Search results for: virtual simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5938

Search results for: virtual simulation

3898 The Design of the Blended Learning System via E-Media and Online Learning for the Asynchronous Learning: Case Study of Process Management Subject

Authors: Pimploi Tirastittam, Suppara Charoenpoom

Abstract:

Nowadays the asynchronous learning has granted the permission to the anywhere and anything learning via the technology and E-media which give the learner more convenient. This research is about the design of the blended and online learning for the asynchronous learning of the process management subject in order to create the prototype of this subject asynchronous learning which will create the easiness and increase capability in the learning. The pattern of learning is the integration between the in-class learning and online learning via the internet. This research is mainly focused on the online learning and the online learning can be divided into 5 parts which are virtual classroom, online content, collaboration, assessment and reference material. After the system design was finished, it was evaluated and tested by 5 experts in blended learning design and 10 students which the user’s satisfaction level is good. The result is as good as the assumption so the system can be used in the process management subject for a real usage.

Keywords: blended learning, asynchronous learning, design, process management

Procedia PDF Downloads 396
3897 Numerical Analysis of Wire Laser Additive Manufacturing for Low Carbon Steels+

Authors: Juan Manuel Martinez Alvarez, Michele Chiumenti

Abstract:

This work explores the benefit of the thermo-metallurgical simulation to tackle the Wire Laser Additive Manufacturing (WLAM) of low-carbon steel components. The Finite Element Analysis is calibrated by process monitoring via thermal imaging and thermocouples measurements, to study the complex thermo-metallurgical behavior inherent to the WLAM process of low carbon steel parts.A critical aspect is the analysis of the heterogeneity in the resulting microstructure. This heterogeneity depends on both the thermal history and the residual stresses experienced during the WLAM process. Because of low carbon grades are highly sensitive to quenching, a high-gradient microstructure often arises due to the layer-by-layer metal deposition in WLAM. The different phases have been identified by scanning electron microscope. A clear influence of the heterogeneities on the final mechanical performance has been established by the subsequent mechanical characterization. The thermo-metallurgical analysis has been used to determine the actual thermal history and the corresponding thermal gradients during the printing process. The correlation between the thermos-mechanical evolution, the printing parameters and scanning sequence has been established. Therefore, an enhanced printing strategy, including optimized process window has been used to minimize the microstructure heterogeneity at ArcelorMittal.

Keywords: additive manufacturing, numerical simulation, metallurgy, steel

Procedia PDF Downloads 60
3896 Exploring the Use of Augmented Reality for Laboratory Lectures in Distance Learning

Authors: Michele Gattullo, Vito M. Manghisi, Alessandro Evangelista, Enricoandrea Laviola

Abstract:

In this work, we explored the use of Augmented Reality (AR) to support students in laboratory lectures in Distance Learning (DL), designing an application that proved to be ready for use next semester. AR could help students in the understanding of complex concepts as well as increase their motivation in the learning process. However, despite many prototypes in the literature, it is still less used in schools and universities. This is mainly due to the perceived limited advantages to the investment costs, especially regarding changes needed in the teaching modalities. However, with the spread of epidemiological emergency due to SARS-CoV-2, schools and universities were forced to a very rapid redefinition of consolidated processes towards forms of Distance Learning. Despite its many advantages, it suffers from the impossibility to carry out practical activities that are of crucial importance in STEM ("Science, Technology, Engineering e Math") didactics. In this context, AR perceived advantages increased a lot since teachers are more prepared for new teaching modalities, exploiting AR that allows students to carry on practical activities on their own instead of being physically present in laboratories. In this work, we designed an AR application for the support of engineering students in the understanding of assembly drawings of complex machines. Traditionally, this skill is acquired in the first years of the bachelor's degree in industrial engineering, through laboratory activities where the teacher shows the corresponding components (e.g., bearings, screws, shafts) in a real machine and their representation in the assembly drawing. This research aims to explore the effectiveness of AR to allow students to acquire this skill on their own without physically being in the laboratory. In a preliminary phase, we interviewed students to understand the main issues in the learning of this subject. This survey revealed that students had difficulty identifying machine components in an assembly drawing, matching between the 2D representation of a component and its real shape, and understanding the functionality of a component within the machine. We developed a mobile application using Unity3D, aiming to solve the mentioned issues. We designed the application in collaboration with the course professors. Natural feature tracking was used to associate the 2D printed assembly drawing with the corresponding 3D virtual model. The application can be displayed on students’ tablets or smartphones. Users could interact with selecting a component from a part list on the device. Then, 3D representations of components appear on the printed drawing, coupled with 3D virtual labels for their location and identification. Users could also interact with watching a 3D animation to learn how components are assembled. Students evaluated the application through a questionnaire based on the System Usability Scale (SUS). The survey was provided to 15 students selected among those we participated in the preliminary interview. The mean SUS score was 83 (SD 12.9) over a maximum of 100, allowing teachers to use the AR application in their courses. Another important finding is that almost all the students revealed that this application would provide significant power for comprehension on their own.

Keywords: augmented reality, distance learning, STEM didactics, technology in education

Procedia PDF Downloads 121
3895 An Intelligent WSN-Based Parking Guidance System

Authors: Sheng-Shih Wang, Wei-Ting Wang

Abstract:

This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information.

Keywords: Arduino, parking guidance, wireless sensor network, ZigBee

Procedia PDF Downloads 559
3894 Predicting Root Cause of a Fire Incident through Transient Simulation

Authors: Mira Ezora Zainal Abidin, Siti Fauzuna Othman, Zalina Harun, M. Hafiz M. Pikri

Abstract:

In a fire incident involving a Nitrogen storage tank that over-pressured and exploded, resulting in a fire in one of the units in a refinery, lack of data and evidence hampered the investigation to determine the root cause. Instrumentation and fittings were destroyed in the fire. To make it worst, this incident occurred during the COVID-19 pandemic, making collecting and testing evidence delayed. In addition to that, the storage tank belonged to a third-party company which requires legal agreement prior to the refinery getting approval to test the remains. Despite all that, the investigation had to be carried out with stakeholders demanding answers. The investigation team had to devise alternative means to support whatever little evidence came out as the most probable root cause. International standards, practices, and previous incidents on similar tanks were referred. To narrow down to just one root cause from 8 possible causes, transient simulations were conducted to simulate the overpressure scenarios to prove and eliminate the other causes, leaving one root cause. This paper shares the methodology used and details how transient simulations were applied to help solve this. The experience and lessons learned gained from the event investigation and from numerous case studies via transient analysis in finding the root cause of the accident leads to the formulation of future mitigations and design modifications aiming at preventing such incidents or at least minimize the consequences from the fire incident.

Keywords: fire, transient, simulation, relief

Procedia PDF Downloads 83
3893 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4

Authors: Farmesk Abubaker, Francesco Tortorici, Marco Capogni, Concetta Sutera, Vincenzo Bellini

Abstract:

This project concerns with the detection efficiency of the portable triple-to-double coincidence ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.

Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter

Procedia PDF Downloads 139
3892 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru

Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama

Abstract:

There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.

Keywords: water economy, simulation, modeling, integration

Procedia PDF Downloads 141
3891 Impact of a Training Course in Cardiopulmonary Resuscitation for Primary Care Professionals

Authors: Luiz Ernani Meira Jr., Antônio Prates Caldeira, Gilson Gabriel Viana Veloso, Jackson Andrade

Abstract:

Background: In Brazil, primary health care (PHC) system has developed with multidisciplinary teams in facilities located in peripheral areas, as the entrance doors for all patients. So, professionals must be prepared to deal with patients with simple and complex problems. Objective: To evaluate the knowledge and the skills of physicians and nurses of PHC on cardiorespiratory arrest (CRA) and cardiopulmonary resuscitation (CPR) before and after training in Basic Life Support. Methods: This is a before-and-after study developed in a Simulation Laboratory in Montes Claros, Brazil. We included physicians and nurses randomly chosen from PHC services. Written tests on CRA and CPR were carried out and performances in a CPR simulation were evaluated, based on the American Heart Association recommendations. Training practices were performed using special manikins. Statistical analysis included Wilcoxon’s test to compare before and after scores. Results: Thirty-two professionals were included. Only 38% had previous courses and updates on emergency care. Most of professionals showed poor skills to attend to CRA in a simulated situation. Subjects showed an increased in knowledge and skills about CPR after training (p-value=0.003). Conclusion: Primary health care professionals must be continuously trained to assist urgencies and emergencies, like CRA.

Keywords: primary health care, professional training, cardiopulmonary resuscitation, cardiorespiratory, emergency

Procedia PDF Downloads 306
3890 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity

Procedia PDF Downloads 367
3889 Variation of Airfoil Pressure Profile Due to Confined Air Streams: Application in Gas-Oil Separators

Authors: Amir Hossein Haji, Nabeel Al-Rawahi, Gholamreza Vakili-Nezhaad

Abstract:

An innovative design has been examined for a gas-oil separator based on pressure reduction over an airfoil surface. The primary motivations are to shorten the release trajectory of the bubbles by minimizing the thickness of the oil layer as well as improving uniform pressure reduction zones. Restricted airflow over an airfoil is investigated for its effect on the pressure drop enhancement and the maximum attainable attack angle prior to the stall condition. Aerodynamic separation is delayed based on numerical simulation of Wortmann FX 63137 Airfoil in a confined domain using FLUENT 6.3.26. The proposed set up results in higher pressure drop compared with the free stream case. With the aim of optimum power consumption we have pursued further restriction to an air jet case over the airfoil. Then, a curved strip model is suggested for the air jet which can be applied as an analysis/design tool for the best performance conditions. Pressure reduction is shown to be inversely proportional to the curvature of the upper airfoil profile. This reduction occurs within the tracking zones where the air jet is effectively attached to the airfoil surface. The zero slope condition is suggested to estimate the onset of these zones after which the minimum curvature should be searched. The corresponding zero slope curvature is applied for estimation of the maximum pressure drop which shows satisfactory agreement with the simulation results.

Keywords: airfoil, air jet, curved fluid flow, gas-oil separator

Procedia PDF Downloads 454
3888 Powder Assisted Sheet Forming to Fabricate Ti Capsule Magnetic Hyperthermia Implant

Authors: Keigo Nishitani, Kohei Mizuta Mizuta, Kazuyoshi Kurita, Yukinori Taniguchi

Abstract:

To establish mass production process of Ti capsule which has Fe powder inside as magnetic hyperthermia implant, we assumed that Ti thin sheet can be drawn into a φ1.0 mm die hole through the medium of Fe Powder and becomes outer shell of capsule. This study discusses mechanism of powder assisted deep drawing process by both of numerical simulation and experiment. Ti thin sheet blank was placed on die, and was covered by Fe powder layer without pressurizing. Then upper punch was indented on the Fe powder layer, and the blank can be drawn into die cavity as pressurized powder particles were extruded into die cavity from behind of the drawn blank. Distinct Element Method (DEM) has been used to demonstrate the process. To identify bonding parameters on Fe particles which are cohesion, tensile bond stress and inter particle friction angle, axial and diametrical compression failure test of Fe powder compact was conducted. Several density ratios of powder compacts in range of 0.70 - 0.85 were investigated and relationship between mean stress and equivalent stress was calculated with consideration of critical state line which rules failure criterion in consolidation of Fe powder. Since variation of bonding parameters with density ratio has been experimentally identified, and good agreement has been recognized between several failure tests and its simulation, demonstration of powder assisted sheet forming by using DEM becomes applicable. Results of simulation indicated that indent/drawing length of Ti thin sheet is promoted by smaller Fe particle size, larger indent punch diameter, lower friction coefficient between die surface and Ti sheet and certain degrees of die inlet taper angle. In the deep drawing test, we have made die-set with φ2.4 mm punch and φ1.0 mm die bore diameter. Pure Ti sheet with 100 μm thickness, annealed at 650 deg. C has been tested. After indentation, indented/drawn capsule has been observed by microscope, and its length was measured to discuss the feasibility of this capsulation process. Longer drawing length exists on progressive loading pass comparing with the case of single stroke loading. It is expected that progressive loading has an advantage of which extrusion of powder particle into die cavity with Ti sheet is promoted since powder particle layer can be rebuilt while the punch is withdrawn from the layer in each loading steps. This capsulation phenomenon is qualitatively demonstrated by DEM simulation. Finally, we have fabricated Ti capsule which has Fe powder inside for magnetic hyperthermia cancer care treatment. It is concluded that suggested method is possible to use the manufacturing of Ti capsule implant for magnetic hyperthermia cancer care.

Keywords: metal powder compaction, metal forming, distinct element method, cancer care, magnetic hyperthermia

Procedia PDF Downloads 281
3887 City-Wide Simulation on the Effects of Optimal Appliance Scheduling in a Time-of-Use Residential Environment

Authors: Rudolph Carl Barrientos, Juwaln Diego Descallar, Rainer James Palmiano

Abstract:

Household Appliance Scheduling Systems (HASS) coupled with a Time-of-Use (TOU) pricing scheme, a form of Demand Side Management (DSM), is not widely utilized in the Philippines’ residential electricity sector. This paper’s goal is to encourage distribution utilities (DUs) to adopt HASS and TOU by analyzing the effect of household schedulers on the electricity price and load profile in a residential environment. To establish this, a city based on an implemented survey is generated using Monte Carlo Analysis (MCA). Then, a Binary Particle Swarm Optimization (BPSO) algorithm-based HASS is developed considering user satisfaction, electricity budget, appliance prioritization, energy storage systems, solar power, and electric vehicles. The simulations were assessed under varying levels of user compliance. Results showed that the average electricity cost, peak demand, and peak-to-average ratio (PAR) of the city load profile were all reduced. Therefore, the deployment of the HASS and TOU pricing scheme is beneficial for both stakeholders.

Keywords: appliance scheduling, DSM, TOU, BPSO, city-wide simulation, electric vehicle, appliance prioritization, energy storage system, solar power

Procedia PDF Downloads 90
3886 Modelling Residential Space Heating Energy for Romania

Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala

Abstract:

This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.

Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies

Procedia PDF Downloads 531
3885 Coarse Grid Computational Fluid Dynamics Fire Simulations

Authors: Wolfram Jahn, Jose Manuel Munita

Abstract:

While computational fluid dynamics (CFD) simulations of fire scenarios are commonly used in the design of buildings, less attention has been given to the use of CFD simulations as an operational tool for the fire services. The reason of this lack of attention lies mainly in the fact that CFD simulations typically take large periods of time to complete, and their results would thus not be available in time to be of use during an emergency. Firefighters often face uncertain conditions when entering a building to attack a fire. They would greatly benefit from a technology based on predictive fire simulations, able to assist their decision-making process. The principal constraint to faster CFD simulations is the fine grid necessary to solve accurately the physical processes that govern a fire. This paper explores the possibility of overcoming this constraint and using coarse grid CFD simulations for fire scenarios, and proposes a methodology to use the simulation results in a meaningful way that can be used by the fire fighters during an emergency. Data from real scale compartment fire tests were used to compare CFD fire models with different grid arrangements, and empirical correlations were obtained to interpolate data points into the grids. The results show that the strongly predominant effect of the heat release rate of the fire on the fluid dynamics allows for the use of coarse grids with relatively low overall impact of simulation results. Simulations with an acceptable level of accuracy could be run in real time, thus making them useful as a forecasting tool for emergency response purposes.

Keywords: CFD, fire simulations, emergency response, forecast

Procedia PDF Downloads 306
3884 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 232
3883 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method

Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar

Abstract:

In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.

Keywords: stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method

Procedia PDF Downloads 343
3882 Coupled Analysis with Fluid and Flexible Multibody Dynamics of 6-DOF Platform with Liquid Sloshing Tank

Authors: Sung-Pill Kim, Dae-Gyu Sung, Hee-Sung Shin, Jong-Chun Park

Abstract:

When a sloshing tank filled partially with liquid is excited with the motion of platform, it can be observed that the center of mass inside the tank is changed and impact loads is instantaneously applied to the wall, which causes dynamic loads additionally to the supporting links of platform. In this case, therefore, the dynamic behavior of platform associated with fluid motion should be considered in the early stage of design for safety and economics of the system. In this paper, the dynamic loads due to liquid sloshing motion in a rectangular tank which is loaded up on the upper deck of a Stewart platform are simulated using a coupled analysis of Moving Particle Simulation (MPS) and Flexible Multi-Body Dynamics (FMBD). The co-simulation is performed using two commercial softwares, Recurdyn for solving FMBD and Particleworks for analyzing fluid motion based on MPS method. For validating the present coupled system, a rectangular sloshing tank being enforced with inline sway motion by 1-DOF motion platform is assumed, and time-varied free-surface elevation and reaction force at a fixed joint are compared with experiments.

Keywords: dynamic loads, liquid sloshing tank, Stewart platform, moving particle semi-implicit (MPS) method, flexible multi-body dynamics (FMBD)

Procedia PDF Downloads 687
3881 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network

Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan

Abstract:

We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.

Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation

Procedia PDF Downloads 158
3880 Characterization and Modelling of Aerosol Droplet in Absorption Columns

Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen

Abstract:

Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem. Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.

Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation

Procedia PDF Downloads 232
3879 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance

Authors: Yuguang Gao, Mingtao Deng

Abstract:

The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.

Keywords: collaborative medical alliance, disease related group, patient referral, simulation

Procedia PDF Downloads 40
3878 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli

Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu

Abstract:

This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.

Keywords: FSI, two-way particle coupling, alveoli, CDF

Procedia PDF Downloads 242
3877 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network

Authors: Thomas E. Portegys

Abstract:

An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.

Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation

Procedia PDF Downloads 44
3876 Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field

Authors: Zerroug Abdelhamid, Danielle Chassoux

Abstract:

Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods.

Keywords: simulation, cancerous tumor, Markov fields, fractal dimension, extraction, recovering

Procedia PDF Downloads 356
3875 Crowdsourcing as an Open Innovation Tool for Entrepreneurship

Authors: Zeynep Ayfer Bozat

Abstract:

As traditional innovation has already taken its place in managers’ to do lists; managers and companies have started to look for new ways to go beyond the traditional innovation. Because of its cost, traditional innovation became a burden for companies since they only use inner sources. Companies have intended to use outer innovation sources to decrease the innovation costs and Open Innovation has become a new solution for companies at this point. Crowdsourcing is a tool of Open Innovation and it consists of two words: Outsourcing and crowd. Crowdsourcing aims to benefit from the efforts and ideas of a virtual crowd via Internet technologies. In addition to that, crowdsourcing can help entrepreneurs to innovate and grow their businesses. They can crowd source anything they can use to grow their businesses: Ideas, investment, new business, new partners, new solutions, new policies, data, insight, marketing or talent. Therefore, the aim of the study is to be able to show some possible ways for entrepreneurs to benefit from crowdsourcing to expand or foster their businesses. In the study, the term crowdsourcing has been given in details and these possible ways have been searched and given.

Keywords: crowdsourcing, entrepreneurship, innovation, open innovation

Procedia PDF Downloads 285
3874 Analyzing Risk and Expected Return of Lenders in the Shared Mortgage Program of Korea

Authors: Keunock Lew, Seungryul Ma

Abstract:

The paper analyzes risk and expected return of lenders who provide mortgage loans to households in the shared mortgage program of Korea. In 2013, the Korean government introduced the mortgage program to help low income householders to convert their renting into purchasing houses. The financial source for the mortgage program is the Urban Housing Fund set up by the Korean government. Through the program, low income households can borrow money from lenders to buy a house at a very low interest rate (e.g. 1 % per year) for a long time. The motivation of adopting this mortgage program by the Korean government is that the cost of renting houses has been rapidly increased especially in large urban areas during the past decade, which became financial difficulties to low income households who do not have their own houses. As the analysis methodology, the paper uses a spread sheet model for projecting cash flows of the mortgage product over the period of loan contract. It also employs Monte Carlo simulation method to analyze the risk and expected yield of the lenders with assumption that the future housing price and market rate of interest follow a stochastic process. The study results will give valuable implications to the Korean government and lenders who want to stabilize the mortgage program and innovate the related loan products.

Keywords: expected return, Monte Carlo simulation, risk, shared mortgage program

Procedia PDF Downloads 264
3873 The Impact of Missense Mutation in Phosphatidylinositol Glycan Class A Associated to Paroxysmal Nocturnal Hemoglobinuria and Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 2: A Computational Study

Authors: Ashish Kumar Agrahari, Amit Kumar

Abstract:

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore the atomistic level impact of PIGA mutations on the structure and dynamics of the protein. In the current work, we are mainly interested to get insights into the molecular mechanism of PIGA mutations. In the initial step, we screened the most pathogenic mutations from the pool of publicly available mutations. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and subjected to 50ns molecular dynamics simulation. Our computational study suggests that four mutations are highly vulnerable to altering the structural conformation and stability of the PIGA protein, which illustrates its association with PNH and MCAHS2 phenotype.

Keywords: homology modeling, molecular dynamics simulation, missense mutations PNH, MCAHS2, PIGA

Procedia PDF Downloads 136
3872 Harnessing Emerging Creative Technology for Knowledge Discovery of Multiwavelenght Datasets

Authors: Basiru Amuneni

Abstract:

Astronomy is one domain with a rise in data. Traditional tools for data management have been employed in the quest for knowledge discovery. However, these traditional tools become limited in the face of big. One means of maximizing knowledge discovery for big data is the use of scientific visualisation. The aim of the work is to explore the possibilities offered by emerging creative technologies of Virtual Reality (VR) systems and game engines to visualize multiwavelength datasets. Game Engines are primarily used for developing video games, however their advanced graphics could be exploited for scientific visualization which provides a means to graphically illustrate scientific data to ease human comprehension. Modern astronomy is now in the era of multiwavelength data where a single galaxy for example, is captured by the telescope several times and at different electromagnetic wavelength to have a more comprehensive picture of the physical characteristics of the galaxy. Visualising this in an immersive environment would be more intuitive and natural for an observer. This work presents a standalone VR application that accesses galaxy FITS files. The application was built using the Unity Game Engine for the graphics underpinning and the OpenXR API for the VR infrastructure. The work used a methodology known as Design Science Research (DSR) which entails the act of ‘using design as a research method or technique’. The key stages of the galaxy modelling pipeline are FITS data preparation, Galaxy Modelling, Unity 3D Visualisation and VR Display. The FITS data format cannot be read by the Unity Game Engine directly. A DLL (CSHARPFITS) which provides a native support for reading and writing FITS files was used. The Galaxy modeller uses an approach that integrates cleaned FITS image pixels into the graphics pipeline of the Unity3d game Engine. The cleaned FITS images are then input to the galaxy modeller pipeline phase, which has a pre-processing script that extracts, pixel, galaxy world position, and colour maps the FITS image pixels. The user can visualise image galaxies in different light bands, control the blend of the image with similar images from different sources or fuse images for a holistic view. The framework will allow users to build tools to realise complex workflows for public outreach and possibly scientific work with increased scalability, near real time interactivity with ease of access. The application is presented in an immersive environment and can use all commercially available headset built on the OpenXR API. The user can select galaxies in the scene, teleport to the galaxy, pan, zoom in/out, and change colour gradients of the galaxy. The findings and design lessons learnt in the implementation of different use cases will contribute to the development and design of game-based visualisation tools in immersive environment by enabling informed decisions to be made.

Keywords: astronomy, visualisation, multiwavelenght dataset, virtual reality

Procedia PDF Downloads 80
3871 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: deep learning, generative, knowledge, response generation, retrieval

Procedia PDF Downloads 125
3870 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 78
3869 Weighted Data Replication Strategy for Data Grid Considering Economic Approach

Authors: N. Mansouri, A. Asadi

Abstract:

Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.

Keywords: data grid, data replication, simulation, replica selection, replica placement

Procedia PDF Downloads 252