Search results for: transient liquid phase
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6204

Search results for: transient liquid phase

4164 Design and Implementation of Image Super-Resolution for Myocardial Image

Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad

Abstract:

Super-resolution is the technique of intelligently upscaling images, avoiding artifacts or blurring, and deals with the recovery of a high-resolution image from one or more low-resolution images. Single-image super-resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super-resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based technique remains unknown. Super-resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. This paper aims at investigating the effects of single image super-resolution on Fourier-based and image based methods of scale-up. In this paper, first, generate a training phase of the low-resolution image and high-resolution image to obtain dictionary. In the test phase, first, generate a patch and then difference of high-resolution image and interpolation image from the low-resolution image. Next simulation of the image is obtained by applying convolution method to the dictionary creation image and patch extracted the image. Finally, super-resolution image is obtained by combining the fused image and difference of high-resolution and interpolated image. Super-resolution reduces image errors and improves the image quality.

Keywords: image dictionary creation, image super-resolution, LGE images, patch extraction

Procedia PDF Downloads 359
4163 Comparison Of Virtual Non-Contrast To True Non-Contrast Images Using Dual Layer Spectral Computed Tomography

Authors: O’Day Luke

Abstract:

Purpose: To validate virtual non-contrast reconstructions generated from dual-layer spectral computed tomography (DL-CT) data as an alternative for the acquisition of a dedicated true non-contrast dataset during multiphase contrast studies. Material and methods: Thirty-three patients underwent a routine multiphase clinical CT examination, using Dual-Layer Spectral CT, from March to August 2021. True non-contrast (TNC) and virtual non-contrast (VNC) datasets, generated from both portal venous and arterial phase imaging were evaluated. For every patient in both true and virtual non-contrast datasets, a region-of-interest (ROI) was defined in aorta, liver, fluid (i.e. gallbladder, urinary bladder), kidney, muscle, fat and spongious bone, resulting in 693 ROIs. Differences in attenuation for VNC and TNV images were compared, both separately and combined. Consistency between VNC reconstructions obtained from the arterial and portal venous phase was evaluated. Results: Comparison of CT density (HU) on the VNC and TNC images showed a high correlation. The mean difference between TNC and VNC images (excluding bone results) was 5.5 ± 9.1 HU and > 90% of all comparisons showed a difference of less than 15 HU. For all tissues but spongious bone, the mean absolute difference between TNC and VNC images was below 10 HU. VNC images derived from the arterial and the portal venous phase showed a good correlation in most tissue types. The aortic attenuation was somewhat dependent however on which dataset was used for reconstruction. Bone evaluation with VNC datasets continues to be a problem, as spectral CT algorithms are currently poor in differentiating bone and iodine. Conclusion: Given the increasing availability of DL-CT and proven accuracy of virtual non-contrast processing, VNC is a promising tool for generating additional data during routine contrast-enhanced studies. This study shows the utility of virtual non-contrast scans as an alternative for true non-contrast studies during multiphase CT, with potential for dose reduction, without loss of diagnostic information.

Keywords: dual-layer spectral computed tomography, virtual non-contrast, true non-contrast, clinical comparison

Procedia PDF Downloads 130
4162 Effect of Feeding Camel Rumen Content on Growth Performance and Haematological Parameters of Broiler Chickens under Semi-Arid Condition

Authors: Alhaji Musa Abdullahi, Usman Abdullahi, Adamu Adamu, Aminu Maidala

Abstract:

One hundred and fifty (150) day old chicks were randomly allocated into five dietary treatments birds and each treatment where replicated twice in groups of fifteen birds in each replicate. Camel rumen content (CRC) was included in the diets of broiler at 0, 5, 10, 15, and 20% to replace maize and groundnut cake to evaluate the effect on the performance and hematological parameters at the starter and finisher phase. A completely randomized design was used and 600g of feed was given daily and water was given ad libitum. At the starter phase, the daily weight gain and feed conversion ratio were significantly affected by the test ingredients, although T1(0% CRC) which serve as a control, were similar with T2(5% CRC), T3(10% CRC), and T4(15% CRC), while the lowest value was recorded in T5(20% CRC). The result indicates that up to 15% (CRC) level can be included in the starter diet to replace maize and groundnut cake without any effect on the performance. However, at the finisher phase, the daily feed intake, daily weight gain and feed conversion ratio show no significant (F>0.05) difference among the dietary treatments. Similarly, Packed cell volume (PCV), Red Blood Cell (RBC), White Blood Cell (WBC), Mean Corpuscular Volume (MCV), and Mean Corpuscular Haemoglobin (MCH) also did not differ significantly (F>0.05) among the dietary treatments while hemoglobin (Hb) and Mean Corpuscular Haemoglobin Concentration (MCHC) differs significantly. The differential counts of eosinophils, heterophils, and lymphocytes differ significantly among the treatment groups, while that of basophils and monocytes shows no significant difference among the treatment groups. This means up to 20% CRC inclusion level can be used to replaced maize and groundnut cake in the finisher diet without any adverse effect on the performance and hematological parameters of the chickens.

Keywords: camel, rumen content, growth, hematology

Procedia PDF Downloads 191
4161 Diffusion Treatment of Niobium and Molybdenum on Pur Titanium and Titanium Alloy Ti-64al and Their Properties

Authors: Kaouka Alaeddine, K. Benarous

Abstract:

This study aims to obtain a surface of pure titanium and titanium alloy Ti-64Al with high performance by the diffusion process. Two agents metal alloy have been used in this treatment, niobium (Nb) and molybdenum (Mo), spread on elemental titanium and Ti-64Al alloy. Nb and Mo are used as powder form to increase the contact surface and to improve the distribution. Both Mo and Nb are distributed on samples of Ti and Ti-64Al at 1100 °C and 1200 °C for 3 h. They were performed to effect different experiments objectives. This work was achieved to improve some properties and microstructure of Ti and Ti-64Al surface, using optical microscopy and SEM and study some mechanical properties. The effects of temperature and the powder contents on the microstructure of Ti and Ti-64Al alloy, different phases and hardness value of Ti and Ti-64Al alloy were determined. Experimental results indicate that increasing the powder contents and/or the temperature, the α + β phases change to the equiaxed β lamellar structure. In particular, experiments in 1200 °C were created by diffusion α + β phases both equiaxed β phase laminar and α + β phase, thus meeting the objectives were established in the work. In addition, simulation results are used for comparison with the experimental results by DICTRA software.

Keywords: diffusion, powder metallurgy, titanium alloy, molybdenum, niobium

Procedia PDF Downloads 137
4160 Enhancing Coping Strategies of Student: A Case Study of 'Choice Theory' Group Counseling

Authors: Warakorn Supwirapakorn

Abstract:

The purpose of this research was to study the effects of choice theory in group counseling on coping strategies of students. The sample consisted of 16 students at a boarding school, who had the lowest score on the coping strategies. The sample was divided into two groups by random assignment and then were assigned into the experimental group and the control group, with eight members each. The instruments were the Adolescent Coping Scale and choice theory group counseling program. The data collection procedure was divided into three phases: The pre-test, the post-test, and the follow-up. The data were analyzed by repeated measure analysis of variance: One between-subjects and one within-subjects. The results revealed that the interaction between the methods and the duration of the experiment was found statistically significant at 0.05 level. The students in the experimental group demonstrated significantly higher at 0.05 level on coping strategies score in both the post-test and the follow-up than in the pre-test and the control group. No significant difference was found on coping strategies during the post-test phase and the follow-up phase of the experimental group.

Keywords: coping strategies, choice theory, group counseling, boarding school

Procedia PDF Downloads 195
4159 Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds

Authors: T. Kuchukhidze, N. Jalagonia, Z. Phachulia, R. Chedia

Abstract:

Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer.

Keywords: α-Alumina, combustion, phase transformation, seeding

Procedia PDF Downloads 380
4158 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System

Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh

Abstract:

A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.

Keywords: double perovskite, electrical conductivity, SEM, XRD

Procedia PDF Downloads 116
4157 Two-Phase Flow Modelling and Numerical Simulation for Waterflooding in Enhanced Oil Recovery

Authors: Peña A. Roland R., Lozano P. Jean P.

Abstract:

The waterflooding process is an enhanced oil recovery (EOR) method that appears tremendously successful. This paper shows the importance of the role of the numerical modelling of waterflooding and how to provide a better description of the fluid flow during this process. The mathematical model is based on the mass conservation equations for the oil and water phases. Rock compressibility and capillary pressure equations are coupled to the mathematical model. For discretizing and linearizing the partial differential equations, we used the Finite Volume technique and the Newton-Raphson method, respectively. The results of three scenarios for waterflooding in porous media are shown. The first scenario was estimating the water saturation in the media without rock compressibility and without capillary pressure. The second scenario was estimating the front of the water considering the rock compressibility and capillary pressure. The third case is to compare different fronts of water saturation for three fluids viscosity ratios without and with rock compressibility and without and with capillary pressure. Results of the simulation indicate that the rock compressibility and the capillary pressure produce changes in the pressure profile and saturation profile during the displacement of the oil for the water.

Keywords: capillary pressure, numerical simulation, rock compressibility, two-phase flow

Procedia PDF Downloads 113
4156 Leadership Values in Succession Processes

Authors: Peter Heimerl, Alexander Plaikner, Mike Peters

Abstract:

Background and Significance of the Study: Family-run businesses are a decisive economic factor in the Alpine tourism and leisure industry. Within the next years, it is expected that a large number of family-run small and medium-sized businesses will transfer ownership due to demographic developments. Four stages of succession processes can be identified by several empirical studies: (1) the preparation phase, (2) the succession planning phase, (3) the development of the succession concept, (4) and the implementation of the business transfer. Family business research underlines the importance of individual's and family’s values: Especially leadership values address mainly the first phase, which strongly determines the following stages. Aim of the Study: The study aims at answering the following research question: Which leadership values are dominating during succession processes in family-run businesses in Austrian Alpine tourism industry? Methodology: Twenty-two problem-centred individual interviews with 11 transferors and their 11 transferees were conducted. Data analysis was carried out using the software program MAXQDA following an inductive approach to data coding. Major Findings: Data analysis shows that nine values particularly influence succession processes, especially during the vulnerable preparation phase. Participation is the most-dominant value (162 references). It covers a style of cooperation, communication, and controlling. Discipline (142) is especially prevailing from the transferor's perspective. It addresses entrepreneurial honesty and customer orientation. Development (138) is seen as an important value, but it can be distinguished between transferors and transferees. These are mainly focused on strategic positioning and new technologies. Trust (105) is interpreted as a basic prerequisite to run the family firm smoothly. Interviewees underline the importance to be able to take a break from family-business management; however, this is only possible when openness and honesty constitute trust within the family firm. Loyalty (102): Almost all interviewees perceive that they can influence the loyalty of the employees through their own role models. A good work-life balance (90) is very important to most of the transferors, especially for their employees. Despite the communicated importance of a good work-life-balance, but however, mostly the commitment to the company is prioritised. Considerations of regionality (82) and regional responsibility are also frequently raised. Appreciation (75) is of great importance to both the handover and the takeover generation -as appreciation towards the employees in the company and especially in connection with the family. Familiarity (66) and the blurring of the boundaries between private and professional life are very common, especially in family businesses. Familial contact and open communication with employees which is mentioned in almost all handing over. Conclusions: In the preparation phase of succession, successors and incumbents have to consider and discuss their leadership and family values of family-business management. Quite often, assistance is needed to commonly and openly discuss these values in the early stages of succession processes. A large majority of handovers fail because of these values. Implications can be drawn to support family businesses, e.g., consulting initiatives at chambers of commerce and business consultancies must address this problem.

Keywords: leadership values, family business, succession processes, succession phases

Procedia PDF Downloads 77
4155 A Study of the Carbon Footprint from a Liquid Silicone Rubber Compounding Facility in Malaysia

Authors: Q. R. Cheah, Y. F. Tan

Abstract:

In modern times, the push for a low carbon footprint entails achieving carbon neutrality as a goal for future generations. One possible step towards carbon footprint reduction is the use of more durable materials with longer lifespans, for example, silicone data cableswhich show at least double the lifespan of similar plastic products. By having greater durability and longer lifespans, silicone data cables can reduce the amount of trash produced as compared to plastics. Furthermore, silicone products don’t produce micro contamination harmful to the ocean. Every year the electronics industry produces an estimated 5 billion data cables for USB type C and lightning data cables for tablets and mobile phone devices. Material usage for outer jacketing is 6 to 12 grams per meter. Tests show that the product lifespan of a silicone data cable over plastic can be doubled due to greater durability. This can save at least 40,000 tonnes of material a year just on the outer jacketing of the data cable. The facility in this study specialises in compounding of liquid silicone rubber (LSR) material for the extrusion process in jacketing for the silicone data cable. This study analyses the carbon emissions from the facility, which is presently capable of producing more than 1,000 tonnes of LSR annually. This study uses guidelines from the World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) to define the boundaries of the scope. The scope of emissions is defined as 1. Emissions from operations owned or controlled by the reporting company, 2. Emissions from the generation of purchased or acquired energy such as electricity, steam, heating, or cooling consumed by the reporting company, and 3. All other indirect emissions occurring in the value chain of the reporting company, including both upstream and downstream emissions. As the study is limited to the compounding facility, the system boundaries definition according to GHG protocol is cradle-to-gate instead of cradle-to-grave exercises. Malaysia’s present electricity generation scenario was also used, where natural gas and coal constitute the bulk of emissions. Calculations show the LSR produced for the silicone data cable with high fire retardant capability has scope 1 emissions of 0.82kg CO2/kg, scope 2 emissions of 0.87kg CO2/kg, and scope 3 emissions of 2.76kg CO2/kg, with a total product carbon footprint of 4.45kg CO2/kg. This total product carbon footprint (Cradle-to-gate) is comparable to the industry and to plastic materials per tonne of material. Although per tonne emission is comparable to plastic material, due to greater durability and longer lifespan, there can be significantly reduced use of LSR material. Suggestions to reduce the calculated product carbon footprint in the scope of emissions involve 1. Incorporating the recycling of factory silicone waste into operations, 2. Using green renewable energy for external electricity sources and 3. Sourcing eco-friendly raw materials with low GHG emissions.

Keywords: carbon footprint, liquid silicone rubber, silicone data cable, Malaysia facility

Procedia PDF Downloads 83
4154 SPICE Modeling for Evaluation of Distribution System Reliability Indices

Authors: G. N. Srinivas, K. Raju

Abstract:

This paper presents Markov processes for determining the reliability indices of distribution system. The continuous Markov modeling is applied to a complex radial distribution system and electrical equivalent circuits are developed for the modeling. In general PSPICE is being used for electrical and electronic circuits and various applications of power system like fault analysis, transient analysis etc. In this paper, the SPICE modeling equivalent circuits which are developed are applied in a novel way to Distribution System reliability analysis. These circuits are simulated using PSPICE software to obtain the state probabilities, the basic and performance indices. Thus the basic indices and the performance indices obtained by this method are compared with those obtained by FMEA technique. The application of the concepts presented in this paper are illustrated and analyzed for IEEE-Roy Billinton Test System (RBTS).

Keywords: distribution system, Markov Model, reliability indices, spice simulation

Procedia PDF Downloads 523
4153 Potentiostatic Electrodeposition of Cu₂O Films as P-Type Electrode at Room Temperature

Authors: M. M. Moharam, E. M. Elsayed, M. M. Rashad

Abstract:

Single phase Cu₂O films have been prepared via an electrodeposition technique onto ITO glass substrates at room temperature. Likewise, Cu₂O films were deposited using a potentiostatic process from an alkaline electrolyte containing copper (II) nitrate and 1M sodium citrate. Single phase Cu₂O films were electrodeposited at a cathodic deposition potential of 500mV for a reaction period of 90 min, and pH of 12 to yield a film thickness of 0.49 µm. The mechanism for nucleation of Cu₂O films was found to vary with deposition potential. Applying the Scharifker and Hills model at -500 and -600 mV to describe the mechanism of nucleation for the electrochemical reaction, the nucleation mechanism consisted of a mix between instantaneous and progressive growth mechanisms at -500 mV, while above -600 mV the growth mechanism was instantaneous. Using deposition times from 30 to 90 min at -500 mV deposition potential, pure Cu2O films with different microstructures were electrodeposited. Changing the deposition time from 30 to 90 min varied the microstructure from cubic to more complex polyhedra. The transmittance of electrodeposited Cu₂O films ranged from 20-70% in visible range, and samples exhibited a 2.4 eV band gap. The electrical resistivity for electrodeposited Cu₂O films was found to decrease with increasing deposition time from 0.854 x 105 Ω-cm at 30 min to 0.221 x 105 Ω-cm at 90 min without any thermal treatment following the electrodeposition process.

Keywords: Cu₂O, electrodeposition, film thickness, characterization, optical properties

Procedia PDF Downloads 199
4152 Chemopreventive and Therapeutic Efficacy of Salsola inermis Extract against N-Nitrosodiethylamine-Initiated and Phenobarbital-Promoted Hepatocellular Carcinogenesis in Wistar Rats

Authors: Ahlam H. Mahmoud, Samir F. Zohny, Ibrahim H. Boraia, Faten S. Bayoumic, Eman Eissa

Abstract:

Hepatocellular carcinoma is one of the most common cancers worldwide and is known to be resistant to conventional chemotherapy. Therefore, we aimed to assess the Salsola inermis extract as a novel chemopreventive and/or therapeutic agent against N-nitrosodiethylamine (DNE)/phenobarbital (PB)-induced hepatocarcinogenesis in rats. Adult male Wistar albino rats were divided into five groups: group1 rats were served as normal controls; group 2 rats were injected intraperitoneally with S. inermis extract (100 mg/kg body weight/day) for 20 weeks; group 3 rats were subjected to two-phase hepatocarcinogenic regimen (initiation of hepatocarcinogenesis was performed by a single intraperitoneal injection of DEN at a dose of 200 mg/kg body weight, 2 weeks later, the carcinogenic effect was promoted by supplementation of rats with 0.05% PB for 16 weeks); group 4 rats were injected intraperitoneally with S. inermis extract 2 weeks prior to the injection of DEN, the daily injection of S. inermis extract was then continued for 18 weeks along with two-phase hepatocarcinogenic regimen (chemoprevention group); and group 5 rats were subjected to the two-phase hepatocarcinogenic regimen, and then, the animals were injected intraperitoneally with S. inermis extract for 4 weeks (treatment group). The activities of serum liver enzymes and levels of total bilirubin, conjugated bilirubin, α-fetoprotein, vascular endothelial growth factor (VEGF) and soluble intercellular adhesion molecule-1 (sICAM-1) in serum were decreased in chemopreventive and treated rats compared with DEN/PB-administered rats. Interestingly, the serum levels of total protein and albumin were normalized in chemopreventive and treated rats. Moreover, the majority of chemopreventive and treated rats showed an almost normal histological pattern of liver. In conclusion, S. inermis extract possessed chemopreventive and therapeutic activities against hepatocarcinogenesis in rats partially through the inhibition of VEGF and sICAM-1.

Keywords: Salsola inermis extract, hepatocarcinogenesis, α–fetoprotein, VEGF, sICAM-1

Procedia PDF Downloads 355
4151 Time-Frequency Modelling and Analysis of Faulty Rotor

Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen

Abstract:

In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT) and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect non-linear signal, and obtained results provide a useful tool method for detecting machinery faults.

Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub

Procedia PDF Downloads 336
4150 Simulation of Heat Exchanger Behavior during LOCA Accident in THTL Test Loop

Authors: R. Mahmoodi, A. R. Zolfaghari

Abstract:

In nuclear power plants, loss of coolant from the primary system is the type of reduced removed capacity that is given most attention; such an accident is referred as Loss of Coolant Accident (LOCA). In the current study, investigation of shell and tube THTL heat exchanger behavior during LOCA is implemented by ANSYS CFX simulation software in both steady state and transient mode of turbulent fluid flow according to experimental conditions. Numerical results obtained from ANSYS CFX simulation show good agreement with experimental data of THTL heat exchanger. The results illustrate that in large break LOCA as short term accident, heat exchanger could not fast response to temperature variables but in the long term, the temperature of shell side of heat exchanger will be increase.

Keywords: shell-and-tube heat exchanger, shell-side, CFD, flow and heat transfer, LOCA

Procedia PDF Downloads 428
4149 Polar Nanoregions in Lead-Free Relaxor Ceramics: Unveiling through Impedance Spectroscopy

Authors: Mohammed Mesrar, Hamza El Malki, Hamza Mesrar

Abstract:

In this study, ceramics of (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3 were synthesized through a conventional calcination process (solid-state method) at 1000°C for 4 hours, with x(%) values ranging from 0.0 to 100. Room temperature XRD patterns confirmed the phase formation of the samples. The Rietveld refinement method was employed to verify the morphotropic phase boundary (MPB) at x(%)=16-20. We investigated the average crystallite size and lattice strain using Scherrer's formula and Williamson-Hall (W-H) analysis. SEM image analyses provided additional evidence of the impact of doping on structural growth under low temperatures. Relaxation time extracted from Z″(f) and M″(f) spectra for x(%) = 0.0, 12, 16, 20, and 30 followed the Arrhenius law, revealing the presence of three distinct relaxation mechanisms with varying activation energies. The shoulder response in M″(f) indirectly indicated the existence of highly polarizable entities in the samples, serving as a signature of polar nanoregions (PNRs) within the grains.In this study, ceramics of (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3 were synthesized through a conventional calcination process (solid-state method) at 1000°C for 4 hours, with x(%) values ranging from 0.0 to 100. Room temperature XRD patterns confirmed the phase formation of the samples. The Rietveld refinement method was employed to verify the morphotropic phase boundary (MPB) at x(%)=16-20. We investigated the average crystallite size and lattice strain using Scherrer's formula and Williamson-Hall (W-H) analysis. SEM image analyses provided additional evidence of the impact of doping on structural growth under low temperatures. Relaxation time extracted from Z″(f) and M″(f) spectra for x(%) = 0.0, 12, 16, 20, and 30 followed the Arrhenius law, revealing the presence of three distinct relaxation mechanisms with varying activation energies. The shoulder response in M″(f) indirectly indicated the existence of highly polarizable entities in the samples, serving as a signature of polar nanoregions (PNRs) within the grains.

Keywords: (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3, Rietveld refinement, Scanning electron microscopy (SEM), Williamson-Hall plots, charge density distribution, dielectric properties

Procedia PDF Downloads 37
4148 Revealing the Genome Based Biosynthetic Potential of a Streptomyces sp. Isolate BR123 Presenting Broad Spectrum Antimicrobial Activities

Authors: Neelma Ashraf

Abstract:

Actinomycetes, particularly genus Streptomyces is of great importance due to their role in the discovery of new natural products, particularly antimicrobial secondary metabolites in the medicinal science and biotechnology industry. Different Streptomyces strains were isolated from Helianthus annuus plants and tested for antibacterial and antifungal activities. The most promising five strains were chosen for further investigation, and growth conditions for antibiotic synthesis were optimised. The supernatants were extracted in different solvents, and the extracted products were analyzed using liquid chromatography-mass spectrometry (LC-MS) and biological testing. From one of the potent strains Streptomyces globusus sp. BR123, a compound lavendamycin was identified using these analytical techniques. In addition, this potent strain also produces a strong antifungal polyene compound with a quasimolecular ion of 2072. Streptomyces sp. BR123 was genome sequenced because of its promising antimicrobial potential in order to identify the gene cluster responsible for analyzed compound “lavendamycin”. The genome analysis yielded candidate genes responsible for the production of this potent compound. The genome sequence of 8.15 Mb of Streptomyces sp. isolate BR123 with a GC content of 72.63% and 8103 protein coding genes was attained. Many antimicrobial, antiparasitic, and anticancerous compounds were detected through multiple biosynthetic gene clusters predicted by in-Silico analysis. Though, the novelty of metabolites was determined through the insignificant resemblance with known biosynthetic gene clusters. The current study gives insight into the bioactive potential of Streptomyces sp. isolate BR123 with respect to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis. Moreover, the comparative genome study revealed the connection of isolate BR123 with other Streptomyces strains, which could expand the knowledge of this genus and the mechanism involved in the discovery of new antimicrobial metabolites.

Keywords: streptomyces, secondary metabolites, genome, biosynthetic gene clusters, high performance liquid chromatography, mass spectrometry

Procedia PDF Downloads 57
4147 Potential Application of Thyme (Thymus vulgaris L.) Essential Oil as Antibacterial Drug in Aromatherapy

Authors: Ferhat Mohamed Amine, Boukhatem Mohamed Nadjib, Chemat Farid

Abstract:

The Lamiaceae family is widely spread in Algeria. Due to the application of Thymus species growing wild in Algeria as a culinary herb and in folk medicine, the purpose of the present work was to evaluate antimicrobial activities of their essential oils and relate them with their chemical composition, for further application in food and pharmaceutical industries as natural valuable products. The extraction of the Thymus vulgaris L. essential oil (TVEO) was obtained by steam distillation. Chemical composition of the TVEO was determined by Gas Chromatography. A total of thirteen compounds were identified. Carvacrol (83.8%) was the major component, followed by cymene (8.15%) and terpinene (4.96%). Antibacterial action of the TVEO against 23 clinically isolated bacterial strains was determined by using agar disc diffusion and vapour diffusion methods at different doses. By disc diffusion method, TVEO showed potent antimicrobial activity against gram-positive bacteria more than gram-negative strains and antibiotic discs. The Diameter of Inhibition Zone (DIZ) varied from 25 to 60 mm for S. aureus, B. subtilisand E. coli. However, the results obtained by both agar diffusion and vapour diffusion methods were different. Significantly higher antibacterial effect was observed in the vapour phase at lower doses. S. aureus and B. subtilis were the most susceptible strains to the oil vapour. Therefore, smaller doses of EO in the vapour phase can be inhibitory to pathogenic bacteria. There is growing evidence that TVEO in vapour phase are effective antiseptic systems and appears worthy to be considered for practical uses in the treatment of human infections oras air decontaminants in hospital. TVEO has considerable antibacterial activity deserving further investigation for clinical applications. Also whilst the mode of action remains mainly undetermined, this experimental approach will need to continue.

Keywords: antimicrobial drugs, carvacrol, disc diffusion, Thymus vulgaris, vapour diffusion

Procedia PDF Downloads 356
4146 Paraffin/Expanded Perlite Composite as a Novel Form-Stable Phase Change Material for Latent Heat Energy Storage

Authors: Awni Alkhazaleh

Abstract:

Latent heat storage using Phase Change Materials (PCMs) has attracted growing attention recently in the renewable energy utilization and building energy efficiency. Paraffin (PA) of low melting temperature, which is close to human comfort temperature in the range of 24-28 °C has been considered to be used in building applications. A form-stable composite Paraffin/Expanded perlite (PA-EP) has been prepared by retaining PA into porous particles of EP. DSC (Differential scanning calorimeter) is used to measure the thermal properties of PA in the form-stable composite with/without building materials. TGA (Thermal gravimetric analysis) shows that the composite is thermally stable. SEM (Scanning electron microscope) demonstrates that the layer structure of the EP particles is uniformly absorbed by PA. The mechanical properties in flexural mode have been discussed. The thermal energy storage performance has been evaluated using a small test room (100 mm ×100 mm ×100 mm) with thickness 10 mm. The flammability test of modified sample has been discussed using a cone calorimeter. The results confirm that the form-stable composite PA has the function of reducing building energy consumption.

Keywords: flammability, latent heat storage, paraffin, plasterboard

Procedia PDF Downloads 202
4145 Phenolic Composition and Antioxidant Activity of Sorbus L. Fruits and Leaves

Authors: Raudone Lina, Raudonis Raimondas, Gaivelyte Kristina, Pukalskas Audrius, Janulis Valdimaras, Viskelis Pranas

Abstract:

Sorbus L. species are widely distributed in the Northern hemisphere and have been used for medicinal purposes in various traditional medicine systems and as food ingredients. Various Sorbus L. raw materials, fruits, leaves, inflorescences, barks, possess diuretic, anti-inflammatory, hypoglycemic, anti-diarrheal and vasoprotective activities. Phenolics, to whom main pharmacological activities are attributed, are compounds of interest due to their notable antioxidant activity. The aim of this study was to determine the antioxidant profiles of fruits and leaves of selected Sorbus L. species (S. anglica, S. aria f. latifolia, S. arranensis, S. aucuparia, S. austriaca, S. caucasica, S. commixta, S. discolor, S. gracilis, S. hostii, S. semi-incisa, S. tianschanica) and to identify the phenolic compounds with potent contribution to antioxidant activity. Twenty two constituents were identified in Sorbus L. species using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Reducing activity of individual constituents was determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP assay. Signicantly greatest trolox equivalent values corresponding up to 45% of contribution to antioxidant activity were assessed for neochlorogenic and chlorogenic acids, which were determined as markers of antioxidant activity in samples of leaves and fruits. Characteristic patterns of antioxidant profiles obtained using HPLC post-column FRAP assay significantly depend on specific Sorbus L. species and raw materials and are suitable for equivalency research of Sorbus L. fruits and leaves. Selecting species and target plant organs with richest phenolic composition and strongly expressed antioxidant power is the first step in further research of standardized extracts.

Keywords: FRAP, antioxidant, phenolic, Sorbus L., chlorogenic acid, neochlorogenic acid

Procedia PDF Downloads 437
4144 Altering the Solid Phase Speciation of Arsenic in Paddy Soil: An Approach to Reduce Rice Grain Arsenic Uptake

Authors: Supriya Majumder, Pabitra Banik

Abstract:

Fates of Arsenic (As) on the soil-plant environment belong to the critical emerging issue, which in turn to appraises the threatening implications of a human health risk — assessing the dynamics of As in soil solid components are likely to impose its potential availability towards plant uptake. In the present context, we introduced an improved Sequential Extraction Procedure (SEP) questioning to identify solid-phase speciation of As in paddy soil under variable soil environmental conditions during two consecutive seasons of rice cultivation practices. We coupled gradients of water management practices with the addition of fertilizer amendments to assess the changes in a partition of As through a field experimental study during monsoon and post-monsoon season using two rice cultivars. Water management regimes were varied based on the methods of cultivation of rice by Conventional (waterlogged) vis-a-vis System of Rice Intensification-SRI (saturated). Fertilizer amendment through the nutrient treatment of absolute control, NPK-RD, NPK-RD + Calcium silicate, NPK-RD + Ferrous sulfate, Farmyard manure (FYM), FYM + Calcium silicate, FYM + Ferrous sulfate, Vermicompost (VC), VC + Calcium silicate, VC + Ferrous sulfate were selected to construct the study. After harvest, soil samples were sequentially extracted to estimate partition of As among the different fractions such as: exchangeable (F1), specifically sorbed (F2), As bound to amorphous Fe oxides (F3), crystalline Fe oxides (F4), organic matter (F5) and residual phase (F6). Results showed that the major proportions of As were found in F3, F4 and F6, whereas F1 exhibited the lowest proportion of total soil As. Among the nutrient treatment mediated changes on As fractions, the application of organic manure and ferrous sulfate were significantly found to restrict the release of As from exchangeable phase. Meanwhile, conventional practice produced much higher release of As from F1 as compared to SRI, which may substantially increase the environmental risk. In contrast, SRI practice was found to retain a significantly higher proportion of As in F2, F3, and F4 phase resulting restricted mobilization of As. This was critically reflected towards rice grain As bioavailability where the reduction in grain As concentration of 33% and 55% in SRI concerning conventional treatment (p <0.05) during monsoon and post-monsoon season respectively. Also, prediction assay for rice grain As bioavailability based on the linear regression model was performed. Results demonstrated that rice grain As concentration was positively correlated with As concentration in F1 and negatively correlated with F2, F3, and F4 with a satisfactory level of variation being explained (p <0.001). Finally, we conclude that F1, F2, F3 and F4 are the major soil. As fractions critically may govern the potential availability of As in soil and suggest that rice cultivation with the SRI treatment is particularly at less risk of As availability in soil. Such exhaustive information may be useful for adopting certain management practices for rice grown in contaminated soil concerning to the environmental issues in particular.

Keywords: arsenic, fractionation, paddy soil, potential availability

Procedia PDF Downloads 112
4143 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.

Keywords: bio-heat, boussinesq, conduction, convection, eye

Procedia PDF Downloads 325
4142 Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface

Authors: Jipeng Yan, Xingchen Yang, Xiaowei Zhou, Mengxing Tang, Honghai Liu

Abstract:

Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices.

Keywords: shear elastic modulus, skeletal muscle, ultrasound, wearable human-machine interface

Procedia PDF Downloads 136
4141 Accessing Properties of Alkali Activated Ground Granulated Blast Furnace Slag Based Self Compacting Geopolymer Concrete Incorporating Nano Silica

Authors: Guneet Saini, Uthej Vattipalli

Abstract:

In a world with increased demand for sustainable construction, waste product of one industry could be a boon to the other in reducing the carbon footprint. Usage of industrial waste such as fly ash and ground granulated blast furnace slag have become the epicenter of curbing the use of cement, one of the major contributors of greenhouse gases. In this paper, empirical studies have been done to develop alkali activated self-compacting geopolymer concrete (GPC) using ground granulated blast furnace slag (GGBS), incorporated with 2% nano-silica by weight, through evaluation of its fresh and hardening properties. Experimental investigation on 6 mix designs of varying molarity of 10M, 12M and 16M of the alkaline solution and a binder content of 450 kg/m³ and 500 kg/m³ has been done and juxtaposed with GPC mix design composed of 16M alkaline solution concentration and 500 kg/m³ binder content without nano-silica. The sodium silicate to sodium hydroxide ratio (SS/SH), alkaline activator liquid to binder ratio (AAL/B) and water to binder ratio (W/B), which significantly affect the performance and mechanical properties of GPC, were fixed at 2.5, 0.45 and 0.4 respectively. To catalyze the early stage geopolymerisation, oven curing is done maintaining the temperature at 60˚C. This paper also elucidates the test results for fresh self-compacting concrete (SCC) done as per EFNARC guidelines. The mechanical properties tests conducted were: compressive strength test after 7 days, 28 days, 56 days and 90 days; flexure test; split tensile strength test after 28 days, 56 days and 90 days; X-ray diffraction test to analyze the mechanical performance and sorptivity test for testing of permeability. The study revealed that the sample of 16M concentration of alkaline solution with 500 Kg/m³ binder content containing 2% nano silica produced the highest compressive, flexural and split tensile strength of 81.33 MPa, 7.875 MPa, and 6.398 MPa respectively, at the end of 90 days.

Keywords: alkaline activator liquid, geopolymer concrete, ground granulated blast furnace slag, nano silica, self compacting

Procedia PDF Downloads 130
4140 Exploration of in-situ Product Extraction to Increase Triterpenoid Production in Saccharomyces Cerevisiae

Authors: Mariam Dianat Sabet Gilani, Lars M. Blank, Birgitta E. Ebert

Abstract:

Plant-derived lupane-type, pentacyclic triterpenoids are biologically active compounds that are highly interesting for applications in medical, pharmaceutical, and cosmetic industries. Due to the low abundance of these valuable compounds in their natural sources, and the environmentally harmful downstream process, alternative production methods, such as microbial cell factories, are investigated. Engineered Saccharomyces cerevisiae strains, harboring the heterologous genes for betulinic acid synthesis, can produce up to 2 g L-1 triterpenoids, showing high potential for large-scale production of triterpenoids. One limitation of the microbial synthesis is the intracellular product accumulation. It not only makes cell disruption a necessary step in the downstream processing but also limits productivity and product yield per cell. To overcome these restrictions, the aim of this study is to develop an in-situ extraction method, which extracts triterpenoids into a second organic phase. Such a continuous or sequential product removal from the biomass keeps the cells in an active state and enables extended production time or biomass recycling. After screening of twelve different solvents, selected based on product solubility, biocompatibility, as well as environmental and health impact, isopropyl myristate (IPM) was chosen as a suitable solvent for in-situ product removal from S. cerevisiae. Impedance-based single-cell analysis and off-gas measurement of carbon dioxide emission showed that cell viability and physiology were not affected by the presence of IPM. Initial experiments demonstrated that after the addition of 20 vol % IPM to cultures in the stationary phase, 40 % of the total produced triterpenoids were extracted from the cells into the organic phase. In future experiments, the application of IPM in a repeated batch process will be tested, where IPM is added at the end of each batch run to remove triterpenoids from the cells, allowing the same biocatalysts to be used in several sequential batch steps. Due to its high biocompatibility, the amount of IPM added to the culture can also be increased to more than 20 vol % to extract more than 40 % triterpenoids in the organic phase, allowing the cells to produce more triterpenoids. This highlights the potential for the development of a continuous large-scale process, which allows biocatalysts to produce intracellular products continuously without the necessity of cell disruption and without limitation of the cell capacity.

Keywords: betulinic acid, biocompatible solvent, in-situ extraction, isopropyl myristate, process development, secondary metabolites, triterpenoids, yeast

Procedia PDF Downloads 130
4139 Optimization of Headspace Solid Phase Microextraction (SPME) Technique Coupled with GC MS for Identification of Volatile Organic Compounds Released by Trogoderma Variabile

Authors: Thamer Alshuwaili, Yonglin Ren, Bob Du, Manjree Agarwal

Abstract:

The warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae), is a major pest of packaged and processed stored products. Warehouse beetle is the common name which was given by Okumura (1972). This pest has been reported to infest 119 different commodities, and it is distributed throughout the tropical and subtropical parts of the world. Also, it is difficult to control because of the insect's ability to stay without food for long times, and it can survive for years under dry conditions and low-moisture food, and it has also developed resistance to many insecticides. The young larvae of these insects can cause damage to seeds, but older larvae prefer to feed on whole grains. The percentage of damage caused by these insects range between 30-70% in the storage. T. variabile is the species most responsible for causing significant damage in grain stores worldwide. Trogoderma spp. is a huge problem for cereal grains, and there are many countries, such as the USA, Australia, China, Kenya, Uganda and Tanzania who have specific quarantine regulations against possible importation. Also, grain stocks can be almost completely destroyed because of the massive populations the insect may develop. However, the purpose of the current research was to optimize conditions to collect volatile organic compound from Trogoderma variabile at different life stages by using headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and flame ionization detection (FID). Using SPME technique to extract volatile from insects is an efficient, straightforward and nondestructive method. Result of the study shows that 15 insects were optimal number for larvae and adults. Selection of the number of insects depend on the height of the peak area and the number of peaks. Sixteen hours were optimized as the best extraction time for larvae and 8 hours was the optimal number of adults.

Keywords: Trogoderma variabile, warehouse beetle , GC-MS, Solid phase microextraction

Procedia PDF Downloads 110
4138 Reduction of Specific Energy Consumption in Microfiltration of Bacillus velezensis Broth by Air Sparging and Turbulence Promoter

Authors: Jovana Grahovac, Ivana Pajcin, Natasa Lukic, Jelena Dodic, Aleksandar Jokic

Abstract:

To obtain purified biomass to be used in the plant pathogen biocontrol or as soil biofertilizer, it is necessary to eliminate residual broth components at the end of the fermentation process. The main drawback of membrane separation techniques is permeate flux decline due to the membrane fouling. Fouling mitigation measures increase the pressure drop along membrane channel due to the increased resistance to flow of the feed suspension, thus increasing the hydraulic power drop. At the same time, these measures lead to an increase in the permeate flux due to the reduced resistance of the filtration cake on the membrane surface. Because of these opposing effects, the energy efficiency of fouling mitigation measures is limited, and the justification of its application is provided by information on a reducing specific energy consumption compared to a case without any measures employed. In this study, the influence of static mixer (Kenics) and air-sparging (two-phase flow) on reduction of specific energy consumption (ER) was investigated. Cultivation Bacillus velezensis was carried out in the 3-L bioreactor (Biostat® Aplus) containing 2 L working volume with two parallel Rushton turbines and without internal baffles. Cultivation was carried out at 28 °C on at 150 rpm with an aeration rate of 0.75 vvm during 96 h. The experiments were carried out in a conventional cross-flow microfiltration unit. During experiments, permeate and retentate were recycled back to the broth vessel to simulate continuous process. The single channel ceramic membrane (TAMI Deutschland) used had a nominal pore size 200 nm with the length of 250 mm and an inner/external diameter of 6/10 mm. The useful membrane channel surface was 4.33×10⁻³ m². Air sparging was brought by the pressurized air connected by a three-way valve to the feed tube by a simple T-connector without diffusor. The different approaches to flux improvement are compared in terms of energy consumption. Reduction of specific energy consumption compared to microfiltration without fouling mitigation is around 49% and 63%, for use of two-phase flow and a static mixer, respectively. In the case of a combination of these two fouling mitigation methods, ER is 60%, i.e., slightly lower compared to the use of turbulence promoter alone. The reason for this result can be found in the fact that flux increase is more affected by the presence of a Kenics static mixer while sparging results in an increase of energy used during microfiltration. By comparing combined method with turbulence promoter flux enhancement method ER is negative (-7%) which can be explained by increased power consumption for air flow with moderate contribution to the flux increase. Another confirmation for this fact can be found by comparing energy consumption values for combined method with energy consumption in the case of two-phase flow. In this instance energy reduction (ER) is 22% that demonstrates that turbulence promoter is more efficient compared to two phase flow. Antimicrobial activity of Bacillus velezensis biomass against phytopathogenic isolates Xanthomonas campestris was preserved under different fouling reduction methods.

Keywords: Bacillus velezensis, microfiltration, static mixer, two-phase flow

Procedia PDF Downloads 107
4137 The Emoji Method: An Approach for Identifying and Formulating Problem Ideas

Authors: Thorsten Herrmann, Alexander Laukemann, Hansgeorg Binz, Daniel Roth

Abstract:

For the analysis of already identified and existing problems, the pertinent literature provides a comprehensive collection of approaches as well as methods in order to analyze the problems in detail. But coming up with problems, which are assets worth pursuing further, is often challenging. However, the importance of well-formulated problem ideas and their influence of subsequent creative processes are incontestable and proven. In order to meet the covered challenges, the Institute for Engineering Design and Industrial Design (IKTD) developed the Emoji Method. This paper presents the Emoji Method, which support designers to generate problem ideas in a structured way. Considering research findings from knowledge management and innovation management, research into emojis and emoticons reveal insights by means of identifying and formulating problem ideas within the early design phase. The simple application and the huge supporting potential of the Emoji Method within the early design phase are only few of the many successful results of the conducted evaluation. The Emoji Method encourages designers to identify problem ideas and describe them in a structured way in order to start focused with generating solution ideas for the revealed problem ideas.

Keywords: emojis, problem ideas, innovation management, knowledge management

Procedia PDF Downloads 134
4136 Flow Dynamics of Nanofluids in a Horizontal Cylindrical Annulus Using Nonhomogeneous Dynamic Model

Authors: M. J. Uddin, M. M. Rahman

Abstract:

Transient natural convective flow dynamics of nanofluids in a horizontal homocentric annulus using nonhomogeneous dynamic model has been experimented numerically. The simulation is carried out for four different shapes of the inner wall, which is either cylindrical, elliptical, square or triangular. The outer surface of the annulus is maintained at constant low temperature while the inner wall is maintained at a uniform temperature; higher than the outer one. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic deposition phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To find the best performer, the local Nusselt number is demonstrated for different shapes of the inner wall. The heat transfer enhancement for different nanofluids for four different shapes of the inner wall is exhibited.

Keywords: nanofluids, annulus, nonhomogeneous dynamic model, heat transfer

Procedia PDF Downloads 153
4135 Spontaneous Pneumothorax in Mixed Poisoning Presented as Daisley Barton Syndrome

Authors: A. A. Md. Ryhan Uddin, Swarup Das, Rajesh Barua, Joheb Hasan, Rashedul Islam

Abstract:

Background: The herbicide has toxicological importance because some of them are associated with high mortality rates due to respiratory failure. Organophosphate poisoning (OPC) & Paraquat self-poisoning is a major clinical and public health problems in low and middle-income countries across much of South Asia. Paraquat was not used as a common suicidal agent previously in Bangladesh. We report a case of 15 years old female admitted to the ER with a history of nausea & vomiting after ingestion of an unknown substance in a suicidal attempt, later identified as mixed poisoning- OPC & Paraquat. She was initially asymptomatic but later developed renal shutdown & lung injuries as well as pneumothorax, referred to as Daisley Barton Syndrome. Objective: This case report aims to alert spontaneous pneumothorax in mixed poisoning on uncommon forms of presentation. Pneumothorax in a patient with paraquat poisoning is a less unusual but underdiagnosed finding. It has a high index of early mortality. Case history: The patient's attendant complained about nausea followed by vomiting, which was nonprojectile & contains undigested food materials first, then gastric juice later. After a few hours, she also complains of urinary retention. Her family members treated her with some home remedies for her initial symptoms, but all attempts failed. After admission, the patient was initially asymptomatic. Through repeated history taking, her attendant showed a bottle of OPC in liquid form, which they suspected that she may have ingested some of the liquid from that bottle accidentally or attempted Suicide. So, management started for OPC poisoning. She responded well initially, but on 4th day of admission, the patient's condition became deteriorating. After the workout with the family member, 2nd bottle of Pesticide was discovered, which was Paraquat. Conclusion: Physicians should be aware of the symptoms of mixed poisoning and the timely use of urine dithionate testing for early detection and treatment. Pneumothorax is an early predictor of mortality in patients with paraquat poisoning.

Keywords: pneumothorax, suicide, dithionate, OPC, herbicide

Procedia PDF Downloads 77