required. The larger part of energy consumption of a building is directly related to architectural aspects hence nature has to be integrated into the building design to attain comfort zone and reduce the dependency on artificial source of energy. The research is to develop bioclimatic design strategies and techniques for the walls and roofs of Vijayawada houses. Study and analysis of design strategies and techniques of various cases like Kerala, Mangalore etc. for similar kind of climate is examined in this paper. Understanding the vernacular architecture and modern techniques of that various cases and implementing in the housing of Vijayawada not only decreases energy consumption but also enhances socio cultural values of Vijayawada. This study focuses on the comparison of vernacular techniques and modern building bio climatic strategies to attain thermal comfort and energy reduction in hot and humid climate. This research provides further thinking of new strategies which include both vernacular and modern bioclimatic techniques.Keywords: bioclimatic design, energy consumption, hot and humid climates, thermal comfort
Procedia PDF Downloads 17910146 Membrane Bioreactor for Wastewater Treatment and Reuse
Authors: Sarra Kitanou
Abstract:
Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse
Procedia PDF Downloads 83