Search results for: solution design
15186 Numerical Study of Natural Convection in Isothermal Open Cavities
Authors: Gaurav Prabhudesai, Gaetan Brill
Abstract:
The sun's energy source comes from a hydrogen-to-helium thermonuclear reaction, generating a temperature of about 5760 K on its outer layer. On account of this high temperature, energy is radiated by the sun, a part of which reaches the earth. This sunlight, even after losing part of its energy en-route to scattering and absorption, provides a time and space averaged solar flux of 174.7 W/m^2 striking the earth’s surface. According to one study, the solar energy striking earth’s surface in one and a half hour is more than the energy consumption that was recorded in the year 2001 from all sources combined. Thus, technology for extraction of solar energy holds much promise for solving energy crisis. Of the many technologies developed in this regard, Concentrating Solar Power (CSP) plants with central solar tower and receiver system are very impressive because of their capability to provide a renewable energy that can be stored in the form of heat. One design of central receiver towers is an open cavity where sunlight is concentrated into by using mirrors (also called heliostats). This concentrated solar flux produces high temperature inside the cavity which can be utilized in an energy conversion process. The amount of energy captured is reduced by losses occurring at the cavity through all three modes viz., radiation to the atmosphere, conduction to the adjoining structure and convection. This study investigates the natural convection losses to the environment from the receiver. Computational fluid dynamics were used to simulate the fluid flow and heat transfer of the receiver; since no analytical solution can be obtained and no empirical correlations exist for the given geometry. The results provide guide lines for predicting natural convection losses for hexagonal and circular shaped open cavities. Additionally, correlations are given for various inclination angles and aspect ratios. These results provide methods to minimize natural convection through careful design of receiver geometry and modification of the inclination angle, and aspect ratio of the cavity.Keywords: concentrated solar power (CSP), central receivers, natural convection, CFD, open cavities
Procedia PDF Downloads 28915185 Assessment of the Effect of Building Materials on Indoor Comfort and Energy Demand of Residential Buildings in Jos: An Experimental and Numerical Approach
Authors: Selfa Johnson Zwalnan, Nanchen Nimyel Caleb, Gideon Duvuna Ayuba
Abstract:
Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the somewhat lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio of external opening area to the area of the external walls). This result shows that the innovative building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.Keywords: building simulation, solar gain, comfort temperature, temperature, carbon foot print
Procedia PDF Downloads 9515184 Performance Improvement in a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics
Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami
Abstract:
Micro gas turbine (MGT) nowadays has a wide variety of applications from drones to hybrid electric vehicles. As microfabrication technology getting better, the size of MGT is getting smaller. Overall performance of MGT is dependent on the individual components. Each component’s performance is dependent and interrelated with another component. Therefore, careful consideration needs to be given to each and every individual component of MGT. In this study, the focus is on improving the performance of the compressor in order to improve the overall performance of MGT. Computational Fluid Dynamics (CFD) is being performed using the software FLUENT to analyze the design of a micro compressor. Operating parameters like mass flow rate and RPM, and design parameters like inner blade angle (IBA), outer blade angle (OBA), blade thickness and number of blades are varied to study its effect on the performance of the compressor. Pressure ratio is used as a tool to measure the performance of the compressor. Higher the pressure ratio, better the design is. In the study, target mass flow rate is 0.2 g/s and RPM to be less than or equal to 900,000. So far, a pressure ratio of above 3 has been achieved at 0.2 g/s mass flow rate with 5 rotor blades, 0.36 mm blade thickness, 94.25 degrees OBA and 10.46 degrees IBA. The design in this study differs from a regular centrifugal compressor used in conventional gas turbines such that compressor is designed keeping in mind ease of manufacturability. So, this study proposes a compressor design which has a good pressure ratio, and at the same time, it is easy to manufacture using current microfabrication technologies.Keywords: computational fluid dynamics, FLUENT microfabrication, RPM
Procedia PDF Downloads 16215183 Turbulence Modeling of Source and Sink Flows
Authors: Israt Jahan Eshita
Abstract:
Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.Keywords: hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow, wall y+
Procedia PDF Downloads 53815182 Urban Design for Autonomous Vehicles
Authors: Narjis Zehra
Abstract:
After automobile revolution 1.0, we have automobile revolution 2.0 standing at the horizon, Autonomous Vehicles (AVs). While the technology is developing into more adaptable form, the conversations around its impact on our cities have already started on multiple scales, from academic institutions and community town halls, to the offices of mayors. In order to explore more the AVs impact on Urban transformation, we first inquire if cities can be redesigned or rebuilt. Secondly, we discuss expectation management for the public and policy in terms of what people think/believe AV technology will deliver, and what the current technological evidence suggests the technology and its adoption will look like. Thirdly, based on these discussions, we take Pittsburgh, PA, as a case study to extrapolate what other cities might need to do in order to prepare themselves for the upcoming technological revolution, that may impact more than just the research institutes. Finally, we conclude by suggesting a political way forward to embed urban design with AV technology for equitable cities of tomorrow.Keywords: urban design, autonomous vehicles, transformation, policy
Procedia PDF Downloads 10615181 A Bi-Objective Stochastic Mathematical Model for Agricultural Supply Chain Network
Authors: Mohammad Mahdi Paydar, Armin Cheraghalipour, Mostafa Hajiaghaei-Keshteli
Abstract:
Nowadays, in advanced countries, agriculture as one of the most significant sectors of the economy, plays an important role in its political and economic independence. Due to farmers' lack of information about products' demand and lack of proper planning for harvest time, annually the considerable amount of products is corrupted. Besides, in this paper, we attempt to improve these unfavorable conditions via designing an effective supply chain network that tries to minimize total costs of agricultural products along with minimizing shortage in demand points. To validate the proposed model, a stochastic optimization approach by using a branch and bound solver of the LINGO software is utilized. Furthermore, to accumulate the data of parameters, a case study in Mazandaran province placed in the north of Iran has been applied. Finally, using ɛ-constraint approach, a Pareto front is obtained and one of its Pareto solutions as best solution is selected. Then, related results of this solution are explained. Finally, conclusions and suggestions for the future research are presented.Keywords: perishable products, stochastic optimization, agricultural supply chain, ɛ-constraint
Procedia PDF Downloads 36615180 Investigation into the Suitability of Aggregates for Use in Superpave Design Method
Authors: Ahmad Idris, Armaya`u Suleiman Labo, Ado Yusuf Abdulfatah, Murtala Umar
Abstract:
Super pave is the short form of Superior Performing Asphalt Pavement and represents a basis for specifying component materials, asphalt mixture design and analysis, and pavement performance prediction. This new technology is the result of long research projects conducted by the strategic Highway Research program (SHRP) of the Federal Highway Administration. This research was aimed at examining the suitability of Aggregates found in Kano for used in super pave design method. Aggregates samples were collected from different sources in Kano Nigeria and their Engineering properties, as they relate to the SUPERPAVE design requirements were determined. The average result of Coarse Aggregate Angularity in Kano was found to be 87% and 86% of one fractured face and two or more fractured faces respectively with a standard of 80% and 85% respectively. Fine Aggregate Angularity average result was found to be 47% with a requirement of 45% minimum. A flat and elongated particle which was found to be 10% has a maximum criterion of 10%. Sand equivalent was found to be 51% with the criteria of 45% minimum. Strength tests were also carried out, and the results reflect the requirements of the standards. The tests include Impact value test, Aggregate crushing value and Aggregate Abrasion tests and the results are 27.5%, 26.7% and 13% respectively with a maximum criteria of 30%. Specific gravity was also carried out and the result was found to have an average value of 2.52 with a criterion of 2.6 to 2.9 and Water absorption was found to be 1.41% with maximum criteria of 0.6%. From the study, the result of the tests indicated that the aggregates properties have met the requirements of Super pave design method based on the specifications of ASTMD 5821, ASTM D 4791, AASHTO T176, AASHTO T33 and BS815.Keywords: aggregates, construction, road design, super pave
Procedia PDF Downloads 23815179 A Postcolonial View Analysis on the Structural Rationalism Influence in Indonesian Modern Architecture
Authors: Ryadi Adityavarman
Abstract:
The study is an analysis by using the postcolonial theoretical lens on the search for a distinctive architectural identity by architect Maclaine Pont in Indonesia in the early twentieth century. Influenced by progressive architectural thinking and enlightened humanism at the time, Pont applied the fundamental principles of Structural Rationalism by using a creative combination of traditional Indonesian architectural typology and innovative structural application. The interpretive design strategy also celebrated creative use of local building materials with sensible tropical climate design response. Moreover, his holistic architectural scheme, including inclusion of local custom of building construction, represents the notion of Gesamkunstwerk. By using such hybrid strategy, Maclaine Pont intended to preserve the essential cultural identity and vernacular architecture of the indigenous. The study will chronologically investigate the evolution of Structural Rationalism architecture philosophy of Viollet-le-Duc to Hendrik Berlage’s influential design thinking in the Dutch modern architecture, and subsequently to the Maclaine Pont’s innovative design in Indonesia. Consequently, the morphology analysis on his exemplary design works of ITB campus (1923) and Pohsarang Church (1936) is to understand the evolutionary influence of Structural Rationalism theory. The postmodern analysis method is to highlight the validity of Pont’s idea in the contemporary Indonesian architecture within the culture of globalism era.Keywords: Indonesian modern architecture, postcolonial, structural rationalism, critical regionalism
Procedia PDF Downloads 33915178 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas
Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders
Abstract:
A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing
Procedia PDF Downloads 21415177 Study of Effect of Gear Tooth Accuracy on Transmission Mount Vibration
Authors: Kalyan Deepak Kolla, Ketan Paua, Rajkumar Bhagate
Abstract:
Transmission dynamics occupy major role in customer perception of the product in both senses of touch and quality of sound. The quantity and quality of sound perceived is more concerned with the whine noise of the gears engaged. Whine noise is tonal in nature and tonal noises cause fatigue and irritation to customers, which in turn affect the quality of the product. Transmission error is the usual suspect for whine noise, which can be caused due to misalignments, tolerances, manufacturing variabilities. In-cabin noise is also more sensitive to the gear design. As the details of the gear tooth design and manufacturing are in microns, anything out of the tolerance zone, either in design or manufacturing, will cause a whine noise. This will also cause high variation in stress and deformation due to change in the load and leads to the fatigue failure of the gears. Hence gear design and development take priority in the transmission development process. This paper aims to study such variability by considering five pairs of helical spur gears and their effect on the transmission error, contact pattern and vibration level on the transmission.Keywords: gears, whine noise, manufacturing variability, mount vibration variability
Procedia PDF Downloads 15015176 The Influence of the Laws of Ergonomics on the Design of High-Rise Buildings
Authors: Valery A. Aurov, Maria D. Bausheva, Elena V. Uliyanova
Abstract:
The problems of sustainability of contemporary high-rise buildings now demand an altogether new approach, which corresponds with the laws of dialectics. We should imply the principle “going from mega-object to the so called mezzo-object.” So the scientists have arrived at the conclusion that a contemporary “skyscraper” must not increase in height but develop horizontal space axes which unite a complex of high-rise buildings into a single composition. This is necessary both for safety issues and increasing skyscrapers’ functioning qualities. As a result, architects single out a quality unit in a dominating group of high-rise constructions and make a conclusion about the influence of visual fields on the designing parameters of this group.Keywords: design, high-rise buildings, skyscrapers, sustainability, visual fields, dominating group, regulations, design recommendations
Procedia PDF Downloads 37315175 The Four Pillars of Islamic Design: A Methodology for an Objective Approach to the Design and Appraisal of Islamic Urban Planning and Architecture Based on Traditional Islamic Religious Knowledge
Authors: Azzah Aldeghather, Sara Alkhodair
Abstract:
In the modern urban planning and architecture landscape, with western ideologies and styles becoming the mainstay of experience and definitions globally, the Islamic world requires a methodology that defines its expression, which transcends cultural, societal, and national styles. This paper will propose a methodology as an objective system to define, evaluate and apply traditional Islamic knowledge to Islamic urban planning and architecture, providing the Islamic world with a system to manifest its approach to design. The methodology is expressed as Four Pillars which are based on traditional meanings of Arab words roughly translated as Pillar One: The Principles (Al Mabade’), Pillar Two: The Foundations (Al Asas), Pillar Three: The Purpose (Al Ghaya), Pillar Four: Presence (Al Hadara). Pillar One: (The Principles) expresses the unification (Tawheed) pillar of Islam: “There is no God but God” and is comprised of seven principles listed as: 1. Human values (Qiyam Al Insan), 2. Universal language as sacred geometry, 3. Fortitude© and Benefitability©, 4. Balance and Integration: conjoining the opposites, 5. Man, time, and place, 6. Body, mind, spirit, and essence, 7. Unity of design expression to achieve unity, harmony, and security in design. Pillar Two: The Foundations is based on two foundations: “Muhammad is the Prophet of God” and his relationship to the renaming of Medina City as a prototypical city or place, which defines a center space for collection conjoined by an analysis of the Medina Charter as a base for the humanistic design. Pillar Three: The Purpose (Al Ghaya) is comprised of four criteria: The naming of the design as a title, the intention of the design as an end goal, the reasoning behind the design, and the priorities of expression. Pillar Four: Presence (Al Hadara) is usually translated as a civilization; in Arabic, the root of Hadara is to be present. This has five primary definitions utilized to express the act of design: Wisdom (Hikma) as a philosophical concept, Identity (Hawiya) of the form, and Dialogue (Hiwar), which are the requirements of the project vis-a-vis what the designer wishes to convey, Expression (Al Ta’abeer) the designer wishes to apply, and Resources (Mawarid) available. The Proposal will provide examples, where applicable, of past and present designs that exemplify the manifestation of the Pillars. The proposed methodology endeavors to return Islamic urban planning and architecture design to its a priori position as a leading design expression adaptable to any place, time, and cultural expression while providing a base for analysis that transcends the concept of style and external form as a definition and expresses the singularity of the esoteric “Spiritual” aspects in a rational, principled, and logical manner clearly addressed in Islam’s essence.Keywords: Islamic architecture, Islamic design, Islamic urban planning, principles of Islamic design
Procedia PDF Downloads 10515174 Training Program for Kindergarden Teachers on Learning through Project Approach
Authors: Dian Hartiningsih, Miranda Diponegoro, Evita Eddie Singgih
Abstract:
In facing the 21st century, children need to be prepared in reaching their optimum development level which encompasses all aspect of growth and to achieve the learning goals which include not only knowledge and skill, but also disposition and feeling. Teachers as the forefront of education need to be equipped with the understanding and skill of a learning method which can prepare the children to face this 21st century challenge. Project approach is an approach which utilizes active learning which is beneficial for the children. Subject to this research are kindergarten teachers at Dwi Matra Kindergarten and Kirana Preschool. This research is a quantitative research using before and after study design. The result suggest that through preliminary training program on learning with project approach, the kindergarten teachers ability to explain project approach including understanding, benefit and stages of project approach have increased significantly, the teachers ability to design learning with project approach have also improved significantly. The result of learning design that the teachers had made shows a remarkable result for the first stage of the project approach; however the second and third design result was not as optimal. Challenges faced in the research will be elaborated further in the research discussion.Keywords: project approach, teacher training, learning method, kindergarten
Procedia PDF Downloads 33215173 In Search of Seaplanes in Andhra Pradesh: In View of UDAN
Authors: Priyadarshini Alok
Abstract:
The present situation in India envisages that because of the surge in population and the economy, cities are expected to spill over to hinterland areas. The consumption-led factors such as land, labor, etc. will be boosted. Hence, the need for regional connectivity becomes obligatory. But, there is enormous pressure upon the land; proving itself through rising traffic congestion, roads, and railway accidents. Air transport is practical, but due to decreasing availability of land, this will not be a wise solution. What with the introduction of seaplanes in the country which was once the vital asset in the world prior to Second World War. Maldives has proved it. Seaplanes offer natural landing site and are time and cost-efficient. Seaplanes in accordance with UDAN can prove to be the solution in linking various regions with other states. This research paper aims to offer the feasibility analysis along with site justification of the potential areas in the state of Andhra Pradesh, India; for the operation of seaplanes. The standards are taken from the US Department of Transportation, Federal Aviation Administration for the analysis. The conflation of Seaplanes with UDAN will offer an alternate mode of air connectivity, strengthen the transport network by simulation of connectivity to unserved and under-served areas and boost the nation's economy.Keywords: connectivity, seaplanes, transport, UDAN
Procedia PDF Downloads 16915172 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method
Abstract:
The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration
Procedia PDF Downloads 27515171 Thermal Analysis of a Channel Partially Filled with Porous Media Using Asymmetric Boundary Conditions and LTNE Model
Authors: Mohsen Torabi, Kaili Zhang
Abstract:
This work considers forced convection in a channel partially filled with porous media from local thermal non-equilibrium (LTNE) point of view. The channel is heated with constant heat flux from the lower side and is isolated on the top side. The wall heat flux is considered to be divided between the solid and fluid phases based on their temperature gradients and effective thermal conductivities. The general forms of the velocity and temperature fields are analytically obtained. To obtain the constant parameters for temperature equations, a numerical solution is considered. Using different thermophysical parameters, both velocity and temperature fields are comprehensively illustrated. Discussions regarding bifurcation phenomenon are provided. Since this geometry has not been considered yet, the present analysis is a useful addition to the literature on thermal performance of porous systems from LTNE perspective.Keywords: local thermal non-equilibrium, forced convection, thermal bifurcation, porous-fluid interface, combined analytical-numerical solution
Procedia PDF Downloads 36515170 Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy
Authors: Idris Elfeituri
Abstract:
In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant.Keywords: Exergy, Super-heater, Fouling; Steam power plant; Off-design., Fouling;, Super-heater, Steam power plant
Procedia PDF Downloads 33315169 Interior Design: Changing Values
Authors: Kika Ioannou Kazamia
Abstract:
This paper examines the action research cycle of the second phase of longitudinal research on sustainable interior design practices, between two groups of stakeholders, designers and clients. During this phase of the action research, the second step - the change stage - of Lewin’s change management model has been utilized to change values, approaches, and attitudes toward sustainable design practices among the participants. Affective domain learning theory is utilized to attach new values. Learning with the use of information technology, collaborative learning, and problem-based learning are the learning methods implemented toward the acquisition of the objectives. Learning methods, and aims, require the design of interventions with participants' involvement in activities that would lead to the acknowledgment of the benefits of sustainable practices. Interventions are steered to measure participants’ decisions for the worth and relevance of ideas, and experiences; accept or commit to a particular stance or action. The data collection methods used in this action research are observers’ reports, participants' questionnaires, and interviews. The data analyses use both quantitative and qualitative methods. The main beneficial aspect of the quantitative method was to provide the means to separate many factors that obscured the main qualitative findings. The qualitative method allowed data to be categorized, to adapt the deductive approach, and then examine for commonalities that could reflect relevant categories or themes. The results from the data indicate that during the second phase, designers and clients' participants altered their behaviours.Keywords: design, change, sustainability, learning, practices
Procedia PDF Downloads 7715168 A New Complex Method for Integrated Warehouse Design in Aspect of Dynamic and Static Capacity
Authors: Tamas Hartvanyi, Zoltan Andras Nagy, Miklos Szabo
Abstract:
The dynamic and static capacity are two opposing aspect of warehouse design. Static capacity optimization aims to maximize the space-usage for goods storing, while dynamic capacity needs more free place to handling them. They are opposing by the building structure and the area utilization. According to Pareto principle: the 80% of the goods are the 20% of the variety. From the origin of this statement, it worth to store the big amount of same products by fulfill the space with minimal corridors, meanwhile the rest 20% of goods have the 80% variety of the whole range, so there is more important to be fast-reachable instead of the space utilizing, what makes the space fulfillment numbers worse. The warehouse design decisions made in present practice by intuitive and empiric impressions, the planning method is formed to one selected technology, making this way the structure of the warehouse homogeny. Of course the result can’t be optimal for the inhomogeneous demands. A new innovative model based on our research will be introduced in this paper to describe the technic capacities, what makes possible to define optimal cluster of technology. It is able to optimize the space fulfillment and the dynamic operation together with this cluster application.Keywords: warehouse, warehouse capacity, warehouse design method, warehouse optimization
Procedia PDF Downloads 14115167 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth
Authors: Caroline Atef Shoukry Tadros
Abstract:
Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science
Procedia PDF Downloads 7315166 Disadvantages and Drawbacks of Concrete Blocks and Fix Their Defects
Authors: Ehsan Sadie
Abstract:
Today, the cost of repair and maintenance of structures is very important and by studying the behavior of reinforced concrete structures Will become specified several factors such as : Design and calculation errors, lack of proper implementation of structural changes, the damage caused by the introduction of random loads, concrete corrosion and environmental conditions reduce durability of the structures . Meanwhile building codes alteration also cause changes in the assessment and review of the design and structure rather if necessary will be improved and strengthened in the future.Keywords: concrete building , expandable cement, honeycombed surface , reinforcement corrosion
Procedia PDF Downloads 44215165 Preconcentration and Determination of Cyproheptadine in Biological Samples by Hollow Fiber Liquid Phase Microextraction Coupled with High Performance Liquid Chromatography
Authors: Sh. Najari Moghadam, M. Qomi, F. Raofie, J. Khadiv
Abstract:
In this study, a liquid phase microextraction by hollow fiber (HF-LPME) combined with high performance liquid chromatography-UV detector was applied to preconcentrate and determine trace levels of Cyproheptadine in human urine and plasma samples. Cyproheptadine was extracted from 10 mL alkaline aqueous solution (pH: 9.81) into an organic solvent (n-octnol) which was immobilized in the wall pores of a hollow fiber. Then, it was back-extracted into an acidified aqueous solution (pH: 2.59) located inside the lumen of the hollow fiber. This method is simple, efficient and cost-effective. It is based on pH gradient and differences between two aqueous phases. In order to optimize the HF-LPME, some affecting parameters including the pH of donor and acceptor phases, the type of organic solvent, ionic strength, stirring rate, extraction time and temperature were studied and optimized. Under optimal conditions enrichment factor, limit of detection (LOD) and relative standard deviation (RSD(%), n=3) were up to 112, 15 μg.L−1 and 2.7, respectively.Keywords: biological samples, cyproheptadine, hollow fiber, liquid phase microextraction
Procedia PDF Downloads 28715164 Aristotle University of Thessaloniki
Authors: Ail Akbar Emamverdian, Neriman Özada, Atabak Rahimzadeh Ilkhchi, Zahra Emamverdian
Abstract:
The reverse shoulder prosthesis is an innovative procedure design to treat of (GH) joint problems with severe rotator cuff deficiency. The original reverse shoulder prosthesis was invented by France surgery in1985 and has been in clinical use in the United States in 2004. These prostheses consist of baseplate that attached to the glenoid, in order to hold a spherical component, and humeral part consist of polyethylene insert which is flat. This prosthesis is the ‘reverse’ configuration. The indications for the reverse prosthesis are: (1) treating failed hemi arthroplasty with irrecoverable rotator cuff tears, (2) relief of painful arthritis associated with cuff tear arthropathy, (3) instauration after tumor resection, (4) pseudo paralysis because of irrecoverable rotator cuff tears (5) some fractures of the shoulder which reverse shoulder prostheses is only the option for treatment. This prosthesis resulting in relief of pain and decreasing the range of motion in above indications. However, this prosthesis and its applications such as notching of the scapula, dislocation of the prosthesis parts and acromial stress fractures. In this article the reverse shoulder prostheses, indication has been reviewed. This study can make clear aspect of reverse shoulder prosthesis that can help to find some solution in future.Keywords: prostheses, complications, reverse shoulder prosthesis, indications
Procedia PDF Downloads 27815163 Psychogeographic Analysis of Campus Design: Spatial Appropriation via Walking Practice in the Cases of Van Yüzüncü Yıl University and Ankara Middle East Technical University in Turkey
Authors: Yasemin İlkay
Abstract:
Street is not only a crucial spatial unit in urban design and planning discipline but also the context of walking practice in urban space. Moreover, psychogeography concentrates on both ‘walking’ and, therefore, the differentiated forms of (urban) streets to examine the influence of the built environment on the feelings and attitudes of human beings. This paper focuses on ‘walking practice’ in university campuses with reference to spatial appropriation forms via a psychogeographic lens on the phenomenon of alle in two different cities of Turkey, Ankara, the capital city, and Van, in the eastern part of the country. Alle, as an extension of ‘street’ in university campuses, is the constructive spatial structure in university campuses, and as a result, it should be the (both physical and mental) spine of design policy while conceiving and constructing a university campus. The main question of the paper is: How does the interrelation of ‘campus design’ and ‘walking practice’ on alle penetrate reciprocally on the spatial representations of citizens within their urban daily lives. The body contacts with and at urban space (with other objects and subjects) via its movements and stops; this interaction occurs through the spatial pattern of occupancy and vacancy. Walking practice leads to a set of cognitive mental representations in relation to the repertoire of place attachment and spatial appropriation. University campuses are autonomous and fruitful urban spaces to investigate such an interaction. There are both physical/real and psychogeographic representations of the same urban spaces and urban spatial practices. This separation would indicate the invisible dimensions of the difference between ‘what is conceived’ and ‘what is perceived.’ This study aims to compare and contrast the role of alle in both campus design and spatial appropriation via walking at two differentiated university campuses by collecting the mental representations, doing in-depth interviews, and attending walks with the interviewees by psychogeographic techniques. Campus design and spatial appropriation will be compared [with reference to the conception and perception of alle] in three scales: (1) the historical spatial development stories and design approaches of university campuses, (2) the spatial pattern of campuses on the basis of alle, and (3) sub-behavioral regions of the alle in campuses in relation with mental representations and psychogeographic attentive walks. The sub-questions of the research are: [1] How and why do the design approaches differentiate in two university campuses in Turkey, [2] How the interrelation among alle design and spatial appropriation differs in these two cases, and [3] What do the differentiated gaps among real and psychographic maps indicate about the design and spatial appropriation interrelation. METU, as a well-designed, readable campus with its alle, promise a rich walking practice with in-depth and fruitful spatial appropriation regions; however, Van YYÜ limits both the practice and place attachment with its partial design with an alle which is later added to the campus. This research both displays the role of alle in the campus design, walking practice and spatial appropriation and opens a new methodological path to discover hidden knowledge within urban spaces.Keywords: alle, campus design, cognitive geography, psychogeography, spatial appropriation, Turkey
Procedia PDF Downloads 10515162 Enhancing Sustainability of Residential Buildings: A Case Study of Al-Malaz District, Riyadh, Saudi Arabia
Authors: Jenin Zidan
Abstract:
This research paper investigates how planning, urban design, and architectural decisions affect the long-term environmental sustainability of residential buildings. The study, which focuses on the Al-Malaz District in Riyadh, Saudi Arabia, looks into how strategic planning, innovative urban design, and sustainable architectural practices might help mitigate environmental concerns and promote sustainable development in rapidly growing cities. This study attempts to shed light on the interplay of urban planning, design, and architecture in constructing sustainable residential environments by conducting a thorough examination of case studies and empirical data.Keywords: urban planning, sustainable architecture, urban environmental challenge, residential buildings, villa house type
Procedia PDF Downloads 6215161 Potency of Minapolitan Area Development to Enhance Gross Domestic Product and Prosperty in Indonesia
Authors: Shobrina Silmi Qori Tarlita, Fariz Kukuh Harwinda
Abstract:
Indonesia has 81.000 kilometers coastal line and 70% water surface which is known as the country who has a huge potential in fisheries sector and also which is able to support more than 50 % of Gross Domestic Product. But according to Department of Marine and Fisheries data, fisheries sector supported only 20% of Total GDP in 1998. Not only that, the highest decline in fisheries sector income occured in 2009. Those conditions occur, because of some factors contributed to the lack of integrated working platform for the fisheries and marine management in some areas which have a high productivity to increase the economical profit every year for the country, especially Indonesia, besides the labor requirement for every company, whether a big company or smaller one, depends on the natural condition that makes a lot of people become unemployed if the weather condition or any other conditions dealing with the natural condition is bad for creating fisheries and marine management, especially in aquaculture and fish – captured operation. Not only those, a lot of fishermen, especially in Indonesia, mostly make their job profession as an additional job or side job to fulfill their own needs, although they are averagely poor. Another major problem are the lack of the sustainable developmental program to stabilize the productivity of fisheries and marine natural source, like protecting the environment for fish nursery ground and migration channel, that makes the low productivity of fisheries and marine natural resource, even though the growth of the society in Indonesia has increased for years and needs more food resource to comply the high demand nutrition for living. The development of Minapolitan Area is one of the alternative solution to build a better place for aqua-culturist as well as the fishermen which focusing on systemic and business effort for fisheries and marine management. Minapolitan is kind of integration area which gathers and integrates the ones who is focusing their effort and business in fisheries sector, so that Minapolitan is capable of triggering the fishery activity on the area which using Minapolitan management intensively. From those things, finally, Minapolitan is expected to reinforce the sustainable development through increasing the productivity of fish – capturing operation as well as aquaculture, and it is also expected that Minapolitan will be able to increase GDP, the earning for a lot of people and also will be able to bring prosperity around the world. From those backgrounds, this paper will explain more about the Minapolitan Area and the design of reinforcing the Minapolitan Area by zonation in the Fishery and Marine exploitation area with high productivity as well as low productivity. Hopefully, this solution will be able to answer the economical and social issue for declining food resource, especially fishery and marine resource.Keywords: Minapolitan, fisheries, economy, Indonesia
Procedia PDF Downloads 46315160 Assessing the Walkability and Urban Design Qualities of Campus Streets
Authors: Zhehao Zhang
Abstract:
Walking has become an indispensable and sustainable way of travel for college students in their daily lives; campus street is an important carrier for students to walk and take part in a variety of activities, improving the walkability of campus streets plays an important role in optimizing the quality of campus space environment, promoting the campus walking system and inducing multiple walking behaviors. The purpose of this paper is to explore the effect of campus layout, facility distribution, and location site selection on the walkability of campus streets, and assess the street design qualities from the elements of imageability, enclosure, complexity, transparency, and human scale, and further examines the relationship between street-level urban design perceptual qualities and walkability and its effect on walking behavior in the campus. Taking Tianjin University as the research object, this paper uses the optimized walk score method based on walking frequency, variety, and distance to evaluate the walkability of streets from a macro perspective and measures the urban design qualities in terms of the calculation of street physical environment characteristics, as well as uses behavior annotation and street image data to establish temporal and spatial behavior database to analyze walking activity from the microscopic view. In addition, based on the conclusions, the improvement and design strategy will be presented from the aspects of the built walking environment, street vitality, and walking behavior.Keywords: walkability, streetscapes, pedestrian activity, walk score
Procedia PDF Downloads 14415159 A Study on the Urban Design Path of Historical Block in the Ancient City of Suzhou, China
Abstract:
In recent years, with the gradual change of Chinese urban development mode from 'incremental development' to 'stock-based renewal', the urban design method of ‘grand scene’ in the past could only cope with the planning and construction of incremental spaces such as new towns and new districts, while the problems involved in the renewal of the stock lands such as historic blocks of ancient cities are more complex. 'Simplified' large-scale demolition and construction may lead to the damage of the ancient city's texture and the overall cultural atmosphere; thus it is necessary to re-explore the urban design path of historical blocks in the conservation context of the ancient city. Through the study of the cultural context of the ancient city of Suzhou in China and the interpretation of its current characteristics, this paper explores the methods and paths for the renewal of historical and cultural blocks in the ancient city. It takes No. 12 and No. 13 historical blocks in the ancient city of Suzhou as examples, coordinating the spatial layout and the landscape and shaping the regional characteristics to improve the quality of the ancient city's life. This paper analyses the idea of conservation and regeneration from the aspects of culture, life, business form, and transport. Guided by the planning concept of ‘block repair and cultural infiltration’, it puts forward the urban design path of ‘conservation priority, activation and utilization, organic renewal and strengthening guidance’, with a view to continuing the cultural context and stimulating the vitality of ancient city, so as to realize the integration of history, modernity, space and culture. As a rare research on urban design in the scope of Suzhou ancient city, the paper expects to explore the concepts and methods of urban design for the historic blocks on the basis of the conservation of the history, space, and culture and provides a reference for other similar types of urban construction.Keywords: historical block, Suzhou ancient city, stock-based renewal, urban design
Procedia PDF Downloads 14415158 Experimental Investigations on Setting Behavior and Compreesive Strength of Flyash Based Geopolymer
Authors: Ishan Tank, Ashmita Rupal, Sanjay Kumar Sharma
Abstract:
Concrete, a widely used building material, has cement as its main constituent. An excessive amount of emissions are released into the atmosphere during the manufacture of cement, which is detrimental to the environment. To minimize this problem, innovative materials like geopolymer mortar (GPM) seem to be a better alternative. By using fly ash-based geopolymer instead of standard cement mortar as a binding ingredient, this concept has been successfully applied to the building sector. The advancement of this technology significantly reduces greenhouse gas emissions and helps in source reduction, thereby minimizing pollution of the environment. In order to produce mortar and use this geopolymer mortar in the development of building materials, the current investigation is properly introducing this geopolymeric material, namely fly ash, as a binder in place of standard cement. In the domain of the building material industry, fly ash based geopolymer is a new and optimistic replacement for traditional binding materials because it is both environmentally sustainable and has good durability. The setting behaviour and strength characteristics of fly ash, when mixed with alkaline activator solution with varied concentration of sodium hydroxide solution, alkaline liquids mix ratio, and curing temperature, must be investigated, though, in order to determine its suitability and application in comparison with the traditional binding material, by activating the raw materials, which include various elements of silica and alumina, finer material known as geopolymer mortar is created. The concentration of the activator solution has an impact on the compressive strength of the geopolymer concrete formed. An experimental examination of compressive strength after 7, 14, and 28 days of fly ash-based geopolymer concrete is presented in this paper. Furthermore, the process of geopolymerization largely relies on the curing temperature. So, the setting time of Geopolymer mortar due to different curing temperatures has been studied and discussed in this paper.Keywords: geopolymer mortar, setting time, flyash, compressive strength, binder material
Procedia PDF Downloads 7115157 Exploring the Application of Additive Manufacturing in the Production of Aerogels for the Purpose of Creating Environmentally Friendly Agricultural Formulations with Controlled Release Properties
Authors: Pram Abhayawardhana, Ali Reza Nazmi, Hossein Najaf Zadeh
Abstract:
This study examines the use of additive manufacturing (AM) to develop sustainable and intelligent agricultural formulations that can gradually release fertilisers. AM offers the ability to design customised formulations with precise geometries and controlled release properties while taking into account their mechanical, chemical, and environmental properties. The study specifically investigates the use of an aerogel matrix mixed with a potential fertiliser in agriculture. Highly porous 3D printed aerogel structures were designed to enable the slow release of fertilisers. The performance of the formulated mixture is evaluated against other commonly used materials for slow-release applications. The findings suggest that the 3D printed gel made has great potential for slow-release fertilisers, providing an environmentally friendly solution for agricultural practices. The combination of AM technology and sustainable materials can play a vital role in mitigating the negative environmental impact of traditional fertilisers, as well as improving the efficiency and sustainability of agricultural production.Keywords: 3D printing, hydrogel, aerogel, fertiliser, agriculture
Procedia PDF Downloads 94