Search results for: effective equation
11123 Existence Theory for First Order Functional Random Differential Equations
Authors: Rajkumar N. Ingle
Abstract:
In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way.Keywords: Random Fixed Point Theorem, functional random differential equation, N.F.R.D.E., universal random phenomenon
Procedia PDF Downloads 50011122 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network
Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan
Abstract:
We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation
Procedia PDF Downloads 16811121 Numerical Investigation of Heat Transfer in Laser Irradiated Biological Samplebased on Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method
Authors: Shashank Patidar, Sumit Kumar, Atul Srivastava, Suneet Singh
Abstract:
Present work is concerned with the numerical investigation of thermal response of biological tissues during laser-based photo-thermal therapy for destroying cancerous/abnormal cells with minimal damage to the surrounding normal cells. Light propagation through the biological sample is mathematically modelled by transient radiative transfer equation. In the present work, application of the Lattice Boltzmann Method is extended to analyze transport of short-pulse radiation in a participating medium.In order to determine the two-dimensional temperature distribution inside the tissue medium, the RTE has been coupled with Penne’s bio-heat transfer equation based on Fourier’s law by several researchers in last few years.Keywords: lattice Boltzmann method, transient radiation transfer equation, dual phase lag model
Procedia PDF Downloads 35111120 Investigating Mathematics Teachers' Knowledge of the Effective Teaching Strategies
Authors: Zafer F. Alshehri
Abstract:
This paper investigated mathematics teachers' knowledge of the effective teaching strategies at the Southern Region of Saudi Arabia. Specifically, it aimed to identify a list of the effective strategies of teaching mathematics; the extent of mathematics teachers' knowledge of these strategies; and the differences (if any) of mathematics teachers' knowledge of these strategies regarding scientific degree, teaching experience, and educational sage. To achieve that, the researcher used the descriptive approach for preparing a list of effective mathematics teaching strategies and developing a questionnaire of a sample of (240) mathematics teachers. As a result, there were differences in teachers' knowledge of the effective teaching strategies, which ranked as a low, and the highest knowledge was in favor of higher degrees. In addition, there were a few recommendations and suggestions for developing mathematics teachers' knowledge of effective teaching strategies, such as involving in workshops of mathematics teaching strategies, integrating technology into mathematics teaching, and using research findings in the instruction process.Keywords: mathematics teaching knowledge, mathematics teachers, effective mathematics teaching strategies
Procedia PDF Downloads 51011119 Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method
Authors: M. O. Olayiwola
Abstract:
Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems.Keywords: burger-fisher, modified variational iteration method, lagrange multiplier, Taylor’s series, partial differential equation
Procedia PDF Downloads 42911118 Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids
Authors: Sheryl Avendaño, Miguel Ospina, Hebert Montegranario
Abstract:
Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method.Keywords: seismic inversion, full wave inversion, visco acoustic wave equation, finite diffrence methods
Procedia PDF Downloads 46011117 The Application of the Analytic Basis Function Expansion Triangular-z Nodal Method for Neutron Diffusion Calculation
Authors: Kunpeng Wang, Hongchun, Wu, Liangzhi Cao, Chuanqi Zhao
Abstract:
The distributions of homogeneous neutron flux within a node were expanded into a set of analytic basis functions which satisfy the diffusion equation at any point in a triangular-z node for each energy group, and nodes were coupled with each other with both the zero- and first-order partial neutron current moments across all the interfaces of the triangular prism at the same time. Based this method, a code TABFEN has been developed and applied to solve the neutron diffusion equation in a complicated geometry. In addition, after a series of numerical derivation, one can get the neutron adjoint diffusion equations in matrix form which is the same with the neutron diffusion equation; therefore, it can be solved by TABFEN, and the low-high scan strategy is adopted to improve the efficiency. Four benchmark problems are tested by this method to verify its feasibility, the results show good agreement with the references which demonstrates the efficiency and feasibility of this method.Keywords: analytic basis function expansion method, arbitrary triangular-z node, adjoint neutron flux, complicated geometry
Procedia PDF Downloads 44511116 Large Amplitude Vibration of Sandwich Beam
Authors: Youssef Abdelli, Rachid Nasri
Abstract:
The large amplitude free vibration analysis of three-layered symmetric sandwich beams is carried out using two different approaches. The governing nonlinear partial differential equations of motion in free natural vibration are derived using Hamilton's principle. The formulation leads to two nonlinear partial differential equations that are coupled both in axial and binding deformations. In the first approach, the method of multiple scales is applied directly to the governing equation that is a nonlinear partial differential equation. In the second approach, we discretize the governing equation by using Galerkin's procedure and then apply the shooting method to the obtained ordinary differential equations. In order to check the validity of the solutions obtained by the two approaches, they are compared with the solutions obtained by two approaches; they are compared with the solutions obtained numerically by the finite difference method.Keywords: finite difference method, large amplitude vibration, multiple scales, nonlinear vibration
Procedia PDF Downloads 46211115 Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI
Authors: Anyeres N. Atehortua Jimenez, J. David Lambraño, Juan Carlos Muñoz
Abstract:
Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed.Keywords: Navier-Stokes equations, modeling, visco-acoustic, inversion FWI
Procedia PDF Downloads 51911114 A New Approach for Solving Fractional Coupled Pdes
Authors: Prashant Pandey
Abstract:
In the present article, an effective Laguerre collocation method is used to obtain the approximate solution of a system of coupled fractional-order non-linear reaction-advection-diffusion equation with prescribed initial and boundary conditions. In the proposed scheme, Laguerre polynomials are used together with an operational matrix and collocation method to obtain approximate solutions of the coupled system, so that our proposed model is converted into a system of algebraic equations which can be solved employing the Newton method. The solution profiles of the coupled system are presented graphically for different particular cases. The salient feature of the present article is finding the stability analysis of the proposed method and also the demonstration of the lower variation of solute concentrations with respect to the column length in the fractional-order system compared to the integer-order system. To show the higher efficiency, reliability, and accuracy of the proposed scheme, a comparison between the numerical results of Burger’s coupled system and its existing analytical result is reported. There are high compatibility and consistency between the approximate solution and its exact solution to a higher order of accuracy. The exhibition of error analysis for each case through tables and graphs confirms the super-linearly convergence rate of the proposed method.Keywords: fractional coupled PDE, stability and convergence analysis, diffusion equation, Laguerre polynomials, spectral method
Procedia PDF Downloads 14411113 Modeling and Prediction of Hot Deformation Behavior of IN718
Authors: M. Azarbarmas, J. M. Cabrera, J. Calvo, M. Aghaie-Khafri
Abstract:
The modeling of hot deformation behavior for unseen conditions is important in metal-forming. In this study, the hot deformation of IN718 has been characterized in the temperature range 950-1100 and strain rate range 0.001-0.1 s-1 using hot compression tests. All stress-strain curves showed the occurrence of dynamic recrystallization. These curves were implemented quantitatively in mathematics, and then constitutive equation indicating the relationship between the flow stress and hot deformation parameters was obtained successfully.Keywords: compression test, constitutive equation, dynamic recrystallization, hot working
Procedia PDF Downloads 42311112 Influence of Locally Made Effective Microorganisms on the Compressive Strength of Concrete
Authors: Muhammad Nura Isa, Magaji Muhammad Garba, Dauda Dahiru Danwata
Abstract:
A lot of research was carried out to improve the technology of concrete, some of which include the introduction of new admixture in concrete production such as effective microorganisms. Researches carried out in Japan and Malaysia indicated that the Effective Microorganisms improve the strength and durability of concrete. Therefore, the main objective of this research is to assess the effect of the locally made effective microorganisms on the compressive strength of concrete in Nigeria. The effective microorganisms were produced locally. The locally made effective microorganism was added in 3%, 5%, 10% and 15% to replace the mixing water required. The results of the tests indicated that the concrete specimens with 3% content of locally made EM-A possessed the highest compressive strength, this proved the 3% to be the optimum dosage of locally made EM-A in the concrete.Keywords: locally made effective microorganisms, compressive strength, admixture, fruits and vegetable wastes
Procedia PDF Downloads 34211111 Wavelet Method for Numerical Solution of Fourth Order Wave Equation
Authors: A. H. Choudhury
Abstract:
In this paper, a highly accurate numerical method for the solution of one-dimensional fourth-order wave equation is derived. This hyperbolic problem is solved by using semidiscrete approximations. The space direction is discretized by wavelet-Galerkin method, and the time variable is discretized by using Newmark schemes.Keywords: hyperbolic problem, semidiscrete approximations, stability, Wavelet-Galerkin Method
Procedia PDF Downloads 31411110 Symbolic Computation and Abundant Travelling Wave Solutions to Modified Burgers' Equation
Authors: Muhammad Younis
Abstract:
In this article, the novel (G′/G)-expansion method is successfully applied to construct the abundant travelling wave solutions to the modified Burgers’ equation with the aid of computation. The method is reliable and useful, which gives more general exact travelling wave solutions than the existing methods. These obtained solutions are in the form of hyperbolic, trigonometric and rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and engineering. Some of these solutions are new and some have already been constructed. Additionally, the constraint conditions, for the existence of the solutions are also listed.Keywords: traveling wave solutions, NLPDE, computation, integrability
Procedia PDF Downloads 43211109 Transport of Inertial Finite-Size Floating Plastic Pollution by Ocean Surface Waves
Authors: Ross Calvert, Colin Whittaker, Alison Raby, Alistair G. L. Borthwick, Ton S. van den Bremer
Abstract:
Large concentrations of plastic have polluted the seas in the last half century, with harmful effects on marine wildlife and potentially to human health. Plastic pollution will have lasting effects because it is expected to take hundreds or thousands of years for plastic to decay in the ocean. The question arises how waves transport plastic in the ocean. The predominant motion induced by waves creates ellipsoid orbits. However, these orbits do not close, resulting in a drift. This is defined as Stokes drift. If a particle is infinitesimally small and the same density as water, it will behave exactly as the water does, i.e., as a purely Lagrangian tracer. However, as the particle grows in size or changes density, it will behave differently. The particle will then have its own inertia, the fluid will exert drag on the particle, because there is relative velocity, and it will rise or sink depending on the density and whether it is on the free surface. Previously, plastic pollution has all been considered to be purely Lagrangian. However, the steepness of waves in the ocean is small, normally about α = k₀a = 0.1 (where k₀ is the wavenumber and a is the wave amplitude), this means that the mean drift flows are of the order of ten times smaller than the oscillatory velocities (Stokes drift is proportional to steepness squared, whilst the oscillatory velocities are proportional to the steepness). Thus, the particle motion must have the forces of the full motion, oscillatory and mean flow, as well as a dynamic buoyancy term to account for the free surface, to determine whether inertia is important. To track the motion of a floating inertial particle under wave action requires the fluid velocities, which form the forcing, and the full equations of motion of a particle to be solved. Starting with the equation of motion of a sphere in unsteady flow with viscous drag. Terms can added then be added to the equation of motion to better model floating plastic: a dynamic buoyancy to model a particle floating on the free surface, quadratic drag for larger particles and a slope sliding term. Using perturbation methods to order the equation of motion into sequentially solvable parts allows a parametric equation for the transport of inertial finite-sized floating particles to be derived. This parametric equation can then be validated using numerical simulations of the equation of motion and flume experiments. This paper presents a parametric equation for the transport of inertial floating finite-size particles by ocean waves. The equation shows an increase in Stokes drift for larger, less dense particles. The equation has been validated using numerical solutions of the equation of motion and laboratory flume experiments. The difference in the particle transport equation and a purely Lagrangian tracer is illustrated using worlds maps of the induced transport. This parametric transport equation would allow ocean-scale numerical models to include inertial effects of floating plastic when predicting or tracing the transport of pollutants.Keywords: perturbation methods, plastic pollution transport, Stokes drift, wave flume experiments, wave-induced mean flow
Procedia PDF Downloads 12011108 Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink
Authors: Ishit Sheth, Chandrasekhar Jinendran, Chinmaya Ranjan Sahu
Abstract:
A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions.Keywords: Full Vehicle Model, MBSE, Non Holonomic Constraints, Boltzmann Hamel Equation
Procedia PDF Downloads 22711107 Characterization of the in 0.53 Ga 0.47 as n+nn+ Photodetectors
Authors: Fatima Zohra Mahi, Luca Varani
Abstract:
We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detectivity for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed. The responsivity and the detectivity are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.Keywords: detectivity, photodetectors, continuity equation, current noise
Procedia PDF Downloads 64211106 Analytical Solution of Specific Energy Equation in Exponential Channels
Authors: Abdulrahman Abdulrahman
Abstract:
The specific energy equation has many applications in practical channels, such as exponential channels. In this paper, the governing equation of alternate depth ratio for exponential channels, in general, was investigated towards obtaining analytical solution for the alternate depth ratio in three exponential channel shapes, viz., rectangular, triangular, and parabolic channels. The alternate depth ratio for rectangular channels is quadratic; hence it is very simple to solve. While for parabolic and triangular channels, the alternate depth ratio is cubic and quartic equations, respectively, analytical solution for these equations may be achieved easily for a given Froud number. Different examples are solved to prove the efficiency of the proposed solution. Such analytical solution can be easily used in natural rivers and most of practical channels.Keywords: alternate depth, analytical solution, specific energy, parabolic channel, rectangular channel, triangular channel, open channel flow
Procedia PDF Downloads 19711105 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation
Authors: Chong Zhang, Mu-Xuan Tao
Abstract:
In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.Keywords: biaxial bending moment capacity, biaxial seismic excitation, fiber beam model, load contour method, strong-column-weak-beam
Procedia PDF Downloads 9911104 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides
Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz
Abstract:
This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.Keywords: nonlinear optics, plasmonic waveguide, chalcogenide, propagation equation
Procedia PDF Downloads 41611103 Analytical Investigation of Viscous and Non-Viscous Fluid Particles in a Restricted Region Using Diffusion Magnetic Resonance Imaging Equation
Authors: Yusuf, S. I., Saba, A., Olaoye, D. O., Ibrahim J. A., Yahaya H. M., Jatto A. O
Abstract:
Nuclear Magnetic Resonance (NMR) technology has been applied in several ways to provide vital information about petro-physical properties of reservoirs. However, due to the need to study the molecular behaviours of particles of the fluids in different restricted media, diffusion magnetic resonance equation is hereby applied in spherical coordinates and solved analytically using the method of separation of variables and solution of Legendre equation by Frobenius method. The viscous fluid considered in this research work is unused oil while the non-viscous fluid is water. The results obtained show that water begins to manifest appreciable change at radial adjustment value of 10 and Magnetization of 2.31191995400015x1014 and relaxes finally at 2.30x1014 at radial adjustment value of 1. On the other hand, unused engine oil begins to manifest its changes at radial adjustment value of 40 and Magnetization of 1.466557018x1014and relaxes finally at 1.48x1014 at radial adjustment value of 5.Keywords: viscous and non-viscous fluid, restricted medium, relaxation times, coefficient of diffusion
Procedia PDF Downloads 8211102 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming
Procedia PDF Downloads 29911101 Conceptual Perimeter Model for Estimating Building Envelope Quantities
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Building girth is important in building economics and mostly used in quantities take-off of various cost items. Literature suggests that the use of conceptual quantities can improve the accuracy of cost models. Girth or perimeter of a building can be used to estimate conceptual quantities. Hence, the current paper aims to model the perimeter-area function of buildings shapes for use at the conceptual design stage. A detailed literature review on existing building shape indexes was carried out. An empirical approach was used to study the relationship between area and the shortest length of a four-sided orthogonal polygon. Finally, a mathematical approach was used to establish the observed relationships. The empirical results obtained were in agreement with the mathematical model developed. A new equation termed “conceptual perimeter equation” is proposed. The equation can be used to estimate building envelope quantities such as external wall area, external finishing area and scaffolding area before sketch or detailed drawings are prepared.Keywords: building envelope, building shape index, conceptual quantities, cost modelling, girth
Procedia PDF Downloads 34111100 Modification of Underwood's Equation to Calculate Minimum Reflux Ratio for Column with One Side Stream Upper Than Feed
Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi
Abstract:
Distillation is one of the most important and utilized separation methods in the industrial practice. There are different ways to design of distillation column. One of these ways is short cut method. In short cut method, material balance and equilibrium are employed to calculate number of tray in distillation column. There are different methods that are classified in short cut method. One of these methods is Fenske-Underwood-Gilliland method. In this method, minimum reflux ratio should be calculated by underwood equation. Underwood proposed an equation that is useful for simple distillation column with one feed and one top and bottom product. In this study, underwood method is developed to predict minimum reflux ratio for column with one side stream upper than feed. The result of this model compared with McCabe-Thiele method. The result shows that proposed method able to calculate minimum reflux ratio with very small error.Keywords: minimum reflux ratio, side stream, distillation, Underwood’s method
Procedia PDF Downloads 40511099 Pressure Losses on Realistic Geometry of Tracheobronchial Tree
Authors: Michaela Chovancova, Jakub Elcner
Abstract:
Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculating the pressure losses in the real lungs is due to its complexity and diversity lengthy and inefficient process. For these calculations is necessary the lungs to slightly simplify (same cross-section over the length of individual generation) or use one of the models of lungs. The simplification could cause deviations from real values. The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli equation and continuity equation. Then, evaluate the desirability of using this formula to determine the pressure loss across the bronchial tree.Keywords: pressure gradient, airways resistance, real geometry of bronchial tree, breathing
Procedia PDF Downloads 32111098 Structure Function and Violation of Scale Invariance in NCSM: Theory and Numerical Analysis
Authors: M. R. Bekli, N. Mebarki, I. Chadou
Abstract:
In this study, we focus on the structure functions and violation of scale invariance in the context of non-commutative standard model (NCSM). We find that this violation appears in the first order of perturbation theory and a non-commutative version of the DGLAP evolution equation is deduced. Numerical analysis and comparison with experimental data imposes a new bound on the non-commutative parameter.Keywords: NCSM, structure function, DGLAP equation, standard model
Procedia PDF Downloads 61011097 Nonlinear Vibration Analysis of a Functionally Graded Micro-Beam under a Step DC Voltage
Authors: Ali Raheli, Rahim Habibifar, Behzad Mohammadi-Alasti, Mahdi Abbasgholipour
Abstract:
This paper presents vibration behavior of a FGM micro-beam and its pull-in instability under a nonlinear electrostatic pressure. An exponential function has been applied to show the continuous gradation of the properties along thickness. Nonlinear integro-differential-electro-mechanical equation based on Euler–Bernoulli beam theory has been derived. The governing equation in the static analysis has been solved using Step-by-Step Linearization Method and Finite Difference Method. Fixed points or equilibrium positions and singular points have been shown in the state control space. In order to find the response to a step DC voltage, the nonlinear equation of motion has been solved using Galerkin-based reduced-order model and time histories and phase portrait for different applied voltages have been shown. The effects of electrostatic pressure on stability of FGM micro-beams having various amounts of the ceramic constituent have been investigated.Keywords: FGM, MEMS, nonlinear vibration, electrical, dynamic pull-in voltage
Procedia PDF Downloads 45511096 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 38811095 Effects of Pore-Water Pressure on the Motion of Debris Flow
Authors: Meng-Yu Lin, Wan-Ju Lee
Abstract:
Pore-water pressure, which mediates effective stress and shear strength at grain contacts, has a great influence on the motion of debris flow. The factors that control the diffusion of excess pore-water pressure play very important roles in the debris-flow motion. This research investigates these effects by solving the distribution of pore-water pressure numerically in an unsteady, surging motion of debris flow. The governing equations are the depth-averaged equations for the motion of debris-flow surges coupled with the one-dimensional diffusion equation for excess pore-water pressures. The pore-pressure diffusion equation is solved using a Fourier series, which may improve the accuracy of the solution. The motion of debris-flow surge is modelled using a Lagrangian particle method. From the computational results, the effects of pore-pressure diffusivities and the initial excess pore pressure on the formations of debris-flow surges are investigated. Computational results show that the presence of pore water can increase surge velocities and then changes the profiles of depth distribution. Due to the linear distribution of the vertical component of pore-water velocity, pore pressure dissipates rapidly near the bottom and forms a parabolic distribution in the vertical direction. Increases in the diffusivity of pore-water pressure cause the pore pressures decay more rapidly and then decrease the mobility of the surge.Keywords: debris flow, diffusion, Lagrangian particle method, pore-pressure diffusivity, pore-water pressure
Procedia PDF Downloads 14111094 Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation
Authors: Jiya Mohammed, Tsadu Shuaib, Yusuf Abdulhakeem
Abstract:
The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer.Keywords: MHD, Adomian decomposition, boundary layer, viscous dissipation
Procedia PDF Downloads 551