Search results for: Robotic Hand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3881

Search results for: Robotic Hand

3701 Hand Gesture Interface for PC Control and SMS Notification Using MEMS Sensors

Authors: Keerthana E., Lohithya S., Harshavardhini K. S., Saranya G., Suganthi S.

Abstract:

In an epoch of expanding human-machine interaction, the development of innovative interfaces that bridge the gap between physical gestures and digital control has gained significant momentum. This study introduces a distinct solution that leverages a combination of MEMS (Micro-Electro-Mechanical Systems) sensors, an Arduino Mega microcontroller, and a PC to create a hand gesture interface for PC control and SMS notification. The core of the system is an ADXL335 MEMS accelerometer sensor integrated with an Arduino Mega, which communicates with a PC via a USB cable. The ADXL335 provides real-time acceleration data, which is processed by the Arduino to detect specific hand gestures. These gestures, such as left, right, up, down, or custom patterns, are interpreted by the Arduino, and corresponding actions are triggered. In the context of SMS notifications, when a gesture indicative of a new SMS is recognized, the Arduino relays this information to the PC through the serial connection. The PC application, designed to monitor the Arduino's serial port, displays these SMS notifications in the serial monitor. This study offers an engaging and interactive means of interfacing with a PC by translating hand gestures into meaningful actions, opening up opportunities for intuitive computer control. Furthermore, the integration of SMS notifications adds a practical dimension to the system, notifying users of incoming messages as they interact with their computers. The use of MEMS sensors, Arduino, and serial communication serves as a promising foundation for expanding the capabilities of gesture-based control systems.

Keywords: hand gestures, multiple cables, serial communication, sms notification

Procedia PDF Downloads 24
3700 Development of MEMS Based 3-Axis Accelerometer for Hand Movement Monitoring

Authors: Zohra Aziz Ali Manjiyani, Renju Thomas Jacob, Keerthan Kumar

Abstract:

This project develops a hand movement monitoring system, which feeds the data into the computer and gives the 3D image rotation according to the direction of the tilt and hence monitoring the movement of the hand in context to its tilt. Advancement of MEMS Technology has enabled us to get very small and low-cost accelerometer ICs which is based on capacitive principle. Accelerometer based Tilt sensor ADXL335 is used in this paper, based on MEMS technology and the project emphasis on the development of the MEMS-based accelerometer to measure the tilt, interfacing the hardware with the LabVIEW and showing the 3D rotation to the user, which is in his understandable form and tilt data can be saved in the computer. It provides an experience of working on emerging technologies like MEMS and design software like LabVIEW.

Keywords: MEMS accelerometer, tilt sensor ADXL335, LabVIEW simulation, 3D animation

Procedia PDF Downloads 494
3699 An Assessment of the Anthropometric Characteristics of Malaysian Cricket Batsmen

Authors: Muhammad Zia ul Haq, Ong Kuan Boon, Jeffrey Low Fook Lee, Bendri Bin Dasril, Amna Iqbal, Muhammad Saleem

Abstract:

This study is bond of two purpose, first is to establish the anthropometric profile of Malaysian cricket batsmen and second, to find the variances among the anthropometric characteristics of ten under-16 years, eight under-19 years and eight senior teams batsmen. The anthropometric variables were measured as 8 skinfolds, 12 circumferences, 06 lengths and 05 breadths, stature, sitting height, arm span, body mass, hand grip strength and leg strength. The batsmen of under-19 and under-16 found similar in skinfolds, sum of skinfolds, circumferences and breadth measurements but significantly lesser than the senior team batsmen. Senior and Under-19 batsmen were almost found similar in segmental lengths, heights and arm span but significantly higher than the under-16 batsmen. Breadth measurements the under-19 found higher than the senior and u-16 batsmen. The hand grips strength of the senior batsmen significantly high than the uder-19 and under-16 players and both groups were similar and no significant difference were found in leg strength of all three groups batsmen. Leg strength were found significant correlation with wrist, hip, thigh, and calf girth and handgrip strength. The hand grip strength were found correlated with all variables except biceps, mid-thigh skinfold, segmental length, humerus breadth. It is concluded from the present study that the girth segments and hand grip strength are the predictors of good performance in cricket batting.

Keywords: cricket batting, batsmen, anthropometry, body segments, hand grip strength

Procedia PDF Downloads 554
3698 Genome-Wide Association Study Identify COL2A1 as a Susceptibility Gene for the Hand Development Failure of Kashin-Beck Disease

Authors: Feng Zhang

Abstract:

Kashin-Beck disease (KBD) is a chronic osteochondropathy. The mechanism of hand growth and development failure of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally involving 493 Chinese Han KBD patients. Affymetrix Genome Wide Human SNP Array 6.0 was applied for SNP genotyping. Association analysis was conducted by PLINK software. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. In the GWAS, the most significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68×10-8). Imputation analysis identified 3 SNPs surrounding rs2071358 with significant or suggestive association signals. Replication study observed additional significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene after Bonferroni correction. Our results suggest that COL2A1 gene was a novel susceptibility gene involved in the growth and development failure of hand of KBD.

Keywords: Kashin-Beck disease, genome-wide association study, COL2A1, hand

Procedia PDF Downloads 188
3697 A Comparison Study of Fabric Objective Measurement (FOM) Using KES-FB and PhabrOmeter System on Warp Knitted Fabrics Handle: Smoothness, Stiffness and Softness

Authors: Ka-Yan Yim, Chi-Wai Kan

Abstract:

This paper conducts a comparison study using KES-FB and PhabrOmeter to measure 58 selected warp knitted fabric hand properties. Fabric samples were selected and measured by both KES-FB and PhabrOmeter. Results show differences between these two measurement methods. Smoothness and stiffness values obtained by KES-FB were found significant correlated (p value = 0.003 and 0.022) to the PhabrOmeter results while softness values between two measurement methods did not show significant correlation (p value = 0.828). Disagreements among these two measurement methods imply limitations on different mechanism principles when facing warp knitted fabrics. Subjective measurement methods and further studies are suggested in order to ascertain deeper investigation on the mechanisms of fabric hand perceptions.

Keywords: fabric hand, fabric objective measurement, KES-FB, PhabrOmeter

Procedia PDF Downloads 191
3696 A New Center of Motion in Cabling Robots

Authors: Alireza Abbasi Moshaii, Farshid Najafi

Abstract:

In this paper a new model for centre of motion creating is proposed. This new method uses cables. So, it is very useful in robots because it is light and has easy assembling process. In the robots which need to be in touch with some things this method is very good. It will be described in the following. The accuracy of the idea is proved by an experiment. This system could be used in the robots which need a fixed point in the contact with some things and make a circular motion. Such as dancer, physician or repair robots.

Keywords: centre of motion, robotic cables, permanent touching, mechatronics engineering

Procedia PDF Downloads 408
3695 Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour

Authors: Benjamin K. Ghansah, Richard K. Appoh, Iliya Nababa, Eric K. Forkuo

Abstract:

The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km².

Keywords: digital elevation model, floodplain, HAND contour, inundation extent, Nasia River

Procedia PDF Downloads 424
3694 The Practise of Hand Drawing as a Premier Form of Representation in Architectural Design Teaching: The Case of FAUP

Authors: Rafael Santos, Clara Pimenta Do Vale, Barbara Bogoni, Poul Henning Kirkegaard

Abstract:

In the last decades, the relevance of hand drawing has decreased in the scope of architectural education. However, some schools continue to recognize its decisive role, not only in the architectural design teaching, but in the whole of architectural training. With this paper it is intended to present the results of a research developed on the following problem: the practise of hand drawing as a premier form of representation in architectural design teaching. The research had as its object the educational model of the Faculty of Architecture of the University of Porto (FAUP) and was led by three main objectives: to identify the circumstance that promoted hand drawing as a form of representation in FAUP's model; to characterize the types of hand drawing and their role in that model; to determine the particularities of hand drawing as a premier form of representation in architectural design teaching. Methodologically, the research was conducted according to a qualitative embedded single-case study design. The object – i.e., the educational model – was approached in FAUP case considering its Context and three embedded unities of analysis: the educational Purposes, Principles and Practices. In order to guide the procedures of data collection and analysis, a Matrix for the Characterization (MCC) was developed. As a methodological tool, the MCC allowed to relate the three embedded unities of analysis with the three main sources of evidence where the object manifests itself: the professors, expressing how the model is Assumed; the architectural design classes, expressing how the model is Achieved; and the students, expressing how the model is Acquired. The main research methods used were the naturalistic and participatory observation, in-person-interview and documentary and bibliographic review. The results reveal that the educational model of FAUP – following the model of the former Porto School – was largely due to the methodological foundations created with the hand drawing teaching-learning processes. In the absence of a culture of explicit theoretical elaboration or systematic research, hand drawing was the support for the continuity of the school, an expression of a unified thought about what should be the reflection and practice of architecture. As a form of representation, hand drawing plays a transversal role in the entire educational model, since its purposes are not limited to the conception of architectural design – it is also a means for perception, analysis and synthesis. Regarding the architectural design teaching, there seems to be an understanding of three complementary dimensions of didactics: the instrumental, methodological and propositional dimension. At FAUP, hand drawing is recognized as the common denominator among these dimensions, according to the idea of "globality of drawing". It is expected that the knowledge base developed in this research may have three main contributions: to contribute to the maintenance and valorisation of FAUP’s model; through the precise description of the methodological procedures, to contribute by transferability to similar studies; through the critical and objective framework of the problem underlying the hand drawing in architectural design teaching, to contribute to the broader discussion concerning the contemporary challenges on architectural education.

Keywords: architectural design teaching, architectural education, forms of representation, hand drawing

Procedia PDF Downloads 100
3693 Sport-Related Hand and Wrist Injuries Treatment

Authors: Sergei Kosarev

Abstract:

Wrong treatment tactics for hand and wrist sport-related injuries can lead to the inability to play sports in the future. It is especially important for professional athletes. The members of the Russian Olympic Team are treated in our hospital -Federal Clinical Research Center (Moscow). For their treatment, we use minimally invasive methods such as wrist arthroscopy and also orthobiologics procedures. In 2022 we had cases with scaphoid fracture and TFCC injuries. In all the cases, we were using the arthroscopy technic for treatment. The scaphoid fracture was fixed by K-wires with free bone grafting. For TFCC injures we used transossal sutures. Rehabilitation started the next day after surgery. Rehabilitation included hand therapy and physiotherapy. All athletes returned to the sport after 8-12 weeks after surgery. One of them had pain in the wrist after 12 weeks after surgery, not more than 4 point VAS. Pain syndrome was blocked after 2 PRP injections in the ulnar side of the wrist.

Keywords: sport trauma, wrist arthroscopy, wrist pain, scaphoid fracture

Procedia PDF Downloads 79
3692 Mechanical Properties and Thermal Comfort of 3D Printed Hand Orthosis for Neurorehabilitation

Authors: Paulo H. R. G. Reis, Joana P. Maia, Davi Neiva Alves, Mariana R. C. Aquino, Igor B. Guimaraes, Anderson Horta, Thiago Santiago, Mariana Volpini

Abstract:

Additive manufacturing is a manufacturing technique used in many fields as a tool for the production of complex parts accurately. This technique has a wide possibility of applications in bioengineering, mainly in the manufacture of orthopedic devices, thanks to the versatility of shapes and surface details. The present article aims to evaluate the mechanical viability of a wrist-hand orthosis made using additive manufacturing techniques with Nylon 12 polyamide and compare this device with the wrist-hand orthosis manufactured by the traditional process with thermoplastic Ezeform. The methodology used is based on the application of computational simulations of voltage and temperature, from finite element analysis, in order to evaluate the properties of displacement, mechanical stresses and thermal comfort in the two devices. The execution of this work was carried out through a case study with a 29-year-old male patient. The modeling software involved was Meshmixer from US manufacturer Autodesk and Fusion 360 from the same manufacturer. The results demonstrated that the orthosis developed by 3D printing, from Nylon 12, presents better thermal comfort and response to the mechanical stresses exerted on the orthosis.

Keywords: additive manufacturing, finite elements, hand orthosis, thermal comfort, neurorehabilitation

Procedia PDF Downloads 165
3691 Neoliberalism and Otherness: Convergences or Divergences?

Authors: Juliana Pereira Tigre

Abstract:

In the current critical debate on the process of globalization, on the one hand, arises the accusation that neoliberalism standardizes the so-called American way of life on the cultures of the world, operating as a system of subtle domination, expropriating and incorporating the other. On the other hand, it is defended that neoliberalism begins its career of political and economic order as a sensitive conception to the otherness, imposing itself at present due to its peaceful management of pluralism and defense of individual freedom. In this sense, this paper aims to discuss the extent to which the neoliberalism and the otherness converge or diverge in contemporaneity and the guiding principles of globalization.

Keywords: otherness, globalization, neoliberalism, social sciences

Procedia PDF Downloads 409
3690 Robotic Process Automation in Accounting and Finance Processes: An Impact Assessment of Benefits

Authors: Rafał Szmajser, Katarzyna Świetla, Mariusz Andrzejewski

Abstract:

Robotic process automation (RPA) is a technology of repeatable business processes performed using computer programs, robots that simulate the work of a human being. This approach assumes replacing an existing employee with the use of dedicated software (software robots) to support activities, primarily repeated and uncomplicated, characterized by a low number of exceptions. RPA application is widespread in modern business services, particularly in the areas of Finance, Accounting and Human Resources Management. By utilizing this technology, the effectiveness of operations increases while reducing workload, minimizing possible errors in the process, and as a result, bringing measurable decrease in the cost of providing services. Regardless of how the use of modern information technology is assessed, there are also some doubts as to whether we should replace human activities in the implementation of the automation in business processes. After the initial awe for the new technological concept, a reflection arises: to what extent does the implementation of RPA increase the efficiency of operations or is there a Business Case for implementing it? If the business case is beneficial, in which business processes is the greatest potential for RPA? A closer look at these issues was provided by in this research during which the respondents’ view of the perceived advantages resulting from the use of robotization and automation in financial and accounting processes was verified. As a result of an online survey addressed to over 500 respondents from international companies, 162 complete answers were returned from the most important types of organizations in the modern business services industry, i.e. Business or IT Process Outsourcing (BPO/ITO), Shared Service Centers (SSC), Consulting/Advisory and their customers. Answers were provided by representatives of the positions in their organizations: Members of the Board, Directors, Managers and Experts/Specialists. The structure of the survey allowed the respondents to supplement the survey with additional comments and observations. The results formed the basis for the creation of a business case calculating tangible benefits associated with the implementation of automation in the selected financial processes. The results of the statistical analyses carried out with regard to revenue growth confirmed the correctness of the hypothesis that there is a correlation between job position and the perception of the impact of RPA implementation on individual benefits. Second hypothesis (H2) that: There is a relationship between the kind of company in the business services industry and the reception of the impact of RPA on individual benefits was thus not confirmed. Based results of survey authors performed simulation of business case for implementation of RPA in selected Finance and Accounting Processes. Calculated payback period was diametrically different ranging from 2 months for the Account Payables process with 75% savings and in the extreme case for the process Taxes implementation and maintenance costs exceed the savings resulting from the use of the robot.

Keywords: automation, outsourcing, business process automation, process automation, robotic process automation, RPA, RPA business case, RPA benefits

Procedia PDF Downloads 114
3689 Robot-Assisted Laparoscopic Surgeries: Current Use in Pediatric Urology Patients

Authors: Rimel Mwamba, Mohan Gundeti

Abstract:

Introduction: The use of robot-assisted laparoscopic surgeries (RALS) has largely increased in recent years, offering faster and safer treatment options for pediatric patients. In the field of urology, RALS has shown a significant advantage over laparoscopic and open surgeries but continues to be controversial in pediatric cases due to limited comprehensive data on its use. Methods: In this review, we aim to summarize the factors associated with RALS use in pediatric cases involving pyeloplasty, ureteral reimplantation, heminephrectomy, and lower urinary tract reconstruction. We used PubMed, EMBASE, and the Cochrane Database of Systematic Reviews to systematically search for literature on the topic. We then critically assessed and compiled data on RALS outcomes, complications, and associated factors. Results: To date, numerous comparative studies have been conducted on pediatric RALS, with only one randomized control trial investigating the nuances of robotic use against standard of care treatments. These robotic approaches have shown promise in post-surgical outcomes for pediatric patients undergoing upper and lower urinary tract reconstruction. Barriers to use still persist, however, showcasing a need to increase access to the technology, refine instruments for pediatric use, address cost barriers, and provide proper training for surgeons. Conclusion: RALS providesan opportunity to improve pediatric patient outcomes for numerous urologic complications. Additional studies are required to better compare the use of RALS with current standard practices. Due to the difficult nature of conducting randomized control trials, additional prospective observational studies are needed.

Keywords: pediatric urology, robot-assisted laparoscopic surgeries (RALS), pyeloplasty, ureteral reimplantation, heminephrectomy, and lower urinary tract reconstruction

Procedia PDF Downloads 74
3688 Collective Actions of the Women in Black of the Gaza Strip

Authors: Lina Fernanda González

Abstract:

Through this essay, an attempt will be made to make visible the work of the international network of the Women in Black (henceforth WB), on the one hand. On the other hand, the work of Women International Courts as a political practice will be showed as well, focusing their work into generating a collective identity - becoming thusly a peace building space, rescuing in this way the symbolic value of their practices consisting in peaceful resistance as political scenarios, that serve, too, a pedagogical and healing purposes.

Keywords: collective actions, women, peace, human rights and humanitarian international law

Procedia PDF Downloads 372
3687 Progress Towards Optimizing and Standardizing Fiducial Placement Geometry in Prostate, Renal, and Pancreatic Cancer

Authors: Shiva Naidoo, Kristena Yossef, Grimm Jimm, Mirza Wasique, Eric Kemmerer, Joshua Obuch, Anand Mahadevan

Abstract:

Background: Fiducial markers effectively enhance tumor target visibility prior to Stereotactic Body Radiation Therapy or Proton therapy. To streamline clinical practice, fiducial placement guidelines from a robotic radiosurgery vendor were examined with the goals of optimizing and standardizing feasible geometries for each treatment indication. Clinical examples of prostate, renal, and pancreatic cases are presented. Methods: Vendor guidelines (Accuray, Sunnyvale, Ca) suggest implantation of 4–6 fiducials at least 20 mm apart, with at least a 15-degree angular difference between fiducials, within 50 mm or less from the target centroid, to ensure that any potential fiducial motion (e.g., from respiration or abdominal/pelvic pressures) will mimic target motion. Also recommended is that all fiducials can be seen in 45-degree oblique views with no overlap to coincide with the robotic radiosurgery imaging planes. For the prostate, a standardized geometry that meets all these objectives is a 2 cm-by-2 cm square in the coronal plane. The transperineal implant of two pairs of preloaded tandem fiducials makes the 2 cm-by-2 cm square geometry clinically feasible. This technique may be applied for renal cancer, except repositioned in a sagittal plane, with the retroperitoneal placement of the fiducials into the tumor. Pancreatic fiducial placement via endoscopic ultrasound (EUS) is technically more challenging, as fiducial placement is operator-dependent, and lesion access may be limited by adjacent vasculature, tumor location, or restricted mobility of the EUS probe in the duodenum. Fluoroscopically assisted fiducial placement during EUS can help ensure fiducial markers are deployed with optimal geometry and visualization. Results: Among the first 22 fiducial cases on a newly installed robotic radiosurgery system, live x-ray images for all nine prostatic cases had excellent fiducial visualization at the treatment console. Renal and pancreatic fiducials were not as clearly visible due to difficult target access and smaller caliber insertion needle/fiducial usage. The geometry of the first prostate case was used to ensure accurate geometric marker placement for the remaining 8 cases. Initially, some of the renal and pancreatic fiducials were closer than the 20 mm recommendation, and interactive feedback with the proceduralists led to subsequent fiducials being too far to the edge of the tumor. Further feedback and discussion of all cases are being used to help guide standardized geometries and achieve ideal fiducial placement. Conclusion: The ideal tradeoffs of fiducial visibility versus the thinnest possible gauge needle to avoid complications needs to be systematically optimized among all patients, particularly in regards to body habitus. Multidisciplinary collaboration among proceduralists and radiation oncologists can lead to improved outcomes.

Keywords: fiducial, prostate cancer, renal cancer, pancreatic cancer, radiotherapy

Procedia PDF Downloads 70
3686 An Unexpected Hand Injury with Pluridigital Fractures Due to Premature Explosion of a Ramadan Cannon

Authors: Hakan Akgul

Abstract:

Purpose: The use of firecrackers (i.e., Ramadan Cannon) during the month of Ramadan is a traditional way of indicating that the fasting period is over in Muslim countries. Here, we report the rehabilitation of a case of hand injury with pluridigital fractures due to premature explosion of a Ramadan cannon. Materials and Methods: A 48-year old man admitted to the Emergency Department due to left hand injury as a result of a premature explosion of a Ramadan cannon. The patient was immediately taken to operation room because of the multiple fractures, tendon loss, and soft tissue loss in the left hand. Range of motion (ROM) of joints was measured with goniometer, pain and oedema were measured and splinting was performed. Results: Rehabilitation team took over the patient at postoperative 9th week. During the 3 month rehabilitation, range of motion increased, oedema was taken under control, pain was reduced, the colour of the skin turned to the normal tone. According to the visual analog scale (VAS), pain decreased from 9 to 4. Oedema, around the metacarpofalangeal (MCP) joints, decreased from 27,5 cm to 23,5 cm. Total active range of motion of the wrist increased from 5 degrees to 50 degrees.Total active range of motion of supination and pronation increased from 55 degrees to 70 degrees. Discussion: The rehabilitation of multiple hand injury is quite difficult. Different aspects of trauma should be taken into consideration when rehabilitation is planned. Factors such as waiting for the bone union, wound healing, and use of external fixators may delay rehabilitation process. Joint mobilization, massage for reducing oedema and preventing scar tissue, exercise within the range of motion are efficient measures. Poor patient compliance to treatment may lead to poor outcome. First of all, oedema and scar formation must be taken under control. Removing fixators should not be delayed depending on the bone union, and exercise within the range of motion should be started.

Keywords: explosion, fracture, hand, injury

Procedia PDF Downloads 218
3685 Some Plant-Based Handmade Tools and Theirs Uses in Kadınhanı, Konya, Turkey and Its Vicinity

Authors: Yavuz Bağcı, Levent Keskin

Abstract:

The study was carried out in 2011-2014 period to determine plant-based hand tools uses of plants in Kadınhanı (Konya) and surrounding villages. A total of 153 individuals, who lived or were living during this study in 4 towns, 37 villages and 9 neighborhood were interviewed. It was found that of a total about 20 plants belonging to 10 families in the study area, about 60 hand-made goods were used by peoples for various purposes.

Keywords: ethnobotanic, handmade, Kadınhanı, Konya, plant-human relationship

Procedia PDF Downloads 393
3684 Comparative Study of Skeletonization and Radial Distance Methods for Automated Finger Enumeration

Authors: Mohammad Hossain Mohammadi, Saif Al Ameri, Sana Ziaei, Jinane Mounsef

Abstract:

Automated enumeration of the number of hand fingers is widely used in several motion gaming and distance control applications, and is discussed in several published papers as a starting block for hand recognition systems. The automated finger enumeration technique should not only be accurate, but also must have a fast response for a moving-picture input. The high performance of video in motion games or distance control will inhibit the program’s overall speed, for image processing software such as Matlab need to produce results at high computation speeds. Since an automated finger enumeration with minimum error and processing time is desired, a comparative study between two finger enumeration techniques is presented and analyzed in this paper. In the pre-processing stage, various image processing functions were applied on a real-time video input to obtain the final cleaned auto-cropped image of the hand to be used for the two techniques. The first technique uses the known morphological tool of skeletonization to count the number of skeleton’s endpoints for fingers. The second technique uses a radial distance method to enumerate the number of fingers in order to obtain a one dimensional hand representation. For both discussed methods, the different steps of the algorithms are explained. Then, a comparative study analyzes the accuracy and speed of both techniques. Through experimental testing in different background conditions, it was observed that the radial distance method was more accurate and responsive to a real-time video input compared to the skeletonization method. All test results were generated in Matlab and were based on displaying a human hand for three different orientations on top of a plain color background. Finally, the limitations surrounding the enumeration techniques are presented.

Keywords: comparative study, hand recognition, fingertip detection, skeletonization, radial distance, Matlab

Procedia PDF Downloads 359
3683 Design, Analysis and Obstacle Avoidance Control of an Electric Wheelchair with Sit-Sleep-Seat Elevation Functions

Authors: Waleed Ahmed, Huang Xiaohua, Wilayat Ali

Abstract:

The wheelchair users are generally exposed to physical and psychological health problems, e.g., pressure sores and pain in the hip joint, associated with seating posture or being inactive in a wheelchair for a long time. Reclining Wheelchair with back, thigh, and leg adjustment helps in daily life activities and health preservation. The seat elevating function of an electric wheelchair allows the user (lower limb amputation) to reach different heights. An electric wheelchair is expected to ease the lives of the elderly and disable people by giving them mobility support and decreasing the percentage of accidents caused by users’ narrow sight or joystick operation errors. Thus, this paper proposed the design, analysis and obstacle avoidance control of an electric wheelchair with sit-sleep-seat elevation functions. A 3D model of a wheelchair is designed in SolidWorks that was later used for multi-body dynamic (MBD) analysis and to verify driving control system. The control system uses the fuzzy algorithm to avoid the obstacle by getting information in the form of distance from the ultrasonic sensor and user-specified direction from the joystick’s operation. The proposed fuzzy driving control system focuses on the direction and velocity of the wheelchair. The wheelchair model has been examined and proven in MSC Adams (Automated Dynamic Analysis of Mechanical Systems). The designed fuzzy control algorithm is implemented on Gazebo robotic 3D simulator using Robotic Operating System (ROS) middleware. The proposed wheelchair design enhanced mobility and quality of life by improving the user’s functional capabilities. Simulation results verify the non-accidental behavior of the electric wheelchair.

Keywords: fuzzy logic control, joystick, multi body dynamics, obstacle avoidance, scissor mechanism, sensor

Procedia PDF Downloads 110
3682 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove

Procedia PDF Downloads 265
3681 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network

Authors: Harshit Mittal, Neeraj Garg

Abstract:

Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.

Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network

Procedia PDF Downloads 36
3680 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 130
3679 Health Behaviors Related to Preventing Disease of Hand Foot and Mouth Disease of Child Caregivers in Child Development Center Ubon Ratchathani Province, Thailand

Authors: Comsun Thongchai, Vorapoj Promasatayaprot

Abstract:

Background: Child development center is a day care center that gathers large numbers of children in the same areas. As a result, it provides high opportunity for infection, especially gastrointestinal and respiratory infections. Ubon Ratchathani has been a province with an increasing number of cases of Hand foot and mouth disease each year reported between 2014 and 2016. Accorded to a recent investigation reported, HFMD occurred in the Child Development Center and kindergartens, this was a place where HFMD spreads. This research was aimed to investigate the knowledge, attitude and behavior about hand foot and mouth disease preventing of child caregivers in child development centers, Ubon Ratchathani Province. Method: Descriptive study was conducted between April and July, 2017. The study instruments used questionnaires and in-depth interviews on their practices of prevention and environment management of HFMD. The samples of survey questionnaires were caregivers who are working in 160 child development centers of the 160 parishes in Ubon Ratchathani province. The data was analyzed by percentages, means and standard deviations and Pearson Product Moment Correlation Coefficient. Result: The results showed that the majority were female (96.3%), average age 41 years (68.3%), marital status were couples (85.7%) and studied in undergraduate (75.2%). with a period of performance as teachers in child development centers range from 10 to 14 years were percentage 58.7 and 71.8 percent of them had been trained by health worker about the control HFMD. The knowledge for preventive in hand foot mouth disease on child caregivers was at high level. The mean score was 2.76 (S.D. = 0.114). The attitude of child caregivers was at a moderate level. Its mean score was 2.28 (S.D. = 0.247). On the other hand, the level of environmental management to prevent HFMD was low. The mean score was 1.34 (S.D. = 0.215). The factor of personal characteristics as gender, age, educational level, duration at work, knowledge and attitude of preventive HFMD was associated with Preventive of Behaviors to a statistically significant level (p<0.05 respectively). Conclusion: These results should be concerned to develop knowledge and improving practice for preventive hand foot mouth disease of child caregivers in child development centers by training. Preparation of media education, Surveillance of hand foot mouth disease and health behaviors promotion with community participation need to be supported continuously.

Keywords: preventive behavior, child development center, hand foot mouth disease, Thailand

Procedia PDF Downloads 174
3678 Differential Effect of Technique Majors on Isokinetic Strength in Youth Judoka Athletes

Authors: Chungyu Chen, Yi-Cheng Chen, Po-Hsian Hsu, Hsin-Ying Chen, Yen-Po Hsiao

Abstract:

The purpose of this study was to assess the muscular strength performance of upper and lower extremity in isokinetic system for the youth judo players, and also to compare the strength difference between major techniques. Sixteen male and 20 female judo players (age: 16.7 ± 1.6 years old, training age: 4.5 ± 0.8 years) were served as the volunteers for this study. There were 21 players major hand techniques and 15 players major foot techniques. The Biodex S4 Pro was used to assess the strength performance of extensor and flexor of concentric action under the load condition of 30 degree/sec, 60 degree/sec, and 120 degree/sec for elbow joints and knee joints. The strength parameters were included the maximal torque, the normalized maximal torque, the average power, and the average maximal torque. A t test for independent groups was used to evaluate whether hand major and foot major differ significantly with an alpha level of .05. The result showed the maximal torque of left knee extensor in foot major players (243.5 ± 36.3 Nm) was higher significantly than hand major (210.7 ± 21.0 Nm) under the load of 30 degree/sec (p < .05). There were no differences in upper extremity strength between the hand and foot techniques major in three loads (ps < .05). It indicated that the judo player is required to develop the upper extremity strength overall to secure the execution of major techniques.

Keywords: knee, elbow, power, judo

Procedia PDF Downloads 427
3677 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses

Authors: El Sayed A. Sharara, A. Tsuji, K. Terada

Abstract:

Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.

Keywords: call center agents, fatigue, skin color detection, face recognition

Procedia PDF Downloads 269
3676 Analytical Technique for Definition of Internal Forces in Links of Robotic Systems and Mechanisms with Statically Indeterminate and Determinate Structures Taking into Account the Distributed Dynamical Loads and Concentrated Forces

Authors: Saltanat Zhilkibayeva, Muratulla Utenov, Nurzhan Utenov

Abstract:

The distributed inertia forces of complex nature appear in links of rod mechanisms within the motion process. Such loads raise a number of problems, as the problems of destruction caused by a large force of inertia; elastic deformation of the mechanism can be considerable, that can bring the mechanism out of action. In this work, a new analytical approach for the definition of internal forces in links of robotic systems and mechanisms with statically indeterminate and determinate structures taking into account the distributed inertial and concentrated forces is proposed. The relations between the intensity of distributed inertia forces and link weight with geometrical, physical and kinematic characteristics are determined in this work. The distribution laws of inertia forces and dead weight make it possible at each position of links to deduce the laws of distribution of internal forces along the axis of the link, in which loads are found at any point of the link. The approximation matrixes of forces of an element under the action of distributed inertia loads with the trapezoidal intensity are defined. The obtained approximation matrixes establish the dependence between the force vector in any cross-section of the element and the force vector in calculated cross-sections, as well as allow defining the physical characteristics of the element, i.e., compliance matrix of discrete elements. Hence, the compliance matrixes of an element under the action of distributed inertial loads of trapezoidal shape along the axis of the element are determined. The internal loads of each continual link are unambiguously determined by a set of internal loads in its separate cross-sections and by the approximation matrixes. Therefore, the task is reduced to the calculation of internal forces in a final number of cross-sections of elements. Consequently, it leads to a discrete model of elastic calculation of links of rod mechanisms. The discrete model of the elements of mechanisms and robotic systems and their discrete model as a whole are constructed. The dynamic equilibrium equations for the discrete model of the elements are also received in this work as well as the equilibrium equations of the pin and rigid joints expressed through required parameters of internal forces. Obtained systems of dynamic equilibrium equations are sufficient for the definition of internal forces in links of mechanisms, which structure is statically definable. For determination of internal forces of statically indeterminate mechanisms (in the way of determination of internal forces), it is necessary to build a compliance matrix for the entire discrete model of the rod mechanism, that is reached in this work. As a result by means of developed technique the programs in the MAPLE18 system are made and animations of the motion of the fourth class mechanisms of statically determinate and statically indeterminate structures with construction on links the intensity of cross and axial distributed inertial loads, the bending moments, cross and axial forces, depending on kinematic characteristics of links are obtained.

Keywords: distributed inertial forces, internal forces, statically determinate mechanisms, statically indeterminate mechanisms

Procedia PDF Downloads 193
3675 Conceptual Design of Suction Cup Lifting System

Authors: Mohammed Aijaz

Abstract:

In industries, to transfer fragile materials like glasses, a holding, lifting, and manipulation system are required. In this report, we designed and analysed a suction cup holding, lifting, and manipulation system that is attached to a head plate and must be able to grip/hold securely, the largest glass panel with 3m x 2.5m x 20mm thick with a mass of 115 kg. The system is able to rotate the panel through 180 degrees in the X, Y, and Z axis in any direction from the outer reach of the robotic arm. The structural analysis is performed to verify the structural strength of the suction cup’s head plate system.

Keywords: designing, mechanical, engineering, suction

Procedia PDF Downloads 75
3674 Modeling and Control of an Acrobot Using MATLAB and Simulink

Authors: Dong Sang Yoo

Abstract:

The problem of finding control laws for underactuated systems has attracted growing attention since these systems are characterized by the fact that they have fewer actuators than the degrees of freedom to be controlled. The acrobot, which is a planar two-link robotic arm in the vertical plane with an actuator at the elbow but no actuator at the shoulder, is a representative of underactuated systems. In this paper, the dynamic model of the acrobot is implemented using Mathworks’ Simscape. And the sliding mode control is constructed using MATLAB and Simulink.

Keywords: acrobot, MATLAB and simulink, sliding mode control, underactuated system

Procedia PDF Downloads 752
3673 The Effects of Prolonged Social Media Use on Student Health: A Focus on Computer Vision Syndrome, Hand Pain, and Headaches and Mental Status

Authors: Augustine Ndudi Egere, Shehu Adamu, Esther Ishaya Solomon

Abstract:

As internet accessibility and smartphones continue to increase in Nigeria, Africa’s most populous country, social media platforms have become ubiquitous, causing students of 18-25 age brackets to spend more time on social media. The research investigated the impact of prolonged social media use on the physical health of students, with a specific focus on computer vision syndrome, hand pain, headaches and mental status. The study adopted a mixed-methods approach combining quantitative surveys to gather statistical data on usage patterns and symptoms, along with qualitative interviews into the experiences and perceptions of medical practitioners concerning cases under study within the geopolitical region. The result was analyzed using Regression analysis. It was observed that there is a significant correlation between social media usage by the students in the study age bracket concerning computer vision syndrome, hand pain, headache and general mental status. The research concluded by providing valuable insights into potential interventions and strategies to mitigate the adverse effects of excessive social media use on student well-being and recommends, among others, that educational institutions, parents, and students themselves collaborate to implement strategies aimed at promoting responsible and balanced use of social media.

Keywords: social media, student health, computer vision syndrome, hand pain, headaches, mental staus

Procedia PDF Downloads 17
3672 Determination of the Quantity of Water Absorbed by the Plant When Irrigating by Infiltration in Arid Regions (Case of Ouargla in Algeria)

Authors: Mehdi Benlarbi, Dalila Oulhaci

Abstract:

Several physical, human and economic factors come into play in the choice of an irrigation system for developing arid and semi-arid regions. Since it is impossible to define or weight quantitatively all the relevant factors in each case, the choice of the system is often based on subjective preferences rather than explicit analysis. Over the past decade, irrational irrigation in the Ouargla region has evolved to a certain extent based largely on water wastage and which may pose risks to the environment both off-site and at the site. In the whole region, the environment is damaged by excess water because the water tables that tend to be high form swamps that pollute nature on the surface. The purpose of our work is a comparison between sprinkler irrigation and drip irrigation using bottles. By irrigating with the aid of the bottle and giving a volume of 4 liters with a flow rate of one (1) liter per hour, the watering dose received varies between 6 and 7 mm without infiltration losses. And for the case of sprinkler irrigation, the dose received may not exceed 2.5mm. E in some cases, we have a quantity of water lost by infiltration. This shows that irrigation using the bottle is much more efficient than sprinkling. Because, on the one hand, a large amount of water is absorbed by the plant and on the other hand, there is no loss by infiltration. The results obtained are very significant because, on the one hand, we reuse local products, and on the other hand, as the bottles are buried, we avoid water losses by evaporation, especially in dry periods and salinization.

Keywords: resources, water, arid, evaporation, infiltration

Procedia PDF Downloads 54