Search results for: Preventing Dust Diffusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2168

Search results for: Preventing Dust Diffusion

1988 Potential Application of Thyme (Thymus vulgaris L.) Essential Oil as Antibacterial Drug in Aromatherapy

Authors: Ferhat Mohamed Amine, Boukhatem Mohamed Nadjib, Chemat Farid

Abstract:

The Lamiaceae family is widely spread in Algeria. Due to the application of Thymus species growing wild in Algeria as a culinary herb and in folk medicine, the purpose of the present work was to evaluate antimicrobial activities of their essential oils and relate them with their chemical composition, for further application in food and pharmaceutical industries as natural valuable products. The extraction of the Thymus vulgaris L. essential oil (TVEO) was obtained by steam distillation. Chemical composition of the TVEO was determined by Gas Chromatography. A total of thirteen compounds were identified. Carvacrol (83.8%) was the major component, followed by cymene (8.15%) and terpinene (4.96%). Antibacterial action of the TVEO against 23 clinically isolated bacterial strains was determined by using agar disc diffusion and vapour diffusion methods at different doses. By disc diffusion method, TVEO showed potent antimicrobial activity against gram-positive bacteria more than gram-negative strains and antibiotic discs. The Diameter of Inhibition Zone (DIZ) varied from 25 to 60 mm for S. aureus, B. subtilisand E. coli. However, the results obtained by both agar diffusion and vapour diffusion methods were different. Significantly higher antibacterial effect was observed in the vapour phase at lower doses. S. aureus and B. subtilis were the most susceptible strains to the oil vapour. Therefore, smaller doses of EO in the vapour phase can be inhibitory to pathogenic bacteria. There is growing evidence that TVEO in vapour phase are effective antiseptic systems and appears worthy to be considered for practical uses in the treatment of human infections oras air decontaminants in hospital. TVEO has considerable antibacterial activity deserving further investigation for clinical applications. Also whilst the mode of action remains mainly undetermined, this experimental approach will need to continue.

Keywords: antimicrobial drugs, carvacrol, disc diffusion, Thymus vulgaris, vapour diffusion

Procedia PDF Downloads 344
1987 Motion of a Dust Grain Type Particle in Binary Stellar Systems

Authors: Rajib Mia, Badam Singh Kushvah

Abstract:

In this present paper, we use the photogravitational version of the restricted three body problem (RTBP) in binary systems. In the photogravitational RTBP, an infinitesimal particle (dust grain) is moving under the gravitational attraction and radiation pressure from the two bigger primaries. The third particle does not affect the motion of two bigger primaries. The zero-velocity curves, zero-velocity surfaces and their projections on the plane are studied. We have used existing analytical method to solve the equations of motion. We have obtained the Lagrangian points in some binary stellar systems. It is found that mass reduction factor affects the Lagrangian points. The linear stability of Lagrangian points is studied and found that these points are unstable. Moreover, trajectories of the infinitesimal particle at the triangular points are studied.

Keywords: binary systems, Lagrangian points, linear stability, photogravitational RTBP, trajectories

Procedia PDF Downloads 230
1986 Diffusion of “Not One Woman Less”: Argentina and Beyond

Authors: Adriana Piatti-Crocker

Abstract:

Drawing on archival documentation, digital platforms, academic journals, and reports, this research will explore the diffusion of a protest movement in Latin America. Starting in Argentina in 2015, this paper will explain how the hashtag #NiUnaMenos (“Not One Woman Less”), created to combat violence against women and girls, led to the spread of a regionwide movement. A year after its introduction, hundreds of thousands of activists mobilized on the streets of major cities in Latin America. Movements arose to protest against specific circumstances and contexts under the hashtag #NiUnaMenos, but the main goal of all of these protests was to fight against misogynist violence. Moreover, unlike previous social movements, the use of social media, such as Facebook, Instagram, Whatsapp, and Twitter, changed the depth and scope of these protests and led to an unprecedented speed in helping transmit their messages, strategies, identities, and goals.

Keywords: social protests, #NiUnaMenos ( Not one woman less), diffusion of social protests, protests and mysoginist violence

Procedia PDF Downloads 68
1985 Mechanism and Kinetic of Layers Growth: Application to Nitriding of 32CrMoV13 Steel

Authors: Torchane Lazhar

Abstract:

In this work, our task consists in optimizing the nitriding treatment at low-temperature of the steel 32CrMoV13 by the way of the mixtures of ammonia gas, nitrogen and hydrogen to improve the mechanical properties of the surface (good wear resistance, friction and corrosion), and of the diffusion layer of the nitrogen (good resistance to fatigue and good tenacity with heart). By limiting our work to the pure iron and to the alloys iron-chromium and iron-chrome-carbon, we have studied the various parameters which manage the nitriding: flow rate and composition of the gaseous phase, the interaction chromium-nitrogen and chromium-carbon by the help of experiments of nitriding realized in the laboratory by thermogravimetry. The acquired knowledge have been applied by the mastery of the growth of the combination layer on the diffusion layer in the case of the industrial steel 32CrMoV13.

Keywords: diffusion of nitrogen, gaseous nitriding, layer growth kinetic, steel

Procedia PDF Downloads 388
1984 Diffusion Dynamics of Leech-Heart Inter-Neuron Model

Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay

Abstract:

We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.

Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis

Procedia PDF Downloads 189
1983 Increasing Prevalence of Multi-Allergen Sensitivities in Patients with Allergic Rhinitis and Asthma in Eastern India

Authors: Sujoy Khan

Abstract:

There is a rising concern with increasing allergies affecting both adults and children in rural and urban India. Recent report on adults in a densely populated North Indian city showed sensitization rates for house dust mite, parthenium, and cockroach at 60%, 40% and 18.75% that is now comparable to allergy prevalence in cities in the United States. Data from patients residing in the eastern part of India is scarce. A retrospective study (over 2 years) was done on patients with allergic rhinitis and asthma where allergen-specific IgE levels were measured to see the aero-allergen sensitization pattern in a large metropolitan city of East India. Total IgE and allergen-specific IgE levels were measured using ImmunoCAP (Phadia 100, Thermo Fisher Scientific, Sweden) using region-specific aeroallergens: Dermatophagoides pteronyssinus (d1); Dermatophagoides farinae (d2); cockroach (i206); grass pollen mix (gx2) consisted of Cynodon dactylon, Lolium perenne, Phleum pratense, Poa pratensis, Sorghum halepense, Paspalum notatum; tree pollen mix (tx3) consisted of Juniperus sabinoides, Quercus alba, Ulmus americana, Populus deltoides, Prosopis juliflora; food mix 1 (fx1) consisted of Peanut, Hazel nut, Brazil nut, Almond, Coconut; mould mix (mx1) consisted of Penicillium chrysogenum, Cladosporium herbarum, Aspergillus fumigatus, Alternaria alternate; animal dander mix (ex1) consisted of cat, dog, cow and horse dander; and weed mix (wx1) consists of Ambrosia elatior, Artemisia vulgaris, Plantago lanceolata, Chenopodium album, Salsola kali, following manufacturer’s instructions. As the IgE levels were not uniformly distributed, median values were used to represent the data. 92 patients with allergic rhinitis and asthma (united airways disease) were studied over 2 years including 21 children (age < 12 years) who had total IgE and allergen-specific IgE levels measured. The median IgE level was higher in 2016 than in 2015 with 60% of patients (adults and children) being sensitized to house dust mite (dual positivity for Dermatophagoides pteronyssinus and farinae). Of 11 children in 2015, whose total IgE ranged from 16.5 to >5000 kU/L, 36% of children were polysensitized (≥4 allergens), and 55% were sensitized to dust mites. Of 10 children in 2016, total IgE levels ranged from 37.5 to 2628 kU/L, and 20% were polysensitized with 60% sensitized to dust mites. Mould sensitivity was 10% in both of the years in the children studied. A consistent finding was that ragweed sensitization (molecular homology to Parthenium hysterophorus) appeared to be increasing across all age groups, and throughout the year, as reported previously by us where 25% of patients were sensitized. In the study sample overall, sensitizations to dust mite, cockroach, and parthenium were important risks in our patients with moderate to severe asthma that reinforces the importance of controlling indoor exposure to these allergens. Sensitizations to dust mite, cockroach and parthenium allergens are important predictors of asthma morbidity not only among children but also among adults in Eastern India.

Keywords: aAeroallergens, asthma, dust mite, parthenium, rhinitis

Procedia PDF Downloads 171
1982 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 300
1981 Association of 105A/C IL-18 Gene Single Nucleotide Polymorphism with House Dust Mite Allergy in an Atopic Filipino Population

Authors: Eisha Vienna M. Fernandez, Cristan Q. Cabanilla, Hiyasmin Lim, John Donnie A. Ramos

Abstract:

Allergy is a multifactorial disease affecting a significant proportion of the population. It is developed through the interaction of allergens and the presence of certain polymorphisms in various susceptibility genes. In this study, the correlation of the 105A/C single nucleotide polymorphism (SNP) of the IL-18 gene and house dust mite-specific IgE among Filipino allergic and non-allergic population was investigated. Atopic status was defined by serum total IgE concentration of ≥100 IU/mL, while house dust mite allergy was defined by specific IgE value ≥ +1SD of IgE of nonatopic participants. Two hundred twenty match-paired Filipino cases and controls aged 6-60 were the subjects of this investigation. The level of total IgE and Specific IgE were measured using Enzyme-Linked Immunosorbent Assay (ELISA) while Polymerase Chain Reaction – Restriction Fragment Length Polymorphism (PCR-RFLP) analysis was used in the SNP detection. Sensitization profiles of the allergic patients revealed that 97.3% were sensitized to Blomia tropicalis, 40.0% to Dermatophagoides farinae, and 29.1% to Dermatophagoides pteronyssinus. Multiple sensitization to HDMs was also observed among the 47.27% of the atopic participants. Any of the allergy classes of the atopic triad were exhibited by the cases (allergic asthma: 48.18%; allergic rhinitis: 62.73%; atopic dermatitis: 19.09%), and two or all of these atopic states are concurrently occurring in 26.36% of the cases. A greater proportion of the atopic participants with allergic asthma and allergic rhinitis were sensitized to D. farinae, and D. pteronyssinus, while more of those with atopic dermatitis were sensitized to D. pteronyssinus than D. farinae. Results show that there is overrepresentation of the allele “A” of the 105A/C IL-18 gene SNP in both cases and control groups of the population. The genotype that predominate the population is the heterozygous “AC”, followed by the homozygous wild “AA”, and the homozygous variant “CC” being the least. The study confirmed a positive association between serum specific IgE against B. tropicalis and D. pteronyssinus and the allele “C” (Bt P=0.021, Dp P=0.027) and “AC” (Bt P=0.003, Dp P=0.026) genotype. Findings also revealed that the genotypes “AA” (OR:1.217; 95% CI: 0.701-2.113) and “CC” (OR, 3.5; 95% CI: 0.727-16.849) increase the risk of developing allergy. This indicates that the 105A/C IL-18 gene SNP is a candidate genetic marker for HDM allergy among Filipino patients.

Keywords: house dust mite allergy, interleukin-18 (IL-18), single nucleotide polymorphism,

Procedia PDF Downloads 438
1980 Teachers and Innovations in Information and Communication Technology

Authors: Martina Manenova, Lukas Cirus

Abstract:

This article introduces research focused on elementary school teachers’ approach to innovations in ICT. The diffusion of innovations theory, which was written by E. M. Rogers, captures the processes of innovation adoption. The research method derived from this theory and the Rogers’ questionnaire focused on the diffusion of innovations was used as the basic research method. The research sample consisted of elementary school teachers. The comparison of results with the Rogers’ results shows that among the teachers in the research sample the so-called early majority, as well as the overall division of the data, was rather central (early adopter, early majority, and later majority). The teachers very rarely appeared on the edge positions (innovator, laggard). The obtained results can be applied to teaching practice and used especially in the implementation of new technologies and techniques into the educational process.

Keywords: innovation, diffusion of innovation, information and communication technology, teachers

Procedia PDF Downloads 274
1979 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events

Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic

Abstract:

A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.

Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs

Procedia PDF Downloads 459
1978 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 144
1977 Modelling of Heating and Evaporation of Biodiesel Fuel Droplets

Authors: Mansour Al Qubeissi, Sergei S. Sazhin, Cyril Crua, Morgan R. Heikal

Abstract:

This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius.

Keywords: heat/mass transfer, biodiesel, multi-component fuel, droplet

Procedia PDF Downloads 534
1976 Nuclear Terrorism and Proliferation: A Conceptual Clarification

Authors: Uche A. Nnawulezi

Abstract:

This paper analyzes the advancing nature of nuclear terrorism and proliferation in the global environment and its attendant impacts. It analyzes discourse and practice with respect to the general prohibition on the utilization of fissionable radioactive materials. Thus, there has been a few ideological, reasonable and academic recommendations of policies aimed at eliminating nuclear weapons which its ultimate nightmare has remained an assault including nuclear explosion in densely populated urban areas. Likewise, this paper concentrates on safety measures aimed at preventing nuclear assaults which should not just concentrate on endeavors to prevent terrorists from exploding nuclear gadgets but should be more concerned on endeavors aimed at preventing the acquisition of nuclear weapons in the first place. The author of this paper has pointed out that the non-proliferation treaty should be vigorously supported as well as the Comprehensive Test Ban Treaty brought into force. This paper depended unequivocally on secondary sources, for example, textbooks, journals, articles, and periodicals. It concludes that the fundamental proposals made in this paper if completely used shall remain a cornerstone of efforts made in preventing the spread of nuclear weapons. At last, the only way is to eliminate stockpiles of nuclear weapons in the world or else the likelihood of nuclear terrorism remains a nightmare.

Keywords: nuclear, terrorism, proliferation, global environment

Procedia PDF Downloads 228
1975 Comparative Study of Soliton Collisions in Uniform and Nonuniform Magnetized Plasma

Authors: Renu Tomar, Hitendra K. Malik, Raj P. Dahiya

Abstract:

Similar to the sound waves in air, plasmas support the propagation of ion waves, which evolve into the solitary structures when the effect of non linearity and dispersion are balanced. The ion acoustic solitary waves have been investigated in details in homogeneous plasmas, inhomogeneous plasmas, and magnetized plasmas. The ion acoustic solitary waves are also found to reflect from a density gradient or boundary present in the plasma after propagating. Another interesting feature of the solitary waves is their collision. In the present work, we carry out analytical calculations for the head-on collision of solitary waves in a magnetized plasma which has dust grains in addition to the ions and electrons. For this, we employ Poincar´e-Lighthill-Kuo (PLK) method. To lowest nonlinear order, the problem of colliding solitary waves leads to KdV (modified KdV) equations and also yields the phase shifts that occur in the interaction. These calculations are accomplished for the uniform and nonuniform plasmas, and the results on the soliton properties are discussed in detail.

Keywords: inhomogeneous magnetized plasma, dust charging, soliton collisions, magnetized plasma

Procedia PDF Downloads 444
1974 Accumulation of PM10 and Associated Metals Due to Opencast Coal Mining Activities and Their Impact on Human Health

Authors: Arundhuti Devi, Gitumani Devi, Krishna G. Bhattacharyya

Abstract:

The goal of this study was to assess the characteristics of the airborne dust created by opencast coal mining and its relation to population hospitalization risk for skin and lung diseases in Margherita Coalfield, Assam, India. Air samples were collected for 24 h in three 8-h periods. For the collection of particulate matter (PM10) and total suspended particulate matter (SPM) samples, respiratory dust samplers with glass microfiber filter papers were used. PM10 was analyzed for Cu, Cd, Cr, Mn, Zn, Ni, Fe and Pb with Flame Atomic Absorption Spectrophotometer (FAAS). SPM and PM10 concentrations were respectively found to be as high as 1,035 and 265.85 μg/m³ in work zone air. The concentration of metals associated with PM10 showed values higher than the permissible limits. It was observed that the average concentrations of the metals Fe, Pb, Ni, Zn, and Cu were very high during the winter month of December, those of Cd and Cr were high during the month of May and Mn was high during February. The morphology of the particles studied with scanning electron microscopy (SEM) gave significant results. Due to opencast coal mining, the air in the work zone, as well as the general ambient air, was found to be highly polluted with respect to dust. More than 8000 patient records maintained by the hospital authority were collected from three hospitals in the area. The highest percentage of people suffering from lung diseases are found in Margherita Civil Hospital (~26.77%) whereas most people suffering from skin diseases reported for treatment in the ESIC hospital (47.47%). Both PM10 and SPM were alarmingly high, and the results were in conformity with the high incidence of lung and other respiratory diseases in the study area.

Keywords: heavy metals, open cast coal mining, PM10, respiratory diseases

Procedia PDF Downloads 289
1973 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments

Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán

Abstract:

Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.

Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models

Procedia PDF Downloads 119
1972 Image Segmentation Using Active Contours Based on Anisotropic Diffusion

Authors: Shafiullah Soomro

Abstract:

Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.

Keywords: active contours, anisotropic diffusion, level-set, partial differential equations

Procedia PDF Downloads 144
1971 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: the linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure

Procedia PDF Downloads 265
1970 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast-Furnace Slag

Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi

Abstract:

Ceramic waste aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a supplementary cementitious material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.

Keywords: ceramic waste aggregate, chloride diffusion, GGBS, pore size distribution

Procedia PDF Downloads 318
1969 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 271
1968 Doping Density Effects on Minority Carrier Lifetime in Bulk GaAs by Means of Photothermal Deflection Technique

Authors: Soufiene Ilahi

Abstract:

Photothermal effect occurs when absorbed light energy that generate a thermal wave that propagate into the sample and surrounding media. Subsequently, the propagation of the vibration of phonons or electrons causes heat transfer. In fact, heat energy is provided by non-radiative recombination process that occurs in semiconductors sample. Three heats sources are identified: surface recombination, bulk recombination and carrier thermalisation. In the last few years, Photothermal Deflection Technique PTD is a nondestructive and accurate technique that prove t ability for electronics properties investigation. In this paper, we have studied the influence of doping on minority carrier lifetime, i.e, nonradiative lifetime, surface and diffusion coefficient. In fact, we have measured the photothermal signal of two sample of GaAs doped with C et Cr.In other hand , we have developed a theoretical model that takes into account of thermal and electronics diffusion equations .In order to extract electronics parameters of GaAs samples, we have fitted the theoretical signal of PTD to the experimental ones. As a results, we have found that nonradiative lifetime is around of 4,3 x 10-8 (±11,24%) and 5 x 10-8 (±14,32%) respectively for GaAs : Si doped and Cr doped. Accordingly, the diffusion coefficient is equal 4,6 *10-4 (± 3,2%) and 5* 10-4 (± 0,14%) foe the Cr, C and Si doped GaAs respectively.

Keywords: nonradiative lifetime, mobility of minority carrier, diffusion length, surface and interface recombination in GaAs

Procedia PDF Downloads 41
1967 Stabilization of Lateritic Soil Sample from Ijoko with Cement Kiln Dust and Lime

Authors: Akinbuluma Ayodeji Theophilus, Adewale Olutaiwo

Abstract:

When building roads and paved surfaces, a strong foundation is always essential. A durable material that can withstand years of traffic while staying trustworthy must be used to build the foundation. A frequent problem in the construction of roads and pavements is the lack of high-quality, long-lasting materials for the pavement structure (base, subbase, and subgrade). Hence, this study examined the stabilization of lateritic soil samples from Ijoko with cement kiln dust and lime. The study adopted the experimental design. Laboratory tests were conducted on classification, swelling potential, compaction, California bearing ratio (CBR), and unconfined compressive tests, among others, were conducted on the laterite sample treated with cement kiln dust (CKD) and lime in incremental order of 2% up to 10% of dry weight soft soil sample. The results of the test showed that the studied soil could be classified as an A-7-6 and CL soil using the American Association of State Highway and transport officials (AASHTO) and the unified soil classification system (USCS), respectively. The plasticity (PI) of the studied soil reduced from 30.5% to 29.9% at the application of CKD. The maximum dry density on the application of CKD reduced from 1.9.7 mg/m3 to 1.86mg/m3, and lime application yielded a reduction from 1.97mg/m3 to 1.88.mg/m3. The swell potential on CKD application was reduced from 0.05 to 0.039%. The study concluded that soil stabilizations are effective and economic way of improving road pavement for engineering benefit. The degree of effectiveness of stabilization in pavement construction was found to depend on the type of soil to be stabilized. The study therefore recommended that stabilized soil mixtures should be used to subbase material for flexible pavement since is a suitable.

Keywords: lateritic soils, sand, cement, stabilization, road pavement

Procedia PDF Downloads 59
1966 A Correlative Study of Heating Values of Saw Dust and Rice Husks in the Thermal Generation of Electricity

Authors: Muhammad Danladi, Muhammad Bura Garba, Muhammad Yahaya, Dahiru Muhammad

Abstract:

Biomass is one of the primary sources of energy supply, which contributes to about 78% of Nigeria. In this work, a comparative analysis of the heating values of sawdust and rice husks in the thermal generation of electricity was carried out. In the study, different masses of biomass were used and the corresponding electromotive force in millivolts was obtained. A graph of e.m.f was plotted against the mass of each biomass and a gradient was obtained. Bar graphs were plotted to represent the values of e.m.f and masses of the biomass. Also, a graph of e.m.f against eating values of sawdust and rice husks was plotted, and in each case, as the e.m.f increases also, the heating values increases. The result shows that saw dust with 0.033Mv/g gradient and 3.5 points of intercept had the highest gradient, followed by rice husks with 0.026Mv/g gradient and 2.6 points of intercept. It is, therefore, concluded that sawdust is the most efficient of the two types of biomass in the thermal generation of electricity.

Keywords: biomass, electricity, thermal, generation

Procedia PDF Downloads 64
1965 A Geometrical Method for the Smoluchowski Equation on the Sphere

Authors: Adriano Valdes-Gomez, Francisco Javier Sevilla

Abstract:

We devise a numerical algorithm to simulate the diffusion of a Brownian particle restricted to the surface of a three-dimensional sphere when the particle is under the effects of an external potential that is coupled linearly. It is obtained using elementary geometry, yet, it converges, in the weak sense, to the solutions to the Smoluchowski equation. Rotations on the sphere, which are the analogs of linear displacements in euclidean spaces, are calculated using algebraic operations and then by a proper scaling, which makes the algorithm efficient and quite simple, especially to what may be the short-time propagator approach. Our findings prove that the global effects of curvature are taken into account in both dynamic and stationary processes, and it is not restricted to work in configuration space, neither restricted to the overdamped limit. We have generalized it successfully to simulate the Kramers or the Ornstein-Uhlenbeck process, where it is necessary to work directly in phase space, and it may be adapted to other two dimensional surfaces with non-constant curvature.

Keywords: diffusion on the sphere, Fokker-Planck equation on the sphere, non equilibrium processes on the sphere, numerical methods for diffusion on the sphere

Procedia PDF Downloads 156
1964 Management and Evaluation of the Importance of Porous Media in Biomedical Engineering as Associated with Magnetic Resonance Imaging Besides Drug Delivery

Authors: Fateme Nokhodchi Bonab

Abstract:

Studies related to magnetic resonance imaging (MRI) and drug delivery are reviewed in this study to demonstrate the role of transport theory in porous media in facilitating advances in biomedical applications. Diffusion processes are believed to be important in many therapeutic modalities such as: B. Delivery of drugs to the brain. We analyse the progress in the development of diffusion equations using the local volume average method and the evaluation of applications related to diffusion equations. Torsion and porosity have significant effects on diffusive transport. In this study, various relevant models of torsion are presented and mathematical modeling of drug release from biodegradable delivery systems is analysed. In this study, a new model of drug release kinetics from porous biodegradable polymeric microspheres under bulk and surface erosion of the polymer matrix is presented. Solute drug diffusion, drug dissolution from the solid phase, and polymer matrix erosion have been found to play a central role in controlling the overall drug release process. This work paves the way for MRI and drug delivery researchers to develop comprehensive models based on porous media theory that use fewer assumptions compared to other approaches.

Keywords: MRI, porous media, drug delivery, biomedical applications

Procedia PDF Downloads 60
1963 Performance Evaluation of Cement Mortar with Crushed Stone Dust as Fine Aggregates

Authors: Pradeep Kumar

Abstract:

The present work is based on application of cement mortar with natural sand and discontinuous steel fiber through which bending behavior of skinny beam was evaluated. This research is to study the effects of combining reinforcing steel meshes (continuous steel reinforcement) with discontinuous fibers as reinforcement in skinny walled Portland cement based cement mortar with crushed stone dust as a fine aggregate. The term ‘skinny’ means thickness of the beams is less than 25 mm. The main idea behind this combination is to satisfy the ultimate strength limit state through the steel mesh reinforcement (as a main reinforcement) and to control the cracking under service loads through fiber (Recron 3s) reinforcement (as secondary reinforcement). The main object of this study is to carry out the bending behavior of mortar reinforced thin beam with only one layer of steel mesh (with various transfer wire spacing) and with a recron 3s (Reliance) fifers. The wide experimental program with bending tests is undertaken. The following variables are investigated: (a) the reference mesh size - 25.4 x 25.4 mm and 50.8 x 50.8 mm; (b) the transverse wire spacing - 25.4 mm, 50.8 mm, and no transverse wires; (c) the type of fibers – Reliance (Recron 3s, 6mm length); and (d) the fiber volume fraction – 0.1% and 0.25%. Some of the main conclusions are: (a) the use of recron 3s fibers leads to a little better overall performance than that with no fiber; (b) an increase in equivalent stress is observed when 0.1% RF,0.25% R Fibers are used; (c) when 25.4 x 50.8 size steel mesh is used, no noticeable change in behavior is observed in comparison to specimens without fibers; and (d) for no fibers 0.1% and o.1% RF the transverse wire spacing has some little effect on the equivalent stress for RF fibers, the transverse wire has no influence but the equivalent stress are increased.

Keywords: cement mortar, crushed stone dust, fibre, steel mesh

Procedia PDF Downloads 286
1962 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy

Authors: Hyun KI Kang, Hi Won Jeong

Abstract:

The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.

Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair

Procedia PDF Downloads 17
1961 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study

Authors: G. Singh, H.Schuster, U. Füssel

Abstract:

The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.

Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode

Procedia PDF Downloads 161
1960 Defining New Limits in Hybrid Perovskites: Single-Crystal Solar Cells with Exceptional Electron Diffusion Length Reaching Half Millimeters

Authors: Bekir Turedi

Abstract:

Exploiting the potential of perovskite single-crystal solar cells in optoelectronic applications necessitates overcoming a significant challenge: the low charge collection efficiency at increased thickness, which has restricted their deployment in radiation detectors and nuclear batteries. Our research details a promising approach to this problem, wherein we have successfully fabricated single-crystal MAPbI3 solar cells employing a space-limited inverse temperature crystallization (ITC) methodology. Remarkably, these cells, up to 400-fold thicker than current-generation perovskite polycrystalline films, maintain a high charge collection efficiency even without external bias. The crux of this achievement lies in the long electron diffusion length within these cells, estimated to be around 0.45 mm. This extended diffusion length ensures the conservation of high charge collection and power conversion efficiencies, even as the thickness of the cells increases. Fabricated cells at 110, 214, and 290 µm thickness manifested power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7% respectively. The single crystals demonstrated nearly optimal charge collection, even when their thickness exceeded 200 µm. Devices of thickness 108, 214, and 290 µm maintained 98.6, 94.3, and 80.4% of charge collection efficiency relative to their maximum theoretical short-circuit current value, respectively. Additionally, we have proposed an innovative, self-consistent technique for ascertaining the electron-diffusion length in perovskite single crystals under operational conditions. The computed electron-diffusion length approximated 446 µm, significantly surpassing previously reported values for this material. In conclusion, our findings underscore the feasibility of fabricating halide perovskite single-crystal solar cells of hundreds of micrometers in thickness while preserving high charge extraction efficiency and PCE. This advancement paves the way for developing perovskite-based optoelectronics necessitating thicker active layers, such as X-ray detectors and nuclear batteries.

Keywords: perovskite, solar cell, single crystal, diffusion length

Procedia PDF Downloads 28
1959 Annoyance Caused by Air Pollution: A Comparative Study of Two Industrialized Regions

Authors: Milena M. Melo, Jane M. Santos, Severine Frere, Valderio A. Reisen, Neyval C. Reis Jr., Mariade Fátima S. Leite

Abstract:

Although there had been a many studies that shows the impact of air pollution on physical health, comparatively less was known of human behavioral responses and annoyance impacts. Annoyance caused by air pollution is a public health problem because it can be an ambient stressor causing stress and disease and can affect quality of life. The objective of this work is to evaluate the annoyance caused by air pollution in two different industrialized urban areas, Dunkirk (France) and Vitoria (Brazil). The populations of these cities often report feeling annoyed by dust. Surveys were conducted, and the collected data were analyzed using statistical analyses. The results show that sociodemographic variables, importance of air quality, perceived industrial risk, perceived air pollution and occurrence of health problems play important roles in the perceived annoyance. These results show the existence of a common problem in geographically distant areas and allow stakeholders to develop prevention strategies.

Keywords: air pollution, annoyance, industrial risks, public health, perception of pollution, settled dust

Procedia PDF Downloads 665