Search results for: weather classification
909 Genetic Variation among the Wild and Hatchery Raised Populations of Labeo rohita Revealed by RAPD Markers
Authors: Fayyaz Rasool, Shakeela Parveen
Abstract:
The studies on genetic diversity of Labeo rohita by using molecular markers were carried out to investigate the genetic structure by RAPAD marker and the levels of polymorphism and similarity amongst the different groups of five populations of wild and farmed types. The samples were collected from different five locations as representatives of wild and hatchery raised populations. RAPAD data for Jaccard’s coefficient by following the un-weighted Pair Group Method with Arithmetic Mean (UPGMA) for Hierarchical Clustering of the similar groups on the basis of similarity amongst the genotypes and the dendrogram generated divided the randomly selected individuals of the five populations into three classes/clusters. The variance decomposition for the optimal classification values remained as 52.11% for within class variation, while 47.89% for the between class differences. The Principal Component Analysis (PCA) for grouping of the different genotypes from the different environmental conditions was done by Spearman Varimax rotation method for bi-plot generation of the co-occurrence of the same genotypes with similar genetic properties and specificity of different primers indicated clearly that the increase in the number of factors or components was correlated with the decrease in eigenvalues. The Kaiser Criterion based upon the eigenvalues greater than one, first two main factors accounted for 58.177% of cumulative variability.Keywords: variation, clustering, PCA, wild, hatchery, RAPAD, Labeo rohita
Procedia PDF Downloads 449908 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique
Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.Keywords: earthquake prediction, ANN, seismic bumps
Procedia PDF Downloads 127907 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 471906 Study on Optimization Design of Pressure Hull for Underwater Vehicle
Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran
Abstract:
In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.Keywords: parameterization, response surface, structure optimization, pressure hull
Procedia PDF Downloads 233905 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 145904 Encryption and Decryption of Nucleic Acid Using Deoxyribonucleic Acid Algorithm
Authors: Iftikhar A. Tayubi, Aabdulrahman Alsubhi, Abdullah Althrwi
Abstract:
The deoxyribonucleic acid text provides a single source of high-quality Cryptography about Deoxyribonucleic acid sequence for structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to encrypt and decrypt Deoxy Ribonucleic Acid sequence text. It includes complex, securing by using Algorithm to encrypt and decrypt Deoxy Ribonucleic Acid sequence. The utility of this Deoxy Ribonucleic Acid Sequence Text is that, it can provide a user-friendly interface for users to Encrypt and Decrypt store the information about Deoxy Ribonucleic Acid sequence. These interfaces created in this project will satisfy the demands of the scientific community by providing fully encrypt of Deoxy Ribonucleic Acid sequence during this website. We have adopted a methodology by using C# and Active Server Page.NET for programming which is smart and secure. Deoxy Ribonucleic Acid sequence text is a wonderful piece of equipment for encrypting large quantities of data, efficiently. The users can thus navigate from one encoding and store orange text, depending on the field for user’s interest. Algorithm classification allows a user to Protect the deoxy ribonucleic acid sequence from change, whether an alteration or error occurred during the Deoxy Ribonucleic Acid sequence data transfer. It will check the integrity of the Deoxy Ribonucleic Acid sequence data during the access.Keywords: algorithm, ASP.NET, DNA, encrypt, decrypt
Procedia PDF Downloads 234903 Cultivating Social-Ecological Resilience, Harvesting Biocultural Resistance in Southern Andes
Authors: Constanza Monterrubio-Solis, Jose Tomas Ibarra
Abstract:
The fertile interdependence of social-ecological systems reveals itself in the interactions between native forests and seeds, home gardens, kitchens, foraging activities, local knowledge, and food practices, creating particular flavors and food meanings as part of cultural identities within territories. Resilience in local-food systems, from a relational perspective, can be understood as the balance between persistence and adaptability to change. Food growing, preparation, and consumption are constantly changing and adapting as expressions of agency of female and male indigenous peoples and peasants. This paper explores local food systems’ expressions of resilience in the la Araucanía region of Chile, namely: diversity, redundancy, buffer capacity, modularity, self-organization, governance, learning, equity, and decision-making. Applying ethnographic research methods (participant observation, focus groups, and semi-structured interviews), this work reflects on the experience developed through work with Mapuche women cultivating home gardens in the region since 2012; it looks to material and symbolic elements of resilience in the local indigenous food systems. Local food systems show indeed indicators of social-ecological resilience. The biocultural memory is expressed in affection to particular flavors and recipes, the cultural importance of seeds and reciprocity networks, as well as an accurate knowledge about the indicators of the seasons and weather, which have allowed local food systems to thrive with a strong cultural foundation. Furthermore, these elements turn into biocultural resistance in the face of the current institutional pressures for rural specialization, processes of cultural assimilation such as agroecosystems and diet homogenization, as well as structural threats towards the diversity and freedom of native seeds. Thus, the resilience-resistance dynamic shown by the social-ecological systems of the southern Andes is daily expressed in the local food systems and flavors and is key for diverse and culturally sound social-ecological health.Keywords: biocultural heritage, indigenous food systems, social-ecological resilience, southern Andes
Procedia PDF Downloads 136902 Study and Simulation of a Sever Dust Storm over West and South West of Iran
Authors: Saeed Farhadypour, Majid Azadi, Habibolla Sayyari, Mahmood Mosavi, Shahram Irani, Aliakbar Bidokhti, Omid Alizadeh Choobari, Ziba Hamidi
Abstract:
In the recent decades, frequencies of dust events have increased significantly in west and south west of Iran. First, a survey on the dust events during the period (1990-2013) is investigated using historical dust data collected at 6 weather stations scattered over west and south-west of Iran. After statistical analysis of the observational data, one of the most severe dust storm event that occurred in the region from 3rd to 6th July 2009, is selected and analyzed. WRF-Chem model is used to simulate the amount of PM10 and how to transport it to the areas. The initial and lateral boundary conditions for model obtained from GFS data with 0.5°×0.5° spatial resolution. In the simulation, two aerosol schemas (GOCART and MADE/SORGAM) with 3 options (chem_opt=106,300 and 303) were evaluated. Results of the statistical analysis of the historical data showed that south west of Iran has high frequency of dust events, so that Bushehr station has the highest frequency between stations and Urmia station has the lowest frequency. Also in the period of 1990 to 2013, the years 2009 and 1998 with the amounts of 3221 and 100 respectively had the highest and lowest dust events and according to the monthly variation, June and July had the highest frequency of dust events and December had the lowest frequency. Besides, model results showed that the MADE / SORGAM scheme has predicted values and trends of PM10 better than the other schemes and has showed the better performance in comparison with the observations. Finally, distribution of PM10 and the wind surface maps obtained from numerical modeling showed that the formation of dust plums formed in Iraq and Syria and also transportation of them to the West and Southwest of Iran. In addition, comparing the MODIS satellite image acquired on 4th July 2009 with model output at the same time showed the good ability of WRF-Chem in simulating spatial distribution of dust.Keywords: dust storm, MADE/SORGAM scheme, PM10, WRF-Chem
Procedia PDF Downloads 272901 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 112900 Offline Signature Verification Using Minutiae and Curvature Orientation
Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee
Abstract:
A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.Keywords: signature, ridge breaks, minutiae, orientation
Procedia PDF Downloads 146899 Cairo’s Inferno of Pollution: Ecocritical Reading of “The Breeze Hunter” by Egyptian Writer Mohammed Makhzangi
Authors: Mila Fantinelli
Abstract:
Cairo is the perfect modern representation of a living hell between rising temperatures and failing architecture. The works of Egyptian writer Mohamed Makhzangi may prove to add more depth to the debate that surrounds the topic of pollution in Arab literature. This Egyptian writer, who studied medicine and psychiatry before dedicating his life to writing, sheds indeed further light on the ecological condition of Cairo. In relation to this, the short story “The breeze hunter” (2018) tackles the topic of “environmental architecture”, citing the research of Hassan Fathy in “Architecture for the Poor: An Experiment in Rural Egypt” which provides examples from history of inventions to counter the effects of the hot weather. Specifically, the main character of the story is a man living in Cairo in a small apartment, which turns into a living hell in the summer season because of the high temperatures. Catastrophic urban planning, therefore, prevents the mitigation of the torrid climate but rather worsens it. Makhzangi indeed refers to the environmental issue of pollution caused by the excessive number of air conditioners, which transform Cairo into an infernal island of heat while our country becomes warmer with the passing of time. His description of the city already intersects ecocriticism and environmental issues, tackling the topic of pollution inside of cities and the impact of climate change, of which Cairo is a perfect example. History has indeed provided ways in order to reduce the heat inside houses. Yet, these have all been ignored. As a result, through the teachings of Hassan Fathy, the narrator of the story builds an opening in the house to catch the natural breeze coming from the north. He, therefore, becomes the breeze hunter of Mansoura. However, polluted waves interrupt this brief rest, thus leading to a worsening of his conditions, leading to him suffering from the effects of crowding and the consequences of climate change and pollution. Makhzangi, therefore, reflects on how architecture and urbanism affect the psychological sanity of people and how the situation is worsened by the catastrophic consequences of climate change and pollution.Keywords: ecocriticism, Arabic literature, pollution, environmental architecture, crowding
Procedia PDF Downloads 24898 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph
Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction
Procedia PDF Downloads 425897 Using Closed Frequent Itemsets for Hierarchical Document Clustering
Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu
Abstract:
Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.Keywords: FIHC, documents clustering, ontology, closed frequent itemset
Procedia PDF Downloads 399896 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter
Procedia PDF Downloads 53895 Climate Species Lists: A Combination of Methods for Urban Areas
Authors: Andrea Gion Saluz, Tal Hertig, Axel Heinrich, Stefan Stevanovic
Abstract:
Higher temperatures, seasonal changes in precipitation, and extreme weather events are increasingly affecting trees. To counteract the increasing challenges of urban trees, strategies are increasingly being sought to preserve existing tree populations on the one hand and to prepare for the coming years on the other. One such strategy lies in strategic climate tree species selection. The search is on for species or varieties that can cope with the new climatic conditions. Many efforts in German-speaking countries deal with this in detail, such as the tree lists of the German Conference of Garden Authorities (GALK), the project Stadtgrün 2021, or the instruments of the Climate Species Matrix by Prof. Dr. Roloff. In this context, different methods for a correct species selection are offered. One possibility is to select certain physiological attributes that indicate the climate resilience of a species. To calculate the dissimilarity of the present climate of different geographic regions in relation to the future climate of any city, a weighted (standardized) Euclidean distance (SED) for seasonal climate values is calculated for each region of the Earth. The calculation was performed in the QGIS geographic information system, using global raster datasets on monthly climate values in the 1981-2010 standard period. Data from a European forest inventory were used to identify tree species growing in the calculated analogue climate regions. The inventory used is the compilation of georeferenced point data at a 1 km grid resolution on the occurrence of tree species in 21 European countries. In this project, the results of the methodological application are shown for the city of Zurich for the year 2060. In the first step, analog climate regions based on projected climate values for the measuring station Kirche Fluntern (ZH) were searched for. In a further step, the methods mentioned above were applied to generate tree species lists for the city of Zurich. These lists were then qualitatively evaluated with respect to the suitability of the different tree species for the Zurich area to generate a cleaned and thus usable list of possible future tree species.Keywords: climate change, climate region, climate tree, urban tree
Procedia PDF Downloads 108894 Facility Data Model as Integration and Interoperability Platform
Authors: Nikola Tomasevic, Marko Batic, Sanja Vranes
Abstract:
Emerging Semantic Web technologies can be seen as the next step in evolution of the intelligent facility management systems. Particularly, this considers increased usage of open source and/or standardized concepts for data classification and semantic interpretation. To deliver such facility management systems, providing the comprehensive integration and interoperability platform in from of the facility data model is a prerequisite. In this paper, one of the possible modelling approaches to provide such integrative facility data model which was based on the ontology modelling concept was presented. Complete ontology development process, starting from the input data acquisition, ontology concepts definition and finally ontology concepts population, was described. At the beginning, the core facility ontology was developed representing the generic facility infrastructure comprised of the common facility concepts relevant from the facility management perspective. To develop the data model of a specific facility infrastructure, first extension and then population of the core facility ontology was performed. For the development of the full-blown facility data models, Malpensa and Fiumicino airports in Italy, two major European air-traffic hubs, were chosen as a test-bed platform. Furthermore, the way how these ontology models supported the integration and interoperability of the overall airport energy management system was analyzed as well.Keywords: airport ontology, energy management, facility data model, ontology modeling
Procedia PDF Downloads 448893 Energy Management System and Interactive Functions of Smart Plug for Smart Home
Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya
Abstract:
Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.Keywords: energy management, load profile, smart plug, wireless sensor network
Procedia PDF Downloads 273892 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements
Authors: Ebru Turgal, Beyza Doganay Erdogan
Abstract:
Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data
Procedia PDF Downloads 203891 Phylogenetic Relationships of Common Reef Fish Species in Vietnam
Authors: Dang Thuy Binh, Truong Thi Oanh, Le Phan Khanh Hung, Luong thi Tuong Vy
Abstract:
One of the greatest environmental challenges facing Asia is the management and conservation of the marine biodiversity threaten by fisheries overexploitation, pollution, habitat destruction, and climate change. To date, a few molecular taxonomical studies has been conducted on marine fauna in Vietnam. The purpose of this study was to clarify the phylogeny of economic and ecological reef fish species in Vietnam Reef fish species covering Labridae, Scaridae, Nemipteridae, Serranidae, Acanthuridae, Lutjanidae, Lethrinidae, Mullidae, Balistidae, Pseudochromidae, Pinguipedidae, Fistulariidae, Holocentridae, Synodontidae, and Pomacentridae representing 28 genera were collected from South and Center, Vietnam. Combine with Genbank sequences, a phylogenetic tree was constructed based on 16S gene of mitochondrial DNA using maximum parsimony, maximum likelihood, and Bayesian inference approaches. The phylogram showed the well-resolved clades at genus and family level. Perciformes is the major order of reef fish species in Vietnam. The monophyly of Perciformes is not strongly supported as it was clustered in the same clade with Tetraodontiformes syngnathiformes and Beryciformes. Continue sampling of commercial fish species and classification based on morphology and genetics to build DNA barcoding of fish species in Vietnam is really necessary.Keywords: reef fish, 16s rDNA, Vietnam, phylogeny
Procedia PDF Downloads 438890 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 37889 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 111888 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis
Authors: Shriya Shukla, Lachin Fernando
Abstract:
Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning
Procedia PDF Downloads 126887 The Analysis of Differential Item and Test Functioning between Sexes by Studying on the Scholastic Aptitude Test 2013
Authors: Panwasn Mahalawalert
Abstract:
The purposes of this research were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2013 (SWUSAT). SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was analyzed in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of DIF and DTF analysis for all 10 tests in year 2013. Gender was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF is between 6.67% - 60%. There are 5 tests that most of items favors female group and 2 tests that most of items favors male group. There are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small level.Keywords: aptitude test, differential item functioning, differential test functioning, educational measurement
Procedia PDF Downloads 412886 Assessing the Effect of Urban Growth on Land Surface Temperature: A Case Study of Conakry Guinea
Authors: Arafan Traore, Teiji Watanabe
Abstract:
Conakry, the capital city of the Republic of Guinea, has experienced a rapid urban expansion and population increased in the last two decades, which has resulted in remarkable local weather and climate change, raise energy demand and pollution and treating social, economic and environmental development. In this study, the spatiotemporal variation of the land surface temperature (LST) is retrieved to characterize the effect of urban growth on the thermal environment and quantify its relationship with biophysical indices, a normalized difference vegetation index (NDVI) and a normalized difference built up Index (NDBI). Landsat data TM and OLI/TIRS acquired respectively in 1986, 2000 and 2016 were used for LST retrieval and Land use/cover change analysis. A quantitative analysis based on the integration of a remote sensing and a geography information system (GIS) has revealed an important increased in the LST pattern in the average from 25.21°C in 1986 to 27.06°C in 2000 and 29.34°C in 2016, which was quite eminent with an average gain in surface temperature of 4.13°C over 30 years study period. Additionally, an analysis using a Pearson correlation (r) between (LST) and the biophysical indices, normalized difference vegetation index (NDVI) and a normalized difference built-up Index (NDBI) has revealed a negative relationship between LST and NDVI and a strong positive relationship between LST and NDBI. Which implies that an increase in the NDVI value can reduce the LST intensity; conversely increase in NDBI value may strengthen LST intensity in the study area. Although Landsat data were found efficient in assessing the thermal environment in Conakry, however, the method needs to be refined with in situ measurements of LST in the future studies. The results of this study may assist urban planners, scientists and policies makers concerned about climate variability to make decisions that will enhance sustainable environmental practices in Conakry.Keywords: Conakry, land surface temperature, urban heat island, geography information system, remote sensing, land use/cover change
Procedia PDF Downloads 247885 Physical Planning Strategies for Disaster Mitigation and Preparedness in Coastal Region of Andhra Pradesh, India
Authors: Thimma Reddy Pothireddy, Ramesh Srikonda
Abstract:
India is prone to natural disasters such as Floods, droughts, cyclones, earthquakes and landslides frequently due to its geographical considerations. It has become a persistent phenomenon as observed in last ten decades. The recent survey indicates that about 60% of the landmass is prone to earthquakes of various intensities with reference to Richard scale, over 40 million hectares is prone to floods; about 8% of the total area is prone to cyclones and 68% of the area is vulnerable to drought. Climate change is likely to be perceived through the experience of extreme weather events. There is growing societal concern about climate change, given the potential impacts of associated natural hazards such as cyclones, flooding, earthquakes, landslides etc. The recent natural calamities such as Cyclone Hudhud had crossed the land at Northern cost of AP, Vishakapatanam on 12 Oct’2014 with a wind speed ranging between 175 – 200 kmph and the records show that the tidal waves were reached to the height of 14mts and above; and it alarms us to have critical focus on planning issues so as to find appropriate solutions. The existing condition is effective is in terms of institutional set up along with responsive management mechanism of disaster mitigation but considerations at settlement planning level to allow mitigation operations are not adequate. This paper deals to understand the response to climate change will possibly happen through adaptation to climate hazards and essential to work out an appropriate mechanism and disaster receptive settlement planning for responding to natural (and climate-related) calamities particularly to cyclones and floods. The statistics indicate that 40 million hectares flood prone (5% of area), and 1853 kmts of cyclone prone coastal length in India so it is essential and crucial to have appropriate physical planning considerations to improve preparedness and to operate mitigation measures effectively to minimize the loss and damage. Vijayawada capital region which is susceptible to cyclonic and floods has been studied with respect to trajectory analysis to work out risk vulnerability and to integrated disaster mitigation physical planning considerations.Keywords: meta analysis, vulnerability index, physical planning, trajectories
Procedia PDF Downloads 249884 An Investigation of Differential Item and Test Functioning of Scholastic Aptitude Test 2011 (SWUSAT 2011)
Authors: Ruangdech Sirikit
Abstract:
The purposes of this study were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2011 (SWUSAT 2011) SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was carried out in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of data analysis for all 10 tests in year 2011. Sex was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF was between 10% - 46.67%. There are 4 tests that most of items favors female group. There are 3 tests that most of items favors male group and there are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small DIF effect variance.Keywords: differential item functioning, differential test functioning, SWUSAT, aptitude test
Procedia PDF Downloads 611883 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 339882 The Moderating Role of the Employees' Green Lifestyle to the Effect of Green Human Resource Management Practices to Job Performance: A Structural Equation Model (SEM)
Authors: Lorraine Joyce Chua, Sheena Fatima Ragas, Flora Mae Tantay, Carolyn Marie Sunio
Abstract:
The Philippines is one of the countries most affected by weather-related disasters. The occurrence of natural disasters in this country increases due to environmental degradation making environment preservation a growing trend in the society including the corporate world. Most organizations implemented green practices in order to lower expenses unaware that some of these practices were already a part of a new trend in human resource management known as Green Human Resource Management (GHRM). GHRM is when business organizations implement HR policies programs processes and techniques that bring environmental impact and sustainability practices on the organization. In relation to this, the study hypothesizes that implementing GHRM practices in the workplace will spillover to an employees lifestyle and such lifestyle may moderate the impact of GHRM practices to his job performance. Private industries located in the Philippines National Capital Region (NCR) were purposively selected for the purpose of this study. They must be ISO14001 certified or are currently aiming for such certification. The employee respondents were randomly selected and were asked to answer a reliable and valid researcher-made questionnaire. Structural equation modeling (SEM) supported the hypothesis that GHRM practices may spillover to employees lifestyle stimulating such individual to start a green lifestyle which moderates the impact of GHRM to his job performance. It can also be implied that GHRM practices help shape employees to become environmentally aware and responsible which may help them in preserving the environment. The findings of this study may encourage Human Resource practitioners to implement GHRM practices in the workplace in order to take part in sustaining the environment while maintaining or improving employees job performance and keeping them motivated. This study can serve as a basis for future research regarding the importance of strengthening the GHRM implementation here in the Philippines. Future studies may focus more on the impact of GHRM to other factors, such as job loyalty and job satisfaction of the employees belonging to specific industries which would greatly contribute to the GHRM community in the Philippines.Keywords: GHRM practices, Green Human Resource Management, Green Lifestyle, ISO14001, job performance, Philippines
Procedia PDF Downloads 266881 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography
Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw
Abstract:
Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.Keywords: cardiotocography, foetus, intrapartum, hypoxia
Procedia PDF Downloads 216880 Climate Change and Migration in the Semi-arid Tropic and Eastern Regions of India: Exploring Alternative Adaptation Strategies
Authors: Gauri Sreekumar, Sabuj Kumar Mandal
Abstract:
Contributing about 18% to India’s Gross Domestic Product, the agricultural sector plays a significant role in the Indian rural economy. Despite being the primary source of livelihood for more than half of India’s population, most of them are marginal and small farmers facing several challenges due to agro-climatic shocks. Climate change is expected to increase the risk in the regions that are highly agriculture dependent. With systematic and scientific evidence of changes in rainfall, temperature and other extreme climate events, migration started to emerge as a survival strategy for the farm households. In this backdrop, our present study aims to combine the two strands of literature and attempts to explore whether migration is the only adaptation strategy for the farmers once they experience crop failures due adverse climatic condition. Combining the temperature and rainfall information from the weather data provided by the Indian Meteorological Department with the household level panel data on Indian states belonging to the Eastern and Semi-Arid Tropics regions from the Village Dynamics in South Asia (VDSA) collected by the International Crop Research Institute for the Semi-arid Tropics, we form a rich panel data for the years 2010-2014. A Recursive Econometric Model is used to establish the three-way nexus between climate change-yield-migration while addressing the role of irrigation and local non-farm income diversification. Using Three Stage Least Squares Estimation method, we find that climate change induced yield loss is a major driver of farmers’ migration. However, irrigation and local level non-farm income diversification are found to mitigate the adverse impact of climate change on migration. Based on our empirical results, we suggest for enhancing irrigation facilities and making local non-farm income diversification opportunities available to increase farm productivity and thereby reduce farmers’ migration.Keywords: climate change, migration, adaptation, mitigation
Procedia PDF Downloads 64