Search results for: augmented spherical wave method
20205 Boundary Conditions for 2D Site Response Analysis in OpenSees
Authors: M. Eskandarighadi, C. R. McGann
Abstract:
It is observed from past experiences of earthquakes that local site conditions can significantly affect the strong ground motion characteristicssuch as frequency content, amplitude, and duration of seismic waves. The most common method for investigating site response is one-dimensional seismic site response analysis. The infinite horizontal length of the model and the homogeneous characteristic of the soil are crucial assumptions of this method. One boundary condition that can be used in the sides is tying the sides horizontally for vertical 1D wave propagation. However, 1D analysis cannot account for the 2D nature of wave propagation in the condition where the soil profile is not fully horizontal or has heterogeneity within layers. Therefore, 2D seismic site response analysis can be used to take all of these limitations into account for a better understanding of local site conditions. Different types of boundary conditions can be appliedin 2D site response models, such as tied boundary condition, massive columns, and free-field boundary condition. The tied boundary condition has been used in 1D analysis, which is useful for 1D wave propagation. Employing two massive columns at the sides is another approach for capturing the 2D nature of wave propagation. Free-field boundary condition can simulate the free-field motion that would exist far from the domain of interest. The goal for free-field boundary condition is to minimize the unwanted reflection from sides. This research focuses on the comparison between these methods with examples and discusses the details and limitations of each of these boundary conditions.Keywords: boundary condition, free-field, massive columns, opensees, site response analysis, wave propagation
Procedia PDF Downloads 18320204 Dynamic Behaviors of a Floating Bridge with Mooring Lines under Wind and Wave Excitations
Authors: Chungkuk Jin, Moohyun Kim, Woo Chul Chung
Abstract:
This paper presents global performance and dynamic behaviors of a discrete-pontoon-type floating bridge with mooring lines in time domain under wind and wave excitations. The structure is designed for long-distance and deep-water crossing and consists of the girder, columns, pontoons, and mooring lines. Their functionality and behaviors are investigated by using elastic-floater/mooring fully-coupled dynamic simulation computer program. Dynamic wind, first- and second-order wave forces, and current loads are considered as environmental loads. Girder’s dynamic responses and mooring tensions are analyzed under different analysis methods and environmental conditions. Girder’s lateral responses are highly influenced by the second-order wave and wind loads while the first-order wave load mainly influences its vertical responses.Keywords: floating bridge, mooring line, pontoon, wave excitation
Procedia PDF Downloads 12920203 Augmented Reality and Storytelling in Cities: An Application to Lisbon Street Art
Authors: Francisco Guimarães, Mauro Figueiredo, José Rodrigues
Abstract:
Cities are spaces of memory with several zones (parts of cities) with their own history and cultural events. Today, cities are also marked by a form of intangible cultural heritage like street art, which creates a visual culture based on the process of reflection about the city and the world. To link these realities and create a personal user interaction with this cultural heritage it is important to capture the story and aesthetics, and find alternatives to immerse the user in these spaces of memory. To that end, this article presents a project which combines Augmented Reality technologies and concepts of Transmedia Storytelling applied to Lisbon City, using Street Art artifacts as markers in a framework of digital media-art.Keywords: augmented reality, cultural heritage, street art, transmedia storytelling, digital media-art
Procedia PDF Downloads 32120202 Modeling Reflection and Transmission of Elastodiffussive Wave Sata Semiconductor Interface
Authors: Amit Sharma, J. N. Sharma
Abstract:
This paper deals with the study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace and elastic solid. The amplitude ratios (reflection and transmission coefficients) of reflected and transmitted waves to that of incident wave varying with the incident angles have been examined for the case of quasi-longitudinal wave. The special cases of normal and grazing incidence have also been derived with the help of Gauss elimination method. The mathematical model consisting of governing partial differential equations of motion and charge carriers diffusion of n-type semiconductors and elastic solid has been solved both analytically and numerically in the study. The numerical computations of reflection and transmission coefficients has been carried out by using MATLAB programming software for silicon (Si) semiconductor and copper elastic solid. The computer simulated results have been plotted graphically for Si semiconductors. The study may be useful in semiconductors, geology, and seismology in addition to surface acoustic wave (SAW) devices.Keywords: quasilongitudinal, reflection and transmission, semiconductors, acoustics
Procedia PDF Downloads 39120201 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region
Authors: Pratibha, Jyoti Kori
Abstract:
Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor
Procedia PDF Downloads 18520200 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle
Authors: R. Haoui
Abstract:
The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.Keywords: finite volume, lunchers, nozzles, shock wave
Procedia PDF Downloads 28920199 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System
Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee
Abstract:
In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.Keywords: augmented reality framework, server-client model, vision-based tracking, image search
Procedia PDF Downloads 27520198 Detailed Microzonation Studies around Denizli, Turkey
Authors: A. Aydin, E. Akyol, N. Soyatik
Abstract:
This study has been presented which is a detailed work of seismic microzonation of the city center. For seismic microzonation area of 225 km2 has been selected as the study area. MASW (Multichannel analysis of surface wave) and seismic refraction methods have been used to generate one-dimensional shear wave velocity profile at 250 locations and two-dimensional profile at 60 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 60 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Denizli and the application and use of these results should be required and enforced by municipal authorities.Keywords: seismic microzonation, liquefaction, land use management, seismic refraction
Procedia PDF Downloads 27520197 Influence of Rotation on Rayleigh-Type Wave in Piezoelectric Plate
Authors: Soniya Chaudhary, Sanjeev Sahu
Abstract:
Propagation of Rayleigh-type waves in a rotating piezoelectric plate is investigated. The materials are assumed to be transversely isotropic crystals. The frequency equation have been derived for electrically open and short cases. Effect of rotation and piezoelectricity have been shown. It is also found that piezoelectric material properties have an important effect on Rayleigh wave propagation. The result is relevant to the analysis and design of various acoustic surface wave devices constructed from piezoelectric materials also in SAW devices.Keywords: rotation, frequency equation, piezoelectricity, rayleigh-type wave
Procedia PDF Downloads 31320196 Iterative Solver for Solving Large-Scale Frictional Contact Problems
Authors: Thierno Diop, Michel Fortin, Jean Deteix
Abstract:
Since the precise formulation of the elastic part is irrelevant for the description of the algorithm, we shall consider a generic case. In practice, however, we will have to deal with a non linear material (for instance a Mooney-Rivlin model). We are interested in solving a finite element approximation of the problem, leading to large-scale non linear discrete problems and, after linearization, to large linear systems and ultimately to calculations needing iterative methods. This also implies that penalty method, and therefore augmented Lagrangian method, are to be banned because of their negative effect on the condition number of the underlying discrete systems and thus on the convergence of iterative methods. This is in rupture to the mainstream of methods for contact in which augmented Lagrangian is the principal tool. We shall first present the problem and its discretization; this will lead us to describe a general solution algorithm relying on a preconditioner for saddle-point problems which we shall describe in some detail as it is not entirely standard. We will propose an iterative approach for solving three-dimensional frictional contact problems between elastic bodies, including contact with a rigid body, contact between two or more bodies and also self-contact.Keywords: frictional contact, three-dimensional, large-scale, iterative method
Procedia PDF Downloads 21020195 Movement of the Viscous Elastic Fixed Vertically Located Cylinder in Liquid with the Free Surface Under the Influence of Waves
Authors: T. J. Hasanova, C. N. Imamalieva
Abstract:
The problem about the movement of the rigid cylinder keeping the vertical position under the influence of running superficial waves in a liquid is considered. The indignation of a falling wave caused by the presence of the cylinder which moves is thus considered. Special decomposition on a falling harmonious wave is used. The problem dares an operational method. For a finding of the original decision, Considering that the image denominator represents a tabular function, Voltaire's integrated equation of the first sort which dares a numerical method is used. Cylinder movement in the continuous environment under the influence of waves is considered in work. Problems are solved by an operational method, thus originals of required functions are looked for by the numerical definition of poles of combinations of transcendental functions and calculation of not own integrals. Using specificity of a task below, Decisions are under construction the numerical solution of the integrated equation of Volter of the first sort that does not create computing problems of the complex roots of transcendental functions connected with search.Keywords: rigid cylinder, linear interpolation, fluctuations, Voltaire's integrated equation, harmonious wave
Procedia PDF Downloads 31920194 The Evaluation of Soil Liquefaction Potential Using Shear Wave Velocity
Authors: M. Nghizaderokni, A. Janalizadechobbasty, M. Azizi, M. Naghizaderokni
Abstract:
The liquefaction resistance of soils can be evaluated using laboratory tests such as cyclic simple shear, cyclic triaxial, cyclic tensional shear, and field methods such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and Shear Wave Velocity (Vs). This paper outlines a great correlation between shear wave velocity and standard penetration resistance of granular soils was obtained. Using Seeds standard penetration test (SPT) based soil liquefaction charts, new charts of soil liquefaction evaluation based on shear wave velocity data were developed for various magnitude earthquakes.Keywords: soil, liquefaction, shear wave velocity, standard penetration resistance
Procedia PDF Downloads 39520193 Determination of Dynamic Soil Properties Using Multichannel Analysis of Surface Wave (MASW) Techniques in Earth-Filled Dam
Authors: Noppadon Sintuboon, Benjamas Sawatdipong, Anchalee Kongsuk
Abstract:
This study was conducted to investigate the engineering parameters: compressional wave: Vp, shear wave: Vs, and density: ρ related to the dynamically geotechnical properties of soils compaction in the core of earth-filled dam located in northern part of Thailand by using multichannel analysis of surface wave (MASW) techniques. The Vp, Vs, and ρ from MASW were 1,624 - 1,649 m/s, 301-323 m/s, and 1,829 kg/m3, respectively. Those parameters were calculated to Poison’s ratio: ν (0.48), shear modulus: G (1.66 x 108 - 1.92 x 108 kg/m2), Vp/Vs ratio (5.10 – 5.39) and Standard Penetration Test (SPT) showing the dynamic characteristics of soil deformation and stress resulting from dynamic loads. The results of this study will be useful in primary evaluating the current condition and foundation of the dam and can be compared to the data from the laboratory in the future.Keywords: earth-filled dam, MASW, dynamic elastic constant, shear wave
Procedia PDF Downloads 29720192 Evaluation Using a Bidirectional Microphone as a Pressure Pulse Wave Meter
Authors: Shunsuke Fujiwara, Takashi Kaburagi, Kazuyuki Kobayashi, Kajiro Watanabe, Yosuke Kurihara
Abstract:
This paper describes a novel sensor device, a pressure pulse wave meter, which uses a bidirectional condenser microphone. The microphone work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. Currently aging is becoming a serious social issue in Japan causing increased medical expenses in the country. Hence, it is important for elderly citizens to check health condition at home, and to care the health conditions through daily monitoring. Given this circumstances, we developed a novel pressure pulse wave meter based on a bidirectional condenser microphone. This novel pressure pulse wave meter device is used as a measuring instrument of health conditions.Keywords: bidirectional microphone, pressure pulse wave meter, health condition, novel sensor device
Procedia PDF Downloads 55220191 An Overview of Evaluations Using Augmented Reality for Assembly Training Tasks
Authors: S. Werrlich, E. Eichstetter, K. Nitsche, G. Notni
Abstract:
Augmented Reality (AR) is a strong growing research topic in different training domains such as medicine, sports, military, education and industrial use cases like assembly and maintenance tasks. AR claims to improve the efficiency and skill-transfer of training tasks. This paper gives a comprehensive overview of evaluations using AR for assembly and maintenance training tasks published between 1992 and 2017. We search in a structured way in four different online databases and get 862 results. We select 17 relevant articles focusing on evaluating AR-based training applications for assembly and maintenance tasks. This paper also indicates design guidelines which are necessary for creating a successful application for an AR-based training. We also present five scientific limitations in the field of AR-based training for assembly tasks. Finally, we show our approach to solve current research problems using Design Science Research (DSR).Keywords: assembly, augmented reality, survey, training
Procedia PDF Downloads 27920190 Spin-Polarized Structural, Electronic and Magnetic Properties of Intermetallic Dy2Ni2Pb from Computational Study
Authors: O. Arbouche, Y. Benallou, K. Amara
Abstract:
We report a first-principles study of structural, electronic and magnetic properties of ternary plumbides (rare earth-transition metal-Plumb) Dy2Ni2Pb crystallizes with the orthorhombic structure of the Mn2AlB2 type (space group Cmmm), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbital method within the frame work of spin-polarized density functional theory (SP-DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA). We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, total densities of states and magnetic properties. The calculated total magnetic moment is found to be equal to 9.52 μB.Keywords: spin-polarized, magnetic properties, Dy2Ni2Pb, Density functional theory
Procedia PDF Downloads 30120189 Applying Augmented Reality Technology for an E-Learning System
Authors: Fetoon K. Algarawi, Wejdan A. Alslamah, Ahlam A. Alhabib, Afnan S. Alfehaid, Dina M. Ibrahim
Abstract:
Over the past 20 years, technology was rapidly developed and no one expected what will come next. Advancements in technology open new opportunities for immersive learning environments. There is a need to transmit education to a level that makes it more effective for the student. Augmented reality is one of the most popular technologies these days. This paper is an experience of applying Augmented Reality (AR) technology using a marker-based approach in E-learning system to transmitting virtual objects into the real-world scenes. We present a marker-based approach for transmitting virtual objects into real-world scenes to explain information in a better way after we developed a mobile phone application. The mobile phone application was then tested on students to determine the extent to which it encouraged them to learn and understand the subjects. In this paper, we talk about how the beginnings of AR, the fields using AR, how AR is effective in education, the spread of AR these days and the architecture of our work. Therefore, the aim of this paper is to prove how creating an interactive e-learning system using AR technology will encourage students to learn more.Keywords: augmented reality, e-learning, marker-based, monitor-based
Procedia PDF Downloads 22320188 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction
Authors: Kyoungjin Kim
Abstract:
Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.Keywords: nanoparticles, thermite reaction, combustion wave, numerical modeling
Procedia PDF Downloads 38020187 [Keynote Talk]: Wave-Tidal Integral Turbine Hybrid Generation Approach for Characterizing Performance of Surface Wave
Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib
Abstract:
Boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy and chemical energy are covered and possessed by oceans. The hybrid system helps in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The objective and concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper reviews applications of using hybrid power generation system for remote area. It also highlights the future directions to investigate the impacts of surface waves on turbine design and performance. The importance of understanding the site-specific wave conditions could also been explored.Keywords: hybrid, marine current energy, tidal turbine, wave turbine
Procedia PDF Downloads 36120186 Using Augmented Reality to Enhance Doctor Patient Communication
Authors: Rutusha Bhutada, Gaurav Chavan, Sarvesh Kasat, Varsha Mujumdar
Abstract:
This software system will be an Augmented Reality application designed to maximize the doctor’s productivity by providing tools to assist in automating the patient recognition and updating patient’s records using face and voice recognition features, which would otherwise have to be performed manually. By maximizing the doctor’s work efficiency and production, the application will meet the doctor’s needs while remaining easy to understand and use. More specifically, this application is designed to allow a doctor to manage his productive time in handling the patient without losing eye-contact with him and communicate with a group of other doctors for consultation, for in-place treatments through video streaming, as a video study. The system also contains a relational database containing a list of doctor, patient and display techniques.Keywords: augmented reality, hand-held devices, head-mounted devices, marker based systems, speech recognition, face detection
Procedia PDF Downloads 43620185 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space
Authors: Chao He, Shunhua Zhou, Peijun Guo
Abstract:
The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.Keywords: underground railway, twin tunnels, wave translation and transformation, transfer matrix method
Procedia PDF Downloads 11920184 Intensity-Enhanced Super-Resolution Amplitude Apodization Effect on the Non-Spherical Near-Field Particle-Lenses
Authors: Liyang Yue, Bing Yan, James N. Monks, Rakesh Dhama, Zengbo Wang, Oleg V. Minin, Igor V. Minin
Abstract:
A particle can function as a refractive lens to focus a plane wave, generating a narrow, high intensive, weak-diverging beam within a sub-wavelength volume, known as the ‘photonic jet’. Refractive index contrast (particle to background media) and scaling effect of the dielectric particle (relative-to-wavelength size) play key roles in photonic jet formation, rather than the shape of particle-lens. Waist (full width of half maximum, FWHM) of a photonic jet could be beyond the diffraction limit and smaller than the Airy disk, which defines the minimum distance between two objects to be imaged as two instead of one. Many important applications for imaging and sensing have been afforded based upon the super-resolution characteristic of the photonic jet. It is known that apodization method, in the form of an amplitude pupil-mask centrally situated on a particle-lens, can further reduce the waist of a photonic nanojet, however, usually lower its intensity at the focus due to blocking of the incident light. In this paper, the anomalously intensity-enhanced apodization effect was discovered in the near-field via numerical simulation. It was also experimentally verified by a scale model using a copper-masked Teflon cuboid solid immersion lens (SIL) with 22 mm side length under radiation of a plane wave with 8 mm wavelength. Peak intensity enhancement and the lateral resolution of the produced photonic jet increased by about 36.0 % and 36.4 % in this approach, respectively. This phenomenon may possess the scale effect and would be valid in multiple frequency bands.Keywords: apodization, particle-lens, scattering, near-field optics
Procedia PDF Downloads 19120183 Wave Interaction with Single and Twin Vertical and Sloped Porous Walls
Authors: Mohamad Alkhalidi, S. Neelamani, Noor Alanjari
Abstract:
The main purpose of harbors and marinas is to create a calm and safe docking space for marine vessels. Standard rubble mound breakwaters, although widely used, occupy port space and require large amounts of stones or rocks. Kuwait does not have good quality stone, so they are imported at a very high cost. Therefore, there is a need for a new wave energy dissipating structure where stones and rocks are scarce. While permeable slotted vertical walls have been proved to be a suitable alternative to rubble mound breakwaters, the introduction of sloped slotted walls may be more efficient in dissipating wave energy. For example, two slotted barriers with 60degree inclination may be equivalent to three vertical slotted barriers from wave energy dissipation point of view. A detailed physical model study is carried out to determine the effects of slope angle, porosity, and a number of walls on wave energy dissipation for a wide range of random and regular waves. The results of this study can be used to improve and optimize energy dissipation and reduce construction cost.Keywords: porosity, slope, wave reflection, wave transmission
Procedia PDF Downloads 29020182 A Problem with IFOC and a New PWM Based 180 Degree Conduction Mode
Authors: Usman Nasir, Minxiao Han, S. M. R. Kazmi
Abstract:
Three phase inverters being used today are based on field orientation control (FOC) and sine wave PWM (SPWM) techniques because 120 degree or 180 degree conduction methods produce high value of THD (total harmonic distortion) in the power system. The indirect field orientation control (IFOC) method is difficult to implement in real systems due to speed sensor accuracy issue. This paper discusses the problem with IFOC and a PWM based 180 degree conduction mode for the three phase inverter. The modified control method improves THD and this paper also compares the results obtained using modified control method with the conventional 180 degree conduction mode.Keywords: three phase inverters, IFOC, THD, sine wave PWM (SPWM)
Procedia PDF Downloads 42620181 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches
Authors: Shani Brathwaite, Deborah Villarroel-Lamb
Abstract:
Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.Keywords: beach porosity, empirical models, infiltration, swash, wave run-up
Procedia PDF Downloads 35720180 Numerical Modeling of Air Shock Wave Generated by Explosive Detonation and Dynamic Response of Structures
Authors: Michał Lidner, Zbigniew SzcześNiak
Abstract:
The ability to estimate blast load overpressure properly plays an important role in safety design of buildings. The issue of studying of blast loading on structural elements has been explored for many years. However, in many literature reports shock wave overpressure is estimated with simplified triangular or exponential distribution in time. This indicates some errors when comparing real and numerical reaction of elements. Nonetheless, it is possible to further improve setting similar to the real blast load overpressure function versus time. The paper presents a method of numerical analysis of the phenomenon of the air shock wave propagation. It uses Finite Volume Method and takes into account energy losses due to a heat transfer with respect to an adiabatic process rule. A system of three equations (conservation of mass, momentum and energy) describes the flow of a volume of gaseous medium in the area remote from building compartments, which can inhibit the movement of gas. For validation three cases of a shock wave flow were analyzed: a free field explosion, an explosion inside a steel insusceptible tube (the 1D case) and an explosion inside insusceptible cube (the 3D case). The results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied. Finally, an overall good convergence of numerical results with experiments was achieved. Also the most important parameters were well reflected. Additionally analyses of dynamic response of one of considered structural element were made.Keywords: adiabatic process, air shock wave, explosive, finite volume method
Procedia PDF Downloads 19220179 Electronic and Magnetic Properties of the Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃ and Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃ Perovskites
Authors: Sari Aouatef, Larabi Amina
Abstract:
First-principles calculations within density functional theory based are used to investigate the influence of doped rare earth elements on some properties of perovskite systems Dy₀.₀₆₂₅Y₀.₉₃₇₅FeO₃ and Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃. The electronic and magnetic properties are studied by means of the full-potential linearized augmented plane wave method with Vasp code. The calculated densities of states presented in this work identify the semiconducting behavior for Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃, and the semi-metallic behavior for Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃. Besides, to investigate magnetic properties of several compounds, four magnetic configurations are considered (ferromagnetic (FM), antiferromagnetic type A (A-AFM), antiferromagnetic type C (C-AFM) and antiferromagnetic type G (G-AFM). By doping the Dy element, the system shows different changes in the magnetic order and electronic structure. It is found that Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃ exhibits the strongest magnetic change corresponding to the transition to the ferromagnetic order with the largest magnetic moment of 4.997.Keywords: DFT, Perovskites, multiferroic, magnetic properties
Procedia PDF Downloads 14120178 Augmented Reality: New Relations with the Architectural Heritage Education
Authors: Carla Maria Furuno Rimkus
Abstract:
The technologies related to virtual reality and augmented reality in combination with mobile technologies, are being more consolidated and used each day. The increasing technological availability along with the decrease of their acquisition and maintenance costs, have favored the expansion of its use in the field of historic heritage. In this context it is focused, in this article, on the potential of mobile applications in the dissemination of the architectural heritage, using the technology of Augmented Reality. From this perspective approach, it is discussed about the process of producing an application for mobile devices on the Android platform, which combines the technologies of geometric modeling with augmented reality (AR) and access to interactive multimedia contents with cultural, social and historic information of the historic building that we take as the object of study: a block with a set of buildings built in the XVIII century, known as "Quarteirão dos Trapiches", which was modeled in 3D, coated with the original texture of its facades and displayed on AR. From this perspective approach, this paper discusses about methodological aspects of the development of this application regarding to the process and the project development tools, and presents our considerations on methodological aspects of developing an application for the Android system, focused on the dissemination of the architectural heritage, in order to encourage the tourist potential of the city in a sustainable way and to contribute to develop the digital documentation of the heritage of the city, meeting a demand of tourists visiting the city and the professionals who work in the preservation and restoration of it, consisting of architects, historians, archaeologists, museum specialists, among others.Keywords: augmented reality, architectural heritage, geometric modeling, mobile applications
Procedia PDF Downloads 47720177 Electronic, Structure and Magnetic Properties of KXF3(X= Fe, Co, Mn, V) from Ab Initio Calculations
Authors: M. Ibrir, S. Berri, S. Lakel, D. Maouche And Y. Medkour
Abstract:
We have performed first-principle calculations of the structural, electronic and magnetic properties of KFeF3, KCoF3, KMnF3, KVF3, using full-potential linearized augmented plane-wave (FP-LAPW) scheme within GGA. Features such as the lattice constant, bulk modulus and its pressure derivative are reported. Also, we have presented our results of the band structure and the density of states. The magnetic moments of KFeF3, KCoF3, KMnF3, KVF3 compounds are in most came from the exchange-splitting of X-3d orbital.Keywords: Ab initio calculations, electronic structure, magnetic materials
Procedia PDF Downloads 42020176 Tungsten-Based Powders Produced in Plasma Systems
Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii
Abstract:
The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.Keywords: plasma, powders, production, tungsten-based
Procedia PDF Downloads 120