Search results for: aggregate proportions
628 Effect of Particle Shape on Monotonic and Cyclic Biaxial Behaviour of Sand Using Discrete Element Method
Authors: Raj Banerjee, Y. M. Parulekar, Aniruddha Sengupta, J. Chattopadhyay
Abstract:
This study proposes a Discrete Element Method (DEM) simulation using a commercial software PFC 2D (2019) for quantitatively simulating the monotonic and cyclic behaviour of sand using irregular shapes of sand grains. A preliminary analysis of the number of particles for optimal Representative Element Volume (REV) simulation of dimension 35mm x 35mm x 70mm using the scaled Grain Size Distribution (GSD) of sand is carried out. Subsequently, the effect of particle shape on the performance of sand during monotonic and cyclic bi-axial tests is assessed using numerical simulation. The validation of the numerical simulation for one case is carried out using the test results from the literature. Further numerical studies are performed in which the particles in REV are simulated by mixing round discs with irregular clumps (100% round disc, 75% round disc 25% irregular clump, 50% round disc 50% irregular clump, 25% round disc 75% irregular clump, 100% irregular clump) in different proportions using Dry Deposition (DD) method. The macro response for monotonic loading shows that irregular sand has a higher strength than round particles and that the Mohr-Coulomb failure envelope depends on the shape of the grains. During cyclic loading, it is observed that the liquefaction resistance curve (Cyclic Stress Ratio (CSR)-Number of cycles (N)) of sand is dependent on the combination of particle shapes with different proportions.Keywords: biaxial test, particle shape, monotonic, cyclic
Procedia PDF Downloads 71627 Dynamic Properties of Recycled Concrete Aggregate from Resonant Column Tests
Authors: Wojciech Sas, Emil Soból, Katarzyna Gabryś, Andrzej Głuchowski, Alojzy Szymański
Abstract:
Depleting of natural resources is forcing the man to look for alternative construction materials. One of them is recycled concrete aggregates (RCA). RCA from the demolition of buildings and crushed to proper gradation can be a very good replacement for natural unbound granular aggregates, gravels or sands. Physical and the mechanical properties of RCA are well known in the field of basic civil engineering applications, but to proper roads and railways design dynamic characteristic is need as well. To know maximum shear modulus (GMAX) and the minimum damping ratio (DMIN) of the RCA dynamic loads in resonant column apparatus need to be performed. The paper will contain literature revive about alternative construction materials and dynamic laboratory research technique. The article will focus on dynamic properties of RCA, but early studies conducted by the authors on physical and mechanical properties of this material also will be presented. The authors will show maximum shear modulus and minimum damping ratio. Shear modulus and damping ratio degradation curves will be shown as well. From exhibited results conclusion will be drawn at the end of the article.Keywords: recycled concrete aggregate, shear modulus, damping ratio, resonant column
Procedia PDF Downloads 399626 Mechanical and Durability Characteristics of Roller Compacted Geopolymer Concrete Using Recycled Concrete Aggregate
Authors: Syfur Rahman, Mohammad J. Khattak
Abstract:
Every year a huge quantity of recycling concrete aggregate (RCA) is generated in the United States of America. Utilization of RCA can solve the storage problem, prevent environmental pollution, and reduce the construction cost. However, due to the overall low strength and durability characteristics of RCA, its usages are limited to a certain area like a landfill, low strength base material, replacement of a few percentages of virgin aggregates in Portland cement concrete, etc. This study focuses on the improvement of the strength and durability characteristics of RCA by introducing the concept of roller-compacted geopolymer concrete. In this research, developed roller-compacted geopolymer concrete (RCGPC) and roller-compacted cement concrete (RCC) mixtures containing 100% recycled concrete aggregate were evaluated and compared. Several selected RCGPC mixtures were investigated to find out the effect of mixture variables, including sodium hydroxide (NaOH) molar concentration, sodium silicate (Na₂SiO₃), to sodium hydroxide (NaOH) ratio on the strength, stiffness and durability characteristics of the developed RCGPC. Sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) were mixed in different ratios to synthesize the alkali activator. American Concrete Pavement Association (ACPA) recommended RCC gradation was used with a maximum nominal aggregate size of 19 mm with a 4% fine particle passing 0.075 mm sieve. The mixtures were made using NaOH molar concentration of 8M and 10M along with, Na₂SiO₃ to NaOH ratio of 0 and 1 by mass and 15% class F fly ash. Optimum alkali content and moisture content were determined for each RCGPC and RCC mixtures, respectively, using modified proctor test. Compressive strength, semi-circular bending beam strength, and dynamic modulus test were conducted to evaluate the mechanistic characteristics of both mixtures. To determine the optimum curing conditions for RCGPC, effects of different curing temperature and curing duration on compressive strength were also studied. Sulphate attack and freeze-thaw tests were also carried out to assess the durability properties of the developed mixtures. X-ray diffraction (XRD) was used for morphology and microstructure analysis. From the optimum moisture content results, it was found that RCGPC has high alkali content, which was mainly due to the high absorption capacity of RCA. It was found that the mixtures with Na₂SiO₃ to NaOH ratio of 1 yielded about 60% higher compressive strength than the ratio of 0. Further, the mixtures using 10M NaOH concentrations and alkali ratio of 1 produced about 28 MPa of compressive strength, which was around 33% higher than 8M NaOH mixtures. Similar results were obtained for elastic and dynamic modulus of the mixtures. On the other hand, the semi-circular bending beam strength remained the same for both 8 and 10 molar NaOH geopolymer mixtures. Formation of new geopolymeric compounds and chemical bonds in the newly formed novel RCGPC mixtures were also discovered using XRD analysis. The results of mechanical and durability testing further revealed that RCGPC performed similarly to that of RCC mixtures. Based on the results of mechanical and durability testing, the developed RCGPC mixtures using 100% recycled concrete could be used as a cost-effective solution for the construction of pavement structures.Keywords: roller compacted concrete, geopolymer concrete, recycled concrete aggregate, concrete pavement, fly ash
Procedia PDF Downloads 137625 Decision-Making using Fuzzy Linguistic Hypersoft Set Topology
Authors: Muhammad Saqlain, Poom Kumam
Abstract:
Language being an abstract system and creative act, is quite complicated as its meaning varies depending on the context. The context is determined by the empirical knowledge of a person, which is derived from observation and experience. About further subdivided attributes, the decision-making challenges may entail quantitative and qualitative factors. However, because there is no norm for putting a numerical value on language, existing approaches cannot carry out the operations of linguistic knowledge. The assigning of mathematical values (fuzzy, intuitionistic, and neutrosophic) to any decision-making problem; without considering any rule of linguistic knowledge is ambiguous and inaccurate. Thus, this paper aims to provide a generic model for these issues. This paper provides the linguistic set structure of the fuzzy hypersoft set (FLHSS) to solve decision-making issues. We have proposed the definition some basic operations like AND, NOT, OR, AND, compliment, negation, etc., along with Topology and examples, and properties. Secondly, the operational laws for the fuzzy linguistic hypersoft set have been proposed to deal with the decision-making issues. Implementing proposed aggregate operators and operational laws can be used to convert linguistic quantifiers into numerical values. This will increase the accuracy and precision of the fuzzy hypersoft set structure to deal with decision-making issues.Keywords: linguistic quantifiers, aggregate operators, multi-criteria decision making (mcdm)., fuzzy topology
Procedia PDF Downloads 97624 Stabilization of Medical Waste Incineration Fly Ash in Cement Mortar Matrix
Authors: Tanvir Ahmed, Musfira Rahman, Rumpa Chowdhury
Abstract:
We performed laboratory experiments to assess the suitability of using medical waste incineration fly ash in cement as a construction material based on the engineering properties of fly ash-cement matrix and the leaching potential of toxic heavy metals from the stabilized mix. Fly ash-cement samples were prepared with different proportions of fly ash (0%, 5%, 10%, 15% and 20% by weight) in the laboratory controlled conditions. The solidified matrix exhibited a compressive strength from 3950 to 4980 psi when fly ash is mixed in varying proportions. The 28-day compressive strength has been found to decrease with the increase in fly ash content, but it meets the minimum requirement of compressive strength for cement-mortar. Soundness test results for cement-mortar mixes having up to 15% fly ash. Final and initial setting times of cement have been found to generally increase with fly ash content. Water requirement (for normal consistency) also increased with the increase in fly ash content in cement. Based on physical properties of the cement-mortar matrix it is recommended that up to 10% (by weight) medical waste incineration fly ash can be incorporated for producing cement-mortar of optimum quality. Leaching behaviours of several targeted heavy metals (As, Cu, Ni, Cd, Pb, Hg and Zn) were analyzed using Toxicity Characteristics Leaching Procedure (TCLP) on fly ash and solidified fly ash-cement matrix. It was found that the leached concentrations of As, Cu, Cd, Pb and Zn were reduced by 80.13%, 89.47%, 33.33% and 23.9% respectively for 10% fly ash incorporated cement-mortar matrix compared to that of original fly ash. The leached concentrations of heavy metals were from the matrix were far below the EPA land disposal limits. These results suggest that the solidified fly ash incorporated cement-mortar matrix can effectively confine and immobilize the heavy metals contained in the fly ash.Keywords: cement-mortar, fly ash, leaching, waste management
Procedia PDF Downloads 172623 Use of Coconut Shell as a Replacement of Normal Aggregates in Rigid Pavements
Authors: Prakash Parasivamurthy, Vivek Rama Das, Ravikant Talluri, Veena Jawali
Abstract:
India ranks among third in the production of coconut besides Philippines and Indonesia. About 92% of the total production in the country is contributed from four southern states especially, Kerala (45.22%), Tamil Nadu (26.56%), Karnataka (10.85%), and Andhra Pradesh (8.93%). Other states, such as Goa, Maharashtra, Odisha, West Bengal, and those in the northeast (Tripura and Assam) account for the remaining 8.44%. The use of coconut shell as coarse aggregate in concrete has never been a usual practice in the industry, particularly in areas where light weight concrete is required for non-load bearing walls, non-structural floors, and strip footings. The high cost of conventional building materials is a major factor affecting construction delivery in India. In India, where abundant agricultural and industrial wastes are discharged, these wastes can be used as potential material or replacement material in the construction industry. This will have double the advantages viz., reduction in the cost of construction material and also as a means of disposal of wastes. Therefore, an attempt has been made in this study to utilize the coconut shell (CS) as coarse aggregate in rigid pavement. The present study was initiated with the characterization of materials by the basic material testing. The casted moulds are cured and tests are conducted for hardened concrete. The procedure is continued with determination of fck (Characteristic strength), E (Modulus of Elasticity) and µ (Poisson Value) by the test results obtained. For the analytical studies, rigid pavement was modeled by the KEN PAVE software, finite element software developed specially for road pavements and simultaneously design of rigid pavement was carried out with Indian standards. Results show that physical properties of CSAC (Coconut Shell Aggregate Concrete) with 10% replacement gives better results. The flexural strength of CSAC is found to increase by 4.25% as compared to control concrete. About 13 % reduction in pavement thickness is observed using optimum coconut shell.Keywords: coconut shell, rigid pavement, modulus of elasticity, poison ratio
Procedia PDF Downloads 237622 Serological Evidence of Enzootic Bovine Leukosis in Dairy Cattle Herds in the United Arab Emirates
Authors: Nabeeha Hassan Abdel Jalil, Lulwa Saeed Al Badi, Mouza Ghafan Alkhyeli, Khaja Mohteshamuddin, Ahmad Al Aiyan, Mohamed Elfatih Hamad, Robert Barigye
Abstract:
The present study was done to elucidate the prevalence of enzootic bovine leucosis (EBL) in the UAE, the seroprevalence rates of EBL in dairy herds from the Al Ain area, Abu Dhabi (AD) and indigenous cattle at the Al Ain livestock market (AALM) were assessed. Of the 949 sera tested by ELISA, 657 were from adult Holstein-Friesians from three farms and 292 from indigenous cattle at the AALM. The level of significance between the proportions of seropositive cattle were analyzed by the Marascuilo procedure and questionnaire data on husbandry and biosecurity practices evaluated. Overall, the aggregated farm and AALM data demonstrated a seroprevalence of 25.9%, compared to 37.0% for the study farms, and 1.0% for the indigenous cattle. Additionally, the seroprevalence rates at farms #1, #2 and #3 were 54.7%, 0.0%, and 26.3% respectively. Except for farm #2 and the AALM, statistically significant differences were noted between the proportions of seropositive cattle for farms #1 and #2 (Critical Range or CR=0.0803), farms #1 and #3 (p=0.1069), and farms #2 and #3 (CR=0.0707), farm #1 and the AALM (CR=0.0819), and farm #3 and the AALM (CR=0.0726). Also, the proportions of seropositive animals on farm #1 were 9.8%, 59.8%, 29.3%, and 1.2% in the 12-36, 37-72, 73-108, and 109-144-mo-old age groups respectively compared to 21.5%, 60.8%, 15.2%, and 2.5% in the respective age groups for farm #2. On both farms and the AALM, the 37-72-mo-old age group showed the highest EBL seroprevalence rate while all the 57 cattle on farm #2 were seronegative. Additionally, farms #1 and #3 had 3,130 and 2,828 intensively managed Holstein-Friesian cattle respectively, and all animals were routinely immunized against several diseases except EBL. On both farms #1 and #3, artificial breeding was practiced using semen sourced from the USA, and USA and Canada respectively, all farms routinely quarantined new stock, and farm #1 previously imported dairy cattle from an unspecified country, and farm #3 from the Netherlands, Australia and South Africa. While farm #1 provided no information on animal nutrition, farm #3 cited using hay, concentrates, and ad lib water. To the authors’ best knowledge, this is the first serological evidence of EBL in the UAE and as previously reported, the seroprevalence rates are comparatively higher in the intensively managed dairy herds than in indigenous cattle. As two of the study farms previously sourced cattle and semen from overseas, biosecurity protocols need to be revisited to avoid inadvertent EBL incursion and the possibility of regional transboundary disease spread also needs to be assessed. After the proposed molecular studies have adduced additional data, the relevant UAE animal health authorities may need to develop evidence-based EBL control policies and programs.Keywords: cattle, enzootic bovine leukosis, seroprevalence, UAE
Procedia PDF Downloads 143621 Reformulation of Theory of Critical Distances to Predict the Strength of Notched Plain Concrete Beams under Quasi Static Loading
Authors: Radhika V., J. M. Chandra Kishen
Abstract:
The theory of critical distances (TCD), due to its appealing characteristics, has been successfully used in the past to predict the strength of brittle as well as ductile materials, weakened by the presence of stress risers under both static and fatigue loading. By utilising most of the TCD's unique features, this paper summarises an attempt for a reformulation of the point method of the TCD to predict the strength of notched plain concrete beams under mode I quasi-static loading. A zone of micro cracks, which is responsible for the non-linearity of concrete, is taken into account considering the concept of an effective elastic crack. An attempt is also made to correlate the value of the material characteristic length required for the application of TCD with the maximum aggregate size in the concrete mix, eliminating the need for any extensive experimentation prior to the application of TCD. The devised reformulation and the proposed power law based relationship is found to yield satisfactory predictions for static strength of notched plain concrete beams, with geometric dimensions of the beam, tensile strength, and maximum aggregate size of the concrete mix being the only needed input parameters.Keywords: characteristic length, effective elastic crack, inherent material strength, modeI loading, theory of critical distances
Procedia PDF Downloads 98620 An Experimental Study on the Thermal Properties of Concrete Aggregates in Relation to Their Mineral Composition
Authors: Kyung Suk Cho, Heung Youl Kim
Abstract:
The analysis of the petrologic characteristics and thermal properties of crushed aggregates for concrete such as granite, gneiss, dolomite, shale and andesite found that rock-forming minerals decided the thermal properties of the aggregates. The thermal expansion coefficients of aggregates containing lots of quartz increased rapidly at 573 degrees due to quartz transition. The mass of aggregate containing carbonate minerals decreased rapidly at 750 degrees due to decarboxylation, while its specific heat capacity increased relatively. The mass of aggregates containing hydrated silicate minerals decreased more significantly, and their specific heat capacities were greater when compared with aggregates containing feldspar or quartz. It is deduced that the hydroxyl group (OH) in hydrated silicate dissolved as its bond became loose at high temperatures. Aggregates containing mafic minerals turned red at high temperatures due to oxidation response. Moreover, the comparison of cooling methods showed that rapid cooling using water resulted in more reduction in aggregate mass than slow cooling at room temperatures. In order to observe the fire resistance performance of concrete composed of the identical but coarse aggregate, mass loss and compressive strength reduction factor at 200, 400, 600 and 800 degrees were measured. It was found from the analysis of granite and gneiss that the difference in thermal expansion coefficients between cement paste and aggregates caused by quartz transit at 573 degrees resulted in thermal stress inside the concrete and thus triggered concrete cracking. The ferromagnesian hydrated silicate in andesite and shale caused greater reduction in both initial stiffness and mass compared with other aggregates. However, the thermal expansion coefficient of andesite and shale was similar to that of cement paste. Since they were low in thermal conductivity and high in specific heat capacity, concrete cracking was relatively less severe. Being slow in heat transfer, they were judged to be materials of high heat capacity.Keywords: crush-aggregates, fire resistance, thermal expansion, heat transfer
Procedia PDF Downloads 227619 Experimental Study of Application of Steel Slag as Aggregate in Road Construction
Authors: Meftah M. Elsaraiti, Samir Milad Elsariti
Abstract:
Steel slag is a by-product of the steel production and utilizing it potentially as new or substitute materials in road construction is advantageous regarding cost reduction and flattening improvement or properties pavement. Ease of use, low cost, and resource availability are some of few advantages of reuse and recycling of steel slag. This study assesses the use of Steel Slag Aggregates (SSA) as an alternative to natural road building aggregates. This paper discusses the basic characteristics of steel slag based on extensive laboratory tests, and to determine the possibilities of using steel slag in road construction. Samples were taken from the furnaces directly at different times and dates. Moreover, random samples were also taken from the slag field from various areas at different far distances from each other. A necessary analysis was performed through the use of (XRF). Three different percentages of SSA (0, 50 and 100%) were added as an alternative to natural aggregate in hot mix asphalt (HMA) production. The proposed design of the mix was made according to the Marshall mix design. The results of the experiments revealed that the percentages of iron oxide ranged from (9 to 26%) and that the addition of SSA has a significant improvement on HMA properties. It was observed that the Marshall stability obtained in the mix of 100% slag ranged from 600 to 800 N as a minimum, and the flow of Marshall obtained from 2.4 to 3.23 mm and the specification requires from 2 to 4 mm. The results may be showed possibilities to use steel slag as new or substitute materials in road construction in Libya.Keywords: by-product material, properties, road construction, steel slag
Procedia PDF Downloads 185618 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis
Authors: N. R. N. Idris, S. Baharom
Abstract:
A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates. On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.Keywords: aggregate data, combined-level data, individual patient data, meta-analysis
Procedia PDF Downloads 375617 High Friction Surface Treatment Highway Safety Improvement Program Funded Pilot Project Maricopa County D. O. T.
Authors: Maz Muradvich
Abstract:
The Federal Highway Administration's Everyday Counts (EDC) initiative is designed to identify and deploy innovations, enhancing the safety of our roadways. According to and as referenced in FHWA everyday counts (2) website, High friction surface treatment (HFST) is an emerging surface application that has been proven to reduce crashes. High Friction Surface Treatment involves the application of Calcined Bauxite, very high-quality aggregate to the pavement using a polymer binder to restore and maintain pavement friction at existing or potentially high crash areas. Bauxite is a byproduct of manufacturing aluminum resulting in very hard aggregate and is abrasion and polish resistant. HFST is an approach that has been recognized nationally and internationally and has provided considerable increases in friction for curves and intersections spot applications. Maricopa County qualified and received HSIP (Highway Safety Improvement Program) funding that was applied towards HFST application on 2 locations in Maricopa County. The project was successfully completed in December 2019. Four years later MCDOT continues to conduct wet and dry ABS and Non-ABS friction coefficient testing in pursuit of after studies evaluation of HFST application.Keywords: roadway departure, sever crashes, coefficient of friction, break meter technology
Procedia PDF Downloads 47616 Evaluating the Use of Swedish by-Product Foundry Sand in Asphalt Mixtures
Authors: Dina Kuttah
Abstract:
It is well known that recycling of by-product materials saves natural resources, reduces by-product volumes, and reduces the need for virgin materials. The steel industry produces a myriad of metal components for industrial chains, which in turn generates mineral discarded sand molds. Although these sands are clean before their use, after casting, they may contain contaminants. Therefore, huge quantities of excess by-product foundry sand (BFS) end up occupying large volumes in landfills. In Sweden, approximately 200000 tonnes of excess BFS end up in landfills. The transportation and construction industries have the greatest potential for reuse by-products because they use vast quantities of earthen materials annually. Accordingly, experimental work has been undertaken to evaluate the possible use of two chosen BFS from two Swedish foundries in a conventional Swedish asphalt mixture. The experimental procedure of this research has focused on the dosage, environmental and technical properties of the same mixture type ABT 11 and the same bitumen (160/220) but at different replacement proportions of the conventional fine sand with the two BFS. The environmental requirements, in addition to the technical requirements, namely, void ratio, static indirect tensile strength ratio, and resilient modulus before and after moisture-induced sensitivity tests of the asphalt mixtures, have been investigated in the current study. The test results demonstrated that the BFS from both foundries can be incorporated in the selected asphalt mixture at specified replacement proportions of the conventional fine sand fraction 0-2 mm, as discussed in the paper.Keywords: asphalt mixtures, by-product foundry sand, indirect tensile strength, moisture induced sensitivity tests, resilient modulus
Procedia PDF Downloads 135615 A Comprehensive Study of Accounting for Growth in China and India
Authors: Yousef Rostami Gharainy
Abstract:
We look at the late financial exhibitions of China and India utilizing a simple growth accounting framework that creates assessments of the commitment of work, capital, training, and aggregate variable profitability for the three parts of agribusiness, industry, and administrations and in addition for the total economy. Our examination consolidates late information updates in both nations and incorporates broad examination of the basic information arrangement. The development records demonstrate a generally square with division in each nation between the commitments of capital gathering and TFP to development in yield every specialist over the period 1980-2007, and an increasing speed of development when the period is separated at 1993. Be that as it may, the size of yield development in China is generally twofold that of India at the total level, and additionally higher in each of the three segments in both sub-periods. In China the post-1993 increasing speed was amassed generally in industry, which contributed about 61 percent of China’s total efficiency development. Interestingly, 48 percent of the development in India in the second sub-period came in administrations. Reallocation of specialists from farming to industry and administrations has contributed 1.3 rate focuses to efficiency development in every nation.Keywords: China, India, growth accounting framework, work, capital, training, aggregate variable profitability
Procedia PDF Downloads 297614 Green Materials for Hot Mixed Asphalt Production
Authors: Salisu Dahiru, Jibrin M. Kaura, Abubakar I. Jumare, Sulaiman M. Mahmood
Abstract:
Reclaimed asphalt, used automobile tires and rice husk, were regarded as waste. These materials could be used in construction of new roads and for roads rehabilitation. Investigation into the production of a Green Hot Mixed Asphalt (GHMA) pavement using Reclaimed Asphalt Pavement (RAP) as partial replacement for coarse aggregate, Crumb Rubber (CR) from waste automobile tires as modifier for bitumen binder and Rice Husk Ash (RHA) as partial replacement of ordinary portland cement (OPC) filler, for roads construction and rehabilitation was presented. 30% Reclaimed asphalt of total aggregate, 15% Crumb Rubber of total binder content, 5% Rice Husk Ash of total mix, and 5.2% Crumb Rubber Modified Bitumen content were recommended for optimum performance. Loss of marshal stability was investigated on mix with the recommended optimum CRMB. The mix revealed good performance with only about 13% loss of stability after 24 hours of immersion in hot water bath, as against about 24% marshal stability lost reported in previous studies for conventional Hot Mixed Asphalt (HMA).Keywords: rice husk, reclaimed asphalt, filler, crumb rubber, bitumen content green hot mix asphalt
Procedia PDF Downloads 335613 Using Geopolymer Technology on Stabilization and Reutilization the Expansion Behavior Slag
Authors: W. H. Lee, T. W. Cheng, K. Y. Lin, S. W. Huang, Y. C. Ding
Abstract:
Basic Oxygen Furnace (BOF) Slag and electric arc furnace (EAF) slag is the by-product of iron making and steel making. Each of slag with produced over 100 million tons annually in Taiwan. The type of slag has great engineering properties, such as, high hardness and density, high compressive strength, low abrasion ratio, and can replace natural aggregate for building materials. However, no matter BOF or EAF slag, both have the expansion problem, due to it contains free lime. The purpose of this study was to stabilize the BOF and EAF slag by using geopolymer technology, hoping can prevent and solve the expansion problem. The experimental results showed that using geopolymer technology can successfully solve and prevent the expansion problem. Their main properties are analyzed with regard to their use as building materials. Autoclave is used to study the volume stability of these specimens. Finally, the compressive strength of geopolymer mortar with BOF/FAF slag can be reached over 21MPa after curing for 28 days. After autoclave testing, the volume expansion does not exceed 0.2%. Even after the autoclave test, the compressive strength can be grown to over 35MPa. In this study have success using these results on ready-mixed concrete plant, and have the same experimental results as laboratory scale. These results gave encouragement that the stabilized and reutilized BOF/EAF slag could be replaced as a feasible natural fine aggregate by using geopolymer technology.Keywords: BOF slag, EAF slag, autoclave test, geopolymer
Procedia PDF Downloads 133612 Impact of Mixed Prey Population on Predation Potential and Food Preference of a Predaceous Ladybird, Coccinella septempunctata
Authors: Ahmad Pervez
Abstract:
We investigated predation potential and food preference of different life stages of a predaceous ladybird Coccinella septempunctata L. (Coleptera: Coccinellidae) using a nutritive food (mustard aphid, Lipaphis erysimi) and a toxic food (cabbage aphid, Brevicoryne brassicae). We gave monotypic prey, L. erysimi, then B. brassicae to all life stages and found that second, third and fourth instars and adult female C. septempunctata daily consumed greater number of former prey. However, the first instar and the adult male equally consumed both the prey. In choice condition, each larva, adult male and female consumed mixed aphid diet separately in three proportions (i.e. low: high, equal: equal and high: low densities of L. erysimi: B. brassicae). We hypothesized that life stages of C. septempunctata will prefer L. erysimi regardless of its proportions. Laboratory experiment supported this hypothesis only at the adult level showing high values of β and C preference indices. However, it rejects this hypothesis at the larval level, as larvae preferred B. brassicae in certain combinations and showed no preference in a few combinations. We infer that mixing of nutritive diet in a toxic diet may possibly overcome the probable nutritive deficiency and/or reduces the toxicity of toxic diet, especially to the larvae of C. septempunctata. Consumption of high proportion of B. brassicae mixed with fewer L. erysimi suggests that mixed diet could be better for the development of immature stages of C. septempunctata.Keywords: Coccinella septempunctata, predatory potential, prey preference, Lipaphis erysimi, Brevicoryne brassicae
Procedia PDF Downloads 196611 Preparation of Electrospun PLA/ENR Fibers
Authors: Jaqueline G. L. Cosme, Paulo H. S. Picciani, Regina C. R. Nunes
Abstract:
Electrospinning is a technique for the fabrication of nanoscale fibers. The general electrospinning system consists of a syringe filled with polymer solution, a syringe pump, a high voltage source and a grounded counter electrode. During electrospinning a volumetric flow is set by the syringe pump and an electric voltage is applied. This forms an electric potential between the needle and the counter electrode (collector plate), which results in the formation of a Taylor cone and the jet. The jet is moved towards the lower potential, the counter electrode, wherein the solvent of the polymer solution is evaporated and the polymer fiber is formed. On the way to the counter electrode, the fiber is accelerated by the electric field. The bending instabilities that occur form a helical loop movements of the jet, which result from the coulomb repulsion of the surface charge. Trough bending instabilities the jet is stretched, so that the fiber diameter decreases. In this study, a thermoplastic/elastomeric binary blend of non-vulcanized epoxidized natural rubber (ENR) and poly(latic acid) (PLA) was electrospun using polymer solutions consisting of varying proportions of PCL and NR. Specifically, 15% (w/v) PLA/ENR solutions were prepared in /chloroform at proportions of 5, 10, 25, and 50% (w/w). The morphological and thermal properties of the electrospun mats were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry analysis. The SEM images demonstrated the production of micrometer- and sub-micrometer-sized fibers with no bead formation. The blend miscibility was evaluated by thermal analysis, which showed that blending did not improve the thermal stability of the systems.Keywords: epoxidized natural rubber, poly(latic acid), electrospinning, chemistry
Procedia PDF Downloads 410610 Production Planning for Animal Food Industry under Demand Uncertainty
Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut
Abstract:
This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty
Procedia PDF Downloads 380609 Quality Assessment and Classification of Recycled Aggregates from CandDW According to the European Standards
Authors: M. Eckert, D. Mendes, J P. Gonçalves, C. Moço, M. Oliveira
Abstract:
The intensive extraction of natural aggregates leads to both depletion of natural resources and unwanted environmental impacts. On the other hand, uncontrolled disposal of Construction and Demolition Wastes (C&DW) causes the lifetime reduction of landfills. It is known that the European Union produces, each year, about 850 million tons of C&DW. For all the member States of the European Union, one of the milestones to be reached by 2020, according to the Resource Efficiency Roadmap (COM (2011) 571) of the European Commission, is to recycle 70% of the C&DW. In this work, properties of different types of recycled C&DW aggregates and natural aggregates were compared. Assays were performed according to European Standards (EN 13285; EN 13242+A1; EN 12457-4; EN 12620; EN 13139) for the characterization of there: physical, mechanical and chemical properties. Not standardized tests such as water absorption over time, mass stability and post compaction sieve analysis were also carried out. The tested recycled C&DW aggregates were classified according to the requirements of the European Standards regarding there potential use in concrete, mortar, unbound layers of road pavements and embankments. The results of the physical and mechanical properties of recycled C&DW aggregates indicated, in general, lower quality properties when compared to natural aggregates, particularly, for concrete preparation and unbound layers of road pavements. The results of the chemical properties attested that the C&DW aggregates constitute no environmental risk. It was concluded that recycled aggregates produced from C&DW have the potential to be used in many applications.Keywords: recycled aggregate, sustainability, aggregate properties, European Standard Classification
Procedia PDF Downloads 673608 Removal of Xylenol Orange and Eriochrome Black T Dyes from Aqueous Solution Using Chemically Activated Cocos nucifera and Mango Seed
Authors: Padmesh Tirunelveli Narayanapillai, Joel Sharwinkumar, Gaitri Saravanan
Abstract:
The biosorption of Xylenol Orange (XO) and Eriochrome Black T (EBT) from aqueous solutions by chemically activated Cocos nucifera and mango seed as a low-cost, natural, and eco-friendly biosorbents was investigated. The study for biosorption of XO and EBT was optimized by different experimental parameters, initial pH 2–7, temperature 30–60 °C, biosorbent dosage 0.1 – 0.5 g, and XO: EBT dye proportions 0 – 100 by weight %. Physicochemical characteristic studies were conducted by Fourier Transform Infrared (FTIR). The equilibrium uptake was increased with an increase in the initial dye concentrations in the solution. Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The experimental isotherms data were analyzed using Langmuir, Freundlich, Redlich-Peterson, and Toth isotherm equations. Thermodynamic parameters ∆Go, ∆Ho, and ∆So were calculated indicating that the biosorption of Xo and EBT dye is a spontaneous and endothermic process. The Langmuir model gave the best fit by higher correlation coefficient (R2 =0.9971) for both biosorbents at optimum circumstances as pH 3, temperature 30°C, dosage 0.5 g for chemically activated Cocos nucifera and 0.4 g for chemically activated mango seeds it assumes as monolayer adsorption. The maximum dye removal efficiency was determined as 79.75% with chemically activated mango seeds compared to chemically activated Cocos nucifera. In summary, this research work showed that chemically modified activated mango seed can be effectively used as a promising low-cost biosorbent for the removal of different XO and EBT mixed dye combinations from aqueous solutions.Keywords: mixed dye proportions, xylenol orange and eriochrome black t, chemically activated cocos nucifera and mango seed, kinetic, isotherm and thermodynamic studies, FTIR
Procedia PDF Downloads 70607 Experimental Investigation to Produce an Optimum Mix Ratio of Micro-Concrete
Authors: Shofiq Ahmed, Rakibul Hassan, Raquib Ahsan
Abstract:
Concrete is one of the basic elements of RCC structure and also the most crucial one. In recent years, a lot of researches have been conducted to develop special types of concrete for special purposes. Micro-concrete is one of them which has high compressive strength and is mainly used for retrofitting. Micro-concrete is a cementitious based composition formulated for use in repairs of areas where the concrete is damaged & the area is confined in movement making the placement of conventional concrete difficult. According to recent statistics, a large number of structures in the major cities of Bangladesh are vulnerable to collapse. Retrofitting may thus be required for a sustainable solution, and for this purpose, the utilization of micro-concrete can be considered as the most effective solution. For that reason, the aim of this study was to produce micro-concrete using indigenous materials in low cost. Following this aim, the experimental data were observed for five mix ratios with varied amount of cement, fine aggregate, coarse aggregate, water, and admixture. The investigation criteria were a compressive strength, tensile strength, slump and the cost of different mix ratios. Finally, for a mix ratio of 1:1:1.5, the compressive strength was achieved as 7820 psi indicating highest strength among all the samples with the reasonable tensile strength of 1215 psi. The slump of 6.9 inches was also found for this specimen indicating it’s high flowability and making it’s convenient to use as micro-concrete. Moreover, comparing with the cost of foreign products of micro-concrete, it was observed that foreign products were almost four to five times costlier than this local product.Keywords: indigenous, micro-concrete, retrofitting, vulnerable
Procedia PDF Downloads 327606 Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt
Authors: Abbaas I. Kareem, H. Nikraz
Abstract:
The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.Keywords: aggregate crashed value, double coating technique, hot mix asphalt, Marshall parameters, recycled concrete aggregates
Procedia PDF Downloads 287605 Empirical Superpave Mix-Design of Rubber-Modified Hot-Mix Asphalt in Railway Sub-Ballast
Authors: Fernando M. Soto, Gaetano Di Mino
Abstract:
The design of an unmodified bituminous mixture and three rubber-aggregate mixtures containing rubber-aggregate by a dry process (RUMAC) was evaluated, using an empirical-analytical approach based on experimental findings obtained in the laboratory with the volumetric mix design by gyratory compaction. A reference dense-graded bituminous sub-ballast mixture (3% of air voids and a bitumen 4% over the total weight of the mix), and three rubberized mixtures by dry process (1,5 to 3% of rubber by total weight and 5-7% of binder) were used applying the Superpave mix-design for a level 3 (high-traffic) design rail lines. The railway trackbed section analyzed was a granular layer of 19 cm compacted, while for the sub-ballast a thickness of 12 cm has been used. In order to evaluate the effect of increasing the specimen density (as a percent of its theoretical maximum specific gravity), in this article, are illustrated the results obtained after different comparative analysis into the influence of varying the binder-rubber percentages under the sub-ballast layer mix-design. This work demonstrates that rubberized blends containing crumb and ground rubber in bituminous asphalt mixtures behave at least similar or better than conventional asphalt materials. By using the same methodology of volumetric compaction, the densification curves resulting from each mixture have been studied. The purpose is to obtain an optimum empirical parameter multiplier of the number of gyrations necessary to reach the same compaction energy as in conventional mixtures. It has provided some experimental parameters adopting an empirical-analytical method, evaluating the results obtained from the gyratory-compaction of bituminous mixtures with an HMA and rubber-aggregate blends. An extensive integrated research has been carried out to assess the suitability of rubber-modified hot mix asphalt mixtures as a sub-ballast layer in railway underlayment trackbed. Design optimization of the mixture was conducted for each mixture and the volumetric properties analyzed. Also, an improved and complete manufacturing process, compaction and curing of these blends are provided. By adopting this increase-parameters of compaction, called 'beta' factor, mixtures modified with rubber with uniform densification and workability are obtained that in the conventional mixtures. It is found that considering the usual bearing capacity requirements in rail track, the optimal rubber content is 2% (by weight) or 3.95% (by volumetric substitution) and a binder content of 6%.Keywords: empirical approach, rubber-asphalt, sub-ballast, superpave mix-design
Procedia PDF Downloads 368604 An Agent-Based Approach to Examine Interactions of Firms for Investment Revival
Authors: Ichiro Takahashi
Abstract:
One conundrum that macroeconomic theory faces is to explain how an economy can revive from depression, in which the aggregate demand has fallen substantially below its productive capacity. This paper examines an autonomous stabilizing mechanism using an agent-based Wicksell-Keynes macroeconomic model. This paper focuses on the effects of the number of firms and the length of the gestation period for investment that are often assumed to be one in a mainstream macroeconomic model. The simulations found the virtual economy was highly unstable, or more precisely, collapsing when these parameters are fixed at one. This finding may even suggest us to question the legitimacy of these common assumptions. A perpetual decline in capital stock will eventually encourage investment if the capital stock is short-lived because an inactive investment will result in insufficient productive capacity. However, for an economy characterized by a roundabout production method, a gradual decline in productive capacity may not be able to fall below the aggregate demand that is also shrinking. Naturally, one would then ask if our economy cannot rely on an external stimulus such as population growth and technological progress to revive investment, what factors would provide such a buoyancy for stimulating investments? The current paper attempts to answer this question by employing the artificial macroeconomic model mentioned above. The baseline model has the following three features: (1) the multi-period gestation for investment, (2) a large number of heterogeneous firms, (3) demand-constrained firms. The instability is a consequence of the following dynamic interactions. (a) A multiple-period gestation period means that once a firm starts a new investment, it continues to invest over some subsequent periods. During these gestation periods, the excess demand created by the investing firm will spill over to ignite new investment of other firms that are supplying investment goods: the presence of multi-period gestation for investment provides a field for investment interactions. Conversely, the excess demand for investment goods tends to fade away before it develops into a full-fledged boom if the gestation period of investment is short. (b) A strong demand in the goods market tends to raise the price level, thereby lowering real wages. This reduction of real wages creates two opposing effects on the aggregate demand through the following two channels: (1) a reduction in the real labor income, and (2) an increase in the labor demand due to the principle of equality between the marginal labor productivity and real wage (referred as the Walrasian labor demand). If there is only a single firm, a lower real wage will increase its Walrasian labor demand, thereby an actual labor demand tends to be determined by the derived labor demand. Thus, the second positive effect would not work effectively. In contrast, for an economy with a large number of firms, Walrasian firms will increase employment. This interaction among heterogeneous firms is a key for stability. A single firm cannot expect the benefit of such an increased aggregate demand from other firms.Keywords: agent-based macroeconomic model, business cycle, demand constraint, gestation period, representative agent model, stability
Procedia PDF Downloads 162603 An Overview of Electronic Waste as Aggregate in Concrete
Authors: S. R. Shamili, C. Natarajan, J. Karthikeyan
Abstract:
Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete.Keywords: dumping, electronic waste, landfill, toxic chemicals
Procedia PDF Downloads 169602 Partial Replacement of GGBS in Concrete for Prevention of Natural Resources
Authors: M. Murmu, Govardhan, J. Satya Eswari
Abstract:
Concrete is the most common and widely used building material. Concrete is basically made of aggregates, both fine and coarse, glued by a cement paste which is made of cement and water. Each one of these constituents of concrete has a negative environmental impact and gives rise to different sustainability issues. The current concrete construction practice is unsustainable because, not only it consumes enormous quantities of stones, sand, and drinking water, but also one billion tons a year of cement, which is not an environment friendly material. Preventing the reduction of natural resources and enhancing the usage of waste materials has become a challenge to the scientist and engineers. A number of studies have been conducted concerning the protection of natural resources, prevention of environmental pollution and contribution to the economy by using this waste material. This paper outlines the influence of Ground Granulated Blast furnace Slag (GGBS) as partial replacement of fine aggregate on mechanical properties of concrete. The strength of concrete is determined having OPC binder, replaced the fine aggregate with15%, 30%, 45% respectively. For this purpose, characteristics concrete mix of M25 with partial replacement of cement with GGBS is used and the strength of concrete cubes and cylinder have determined. The strength of concrete specimens has been compared with the reference specimen. Also X-ray diffraction (XRD) and scanning electron microscope (SEM) tests have been performed to examine the hydration products and the microstructure of the tested specimens. A correlation has been established between the developmental strength concrete with and without GGBS through analysis of hydration products and the microstructure.Keywords: GGBS, sand, concrete, workability
Procedia PDF Downloads 503601 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures
Authors: Jitka Hroudová, Martin Sedlmajer, Jiří Zach
Abstract:
Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.Keywords: thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.
Procedia PDF Downloads 304600 Strength Properties of Ca-Based Alkali Activated Fly Ash System
Authors: Jung-Il Suh, Hong-Gun Park, Jae-Eun Oh
Abstract:
Recently, the use of long-span precast concrete (PC) construction has increased in modular construction such as storage buildings and parking facilities. When applying long span PC member, reducing weight of long span PC member should be conducted considering lifting capacity of crane and self-weight of PC member and use of structural lightweight concrete made by lightweight aggregate (LWA) can be considered. In the process of lightweight concrete production, segregation and bleeding could occur due to difference of specific gravity between cement (3.3) and lightweight aggregate (1.2~1.8) and reducing weight of binder is needed to prevent the segregation between binder and aggregate. Also, lightweight precast concrete made by cementitious materials such as fly ash and ground granulated blast furnace (GGBFS) which is lower than specific gravity of cement as a substitute for cement has been studied. When only using fly ash for cementless binder alkali-activation of fly ash is most important chemical process in which the original fly ash is dissolved by a strong alkaline medium in steam curing with high-temperature condition. Because curing condition is similar with environment of precast member production, additional process is not needed. Na-based chloride generally used as a strong alkali activator has a practical problem such as high pH toxicity and high manufacturing cost. Instead of Na-based alkali activator calcium hydroxide [Ca(OH)2] and sodium hydroxide [Na2CO3] might be used because it has a lower pH and less expensive than Na-based alkali activator. This study explored the influences on Ca(OH)2-Na2CO3-activated fly ash system in its microstructural aspects and strength and permeability using powder X-ray analysis (XRD), thermogravimetry (TGA), mercury intrusion porosimetry (MIP). On the basis of microstructural analysis, the conclusions are made as follows. Increase of Ca(OH)2/FA wt.% did not affect improvement of compressive strength. Also, Ca(OH)2/FA wt.% and Na2CO3/FA wt.% had little effect on specific gravity of saturated surface dry (SSD) and absolute dry (AD) condition to calculate water absorption. Especially, the binder is appropriate for structural lightweight concrete because specific gravity of the hardened paste has no difference with that of lightweight aggregate. The XRD and TGA/DTG results did not present considerable difference for the types and quantities of hydration products depending on w/b ratio, Ca(OH)2 wt.%, and Na2CO3 wt.%. In the case of higher molar quantity of Ca(OH)2 to Na2CO3, XRD peak indicated unreacted Ca(OH)2 while DTG peak was not presented because of small quantity. Thus, presence of unreacted Ca(OH)2 is too small quantity to effect on mechanical performance. As a result of MIP, the porosity volume related to capillary pore depends on the w/b ratio. In the same condition of w/b ratio, quantities of Ca(OH)2 and Na2CO3 have more influence on pore size distribution rather than total porosity. While average pore size decreased as Na2CO3/FA w.t% increased, the average pore size increased over 20 nm as Ca(OH)2/FA wt.% increased which has inverse proportional relationship between pore size and mechanical properties such as compressive strength and water permeability.Keywords: Ca(OH)2, compressive strength, microstructure, fly ash, Na2CO3, water absorption
Procedia PDF Downloads 225599 Possibility of Creating Polygon Layers from Raster Layers Obtained by using Classic Image Processing Software: Case of Geological Map of Rwanda
Authors: Louis Nahimana
Abstract:
Most maps are in a raster or pdf format and it is not easy to get vector layers of published maps. Faced to the production of geological simplified map of the northern Lake Tanganyika countries without geological information in vector format, I tried a method of obtaining vector layers from raster layers created from geological maps of Rwanda and DR Congo in pdf and jpg format. The procedure was as follows: The original raster maps were georeferenced using ArcGIS10.2. Under Adobe Photoshop, map areas with the same color corresponding to a lithostratigraphic unit were selected all over the map and saved in a specific raster layer. Using the same image processing software Adobe Photoshop, each RGB raster layer was converted in grayscale type and improved before importation in ArcGIS10. After georeferencing, each lithostratigraphic raster layer was transformed into a multitude of polygons with the tool "Raster to Polygon (Conversion)". Thereafter, tool "Aggregate Polygons (Cartography)" allowed obtaining a single polygon layer. Repeating the same steps for each color corresponding to a homogeneous rock unit, it was possible to reconstruct the simplified geological constitution of Rwanda and the Democratic Republic of Congo in vector format. By using the tool «Append (Management)», vector layers obtained were combined with those from Burundi to achieve vector layers of the geology of the « Northern Lake Tanganyika countries ».Keywords: creating raster layer under image processing software, raster to polygon, aggregate polygons, adobe photoshop
Procedia PDF Downloads 442