Search results for: seismic active zone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5849

Search results for: seismic active zone

3809 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies

Authors: Amira Abdelrasoul

Abstract:

This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.

Keywords: biomimetic, membrane, synchrotron, permeability, morphology

Procedia PDF Downloads 102
3808 Green Extraction Technologies of Flavonoids Containing Pharmaceuticals

Authors: Lamzira Ebralidze, Aleksandre Tsertsvadze, Dali Berashvili, Aliosha Bakuridze

Abstract:

Nowadays, there is an increasing demand for biologically active substances from vegetable, animal, and mineral resources. In terms of the use of natural compounds, pharmaceutical, cosmetic, and nutrition industry has big interest. The biggest drawback of conventional extraction methods is the need to use a large volume of organic extragents. The removal of the organic solvent is a multi-stage process. And their absolute removal cannot be achieved, and they still appear in the final product as impurities. A large amount of waste containing organic solvent damages not only human health but also has the harmful effects of the environment. Accordingly, researchers are focused on improving the extraction methods, which aims to minimize the use of organic solvents and energy sources, using alternate solvents and renewable raw materials. In this context, green extraction principles were formed. Green Extraction is a need of today’s environment. Green Extraction is the concept, and it totally corresponds to the challenges of the 21st century. The extraction of biologically active compounds based on green extraction principles is vital from the view of preservation and maintaining biodiversity. Novel technologies of green extraction are known, such as "cold methods" because during the extraction process, the temperature is relatively lower, and it doesn’t have a negative impact on the stability of plant compounds. Novel technologies provide great opportunities to reduce or replace the use of organic toxic solvents, the efficiency of the process, enhance excretion yield, and improve the quality of the final product. The objective of the research is the development of green technologies of flavonoids containing preparations. Methodology: At the first stage of the research, flavonoids containing preparations (Tincture Herba Leonuri, flamine, rutine) were prepared based on conventional extraction methods: maceration, bismaceration, percolation, repercolation. At the same time, the same preparations were prepared based on green technologies, microwave-assisted, UV extraction methods. Product quality characteristics were evaluated by pharmacopeia methods. At the next stage of the research technological - economic characteristics and cost efficiency of products prepared based on conventional and novel technologies were determined. For the extraction of flavonoids, water is used as extragent. Surface-active substances are used as co-solvent in order to reduce surface tension, which significantly increases the solubility of polyphenols in water. Different concentrations of water-glycerol mixture, cyclodextrin, ionic solvent were used for the extraction process. In vitro antioxidant activity will be studied by the spectrophotometric method, using DPPH (2,2-diphenyl-1- picrylhydrazyl) as an antioxidant assay. The advantage of green extraction methods is also the possibility of obtaining higher yield in case of low temperature, limitation extraction process of undesirable compounds. That is especially important for the extraction of thermosensitive compounds and maintaining their stability.

Keywords: extraction, green technologies, natural resources, flavonoids

Procedia PDF Downloads 131
3807 The Comparison of the Reliability Margin Measure for the Different Concepts in the Slope Analysis

Authors: Filip Dodigovic, Kreso Ivandic, Damir Stuhec, S. Strelec

Abstract:

The general difference analysis between the former and new design concepts in geotechnical engineering is carried out. The application of new regulations results in the need for real adaptation of the computation principles of limit states, i.e. by providing a uniform way of analyzing engineering tasks. Generally, it is not possible to unambiguously match the limit state verification procedure with those in the construction engineering. The reasons are the inability to fully consistency of the common probabilistic basis of the analysis, and the fundamental effect of material properties on the value of actions and the influence of actions on resistance. Consequently, it is not possible to apply separate factorization with partial coefficients, as in construction engineering. For the slope stability analysis design procedures problems in the light of the use of limit states in relation to the concept of allowable stresses is detailed in. The quantifications of the safety margins in the slope stability analysis for both approaches is done. When analyzing the stability of the slope, by the strict application of the adopted forms from the new regulations for significant external temporary and/or seismic actions, the equivalent margin of safety is increased. The consequence is the emergence of more conservative solutions.

Keywords: allowable pressure, Eurocode 7, limit states, slope stability

Procedia PDF Downloads 337
3806 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs

Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi

Abstract:

Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.

Keywords: active damper, fixation system, hardened material, passive damper

Procedia PDF Downloads 223
3805 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves

Authors: Satya Narayan

Abstract:

India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.

Keywords: geothermal resources, geophysical methods, exploration, exploitation

Procedia PDF Downloads 88
3804 'English in Tourism' in the Project 'English for Community'

Authors: Nguyen Duc An

Abstract:

To the movement towards learning community, creating friendly, positive and appropriate learning environments which best suit the local features is the most salient and decisive factor of the development and success of that learning society. With the aim at building such an English language learning community for the inhabitants in Moc Chau - the national tourist zone, Tay Bac University has successfully designed and deployed the program ‘English in Tourism’ in the project ‘English for Community’. With the strong attachment to the local reality and close knit to the certain communicative situations, this program which was carefully designed and compiled with interesting and practical activities, has greatly helped the locals confidently introduce and popularize the natural beauty, unique culture and specific characteristics of Moc Chau to the foreign tourists; in addition, reinforce awareness of the native culture of the local people as well as improve the professional development in tourism and service.

Keywords: English for community, learning society, learning community, English in tourism

Procedia PDF Downloads 371
3803 Electrical Investigations of Polyaniline/Graphitic Carbon Nitride Composites Using Broadband Dielectric Spectroscopy

Authors: M. A. Moussa, M. H. Abdel Rehim, G.M. Turky

Abstract:

Polyaniline composites with carbon nitride, to overcome compatibility restriction with graphene, were prepared with the solution method. FTIR and Uv-vis spectra were used for structural conformation. While XRD and XPS confirmed the structures in addition to estimation of nitrogen atom surroundings, the pore sizes and the active surface area were determined from BET adsorption isotherm. The electrical and dielectric parameters were measured and calculated with BDS .

Keywords: carbon nitride, dynamic relaxation, electrical conductivity, polyaniline

Procedia PDF Downloads 143
3802 Experimenting the Influence of Input Modality on Involvement Load Hypothesis

Authors: Mohammad Hassanzadeh

Abstract:

As far as incidental vocabulary learning is concerned, the basic contention of the Involvement Load Hypothesis (ILH) is that retention of unfamiliar words is, generally, conditional upon the degree of involvement in processing them. This study examined input modality and incidental vocabulary uptake in a task-induced setting whereby three variously loaded task types (marginal glosses, fill-in-task, and sentence-writing) were alternately assigned to one group of students at Allameh Tabataba’i University (n=2l) during six classroom sessions. While one round of exposure was comprised of the audiovisual medium (TV talk shows), the second round consisted of textual materials with approximately similar subject matter (reading texts). In both conditions, however, the tasks were equivalent to one another. Taken together, the study pursued the dual objectives of establishing a litmus test for the ILH and its proposed values of ‘need’, ‘search’ and ‘evaluation’ in the first place. Secondly, it sought to bring to light the superiority issue of exposure to audiovisual input versus the written input as far as the incorporation of tasks is concerned. At the end of each treatment session, a vocabulary active recall test was administered to measure their incidental gains. Running a one-way analysis of variance revealed that the audiovisual intervention yielded higher gains than the written version even when differing tasks were included. Meanwhile, task 'three' (sentence-writing) turned out the most efficient in tapping learners' active recall of the target vocabulary items. In addition to shedding light on the superiority of audiovisual input over the written input when circumstances are relatively held constant, this study for the most part, did support the underlying tenets of ILH.

Keywords: Keywords— Evaluation, incidental vocabulary learning, input mode, Involvement Load Hypothesis, need, search.

Procedia PDF Downloads 281
3801 Inhibition of Mixed Infection Caused by Human Immunodeficiency Virus and Herpes Virus by Fullerene Compound

Authors: Dmitry Nosik, Nickolay Nosik, Elli Kaplina, Olga Lobach, Marina Chataeva, Lev Rasnetsov

Abstract:

Background and aims: Human Immunodeficiency Virus (HIV) infection is very often associated with Herpes Simplex Virus (HSV) infection but HIV patients are treated with a cocktail of antiretroviral drugs which are toxic. The use of an antiviral drug which will be active against both viruses like ferrovir found in our previous studies is rather actual. Earlier we had shown that Fullerene poly-amino capronic acid (FPACA) was active in case of monoinfection of HIV-1 or HSV-1. The aim of the study was to analyze the efficiency of FPACA against mixed infection of HIV and HSV. Methods: The peripheral blood lymphocytes, CEM, MT-4 cells were simultaneously infected with HIV-1 and HSV-1. FPACA was added 1 hour before infection. Cells viability was detected by MTT assay, virus antigens detected by ELISA, syncytium formation detected by microscopy. The different multiplicity of HIV-1/HSV-1 ratio was used. Results: The double viral HIV-1/HSV-1 infection was more cytopathic comparing with monoinfections. In mixed infection by the HIV-1/HSV-1 concentration of HIV-1 antigens and syncytium formations increased by 1,7 to 2,3 times in different cells in comparison with the culture infected with HIV-1 alone. The concentration of HSV-1 increased by 1,5-1,7 times, respectively. Administration of FPACA (1 microg/ml) protected cells: HIV-1/HSV-1 (1:1) – 80,1%; HIV-1/HSV-1 (1:4) – 57,2%; HIV-1/HSV-1 (1:8) – 46,3 %; HIV-1/HSV-1 (1:16) – 17,0%. Virus’s antigen levels were also reduced. Syncytium formation was totally inhibited in all cases of mixed infection. Conclusion: FPACA showed antiviral activity in case of mixed viral infection induced by Human Immunodeficiency Virus and Herpes Simplex Virus. The effect of viral inhibition increased with the multiplicity of HIV-1 in the inoculum. The mechanism of FPACA action is connected with the blocking of the virus particles adsorption to the cells and it could be suggested that it can have an antiviral activity against some other viruses too. Now FPACA could be considered as a potential drug for treatment of HIV disease complicated with opportunistic herpes viral infection.

Keywords: antiviral drug, human immunodeficiency virus (hiv), herpes simplex virus (hsv), mixed viral infection

Procedia PDF Downloads 344
3800 Catalytic Ammonia Decomposition: Cobalt-Molybdenum Molar Ratio Effect on Hydrogen Production

Authors: Elvis Medina, Alejandro Karelovic, Romel Jiménez

Abstract:

Catalytic ammonia decomposition represents an attractive alternative due to its high H₂ content (17.8% w/w), a product stream free of COₓ, among others; however, challenges need to be addressed for its consolidation as an H₂ chemical storage technology, especially, those focused on the synthesis of efficient bimetallic catalytic systems, as an alternative to the price and scarcity of ruthenium, the most active catalyst reported. In this sense, from the perspective of rational catalyst design, adjusting the main catalytic activity descriptor, a screening of supported catalysts with different compositional settings of cobalt-molybdenum metals is presented to evaluate their effect on the catalytic decomposition rate of ammonia. Subsequently, a kinetic study on the supported monometallic Co and Mo catalysts, as well as on the bimetallic CoMo catalyst with the highest activity is shown. The synthesis of catalysts supported on γ-alumina was carried out using the Charge Enhanced Dry Impregnation (CEDI) method, all with a 5% w/w loading metal. Seeking to maintain uniform dispersion, the catalysts were oxidized and activated (In-situ activation) using a flow of anhydrous air and hydrogen, respectively, under the same conditions: 40 ml min⁻¹ and 5 °C min⁻¹ from room temperature to 600 °C. Catalytic tests were carried out in a fixed-bed reactor, confirming the absence of transport limitations, as well as an Approach to equilibrium (< 1 x 10⁻⁴). The reaction rate on all catalysts was measured between 400 and 500 ºC at 53.09 kPa NH3. The synergy theoretically (DFT) reported for bimetallic catalysts was confirmed experimentally. Specifically, it was observed that the catalyst composed mainly of 75 mol% cobalt proved to be the most active in the experiments, followed by the monometallic cobalt and molybdenum catalysts, in this order of activity as referred to in the literature. A kinetic study was performed at 10.13 – 101.32 kPa NH3 and at four equidistant temperatures between 437 and 475 °C the data were adjusted to an LHHW-type model, which considered the desorption of nitrogen atoms from the active phase surface as the rate determining step (RDS). The regression analysis were carried out under an integral regime, using a minimization algorithm based on SLSQP. The physical meaning of the parameters adjusted in the kinetic model, such as the RDS rate constant (k₅) and the lumped adsorption constant of the quasi-equilibrated steps (α) was confirmed through their Arrhenius and Van't Hoff-type behavior (R² > 0.98), respectively. From an energetic perspective, the activation energy for cobalt, cobalt-molybdenum, and molybdenum was 115.2, 106.8, and 177.5 kJ mol⁻¹, respectively. With this evidence and considering the volcano shape described by the ammonia decomposition rate in relation to the metal composition ratio, the synergistic behavior of the system is clearly observed. However, since characterizations by XRD and TEM were inconclusive, the formation of intermetallic compounds should be still verified using HRTEM-EDS. From this point onwards, our objective is to incorporate parameters into the kinetic expressions that consider both compositional and structural elements and explore how these can maximize or influence H₂ production.

Keywords: CEDI, hydrogen carrier, LHHW, RDS

Procedia PDF Downloads 61
3799 Krembo Wings Youth Movement for Children with and without Disabilities: An Inclusive Model from an Educational Perspective to a Professional Approach

Authors: Claudia Koby, Merav Boaz, Meirav Zaiger Kober

Abstract:

Krembo Wings is an all-inclusive youth movement which brings children and youth with any disability together with their able-bodied peers (counselors) for weekly fun and educational social activities. Krembo Wings utilizes a socio-educational framework to create and lead social change through members with and without disabilities. All the work that Krembo Wings engages in stems from its central goal of promoting inclusion and integration using social and psychological theories to develop its unique model and approach. The key to Krembo Wings' approach in promoting inclusion is active participation – each member, with and without disabilities, is enabled to participate to their fullest capacity in the youth movement and its activities. In order for this to be achieved, all activities are adjustable and are modified to fit the abilities of each member. Additionally, youth counselors – most of whom are members without disabilities – go through extensive training in order to act as 'intermediaries' for their partner with disabilities, enabling and facilitating their partner's participation in a way that allows them to be as independent and active as possible. The relationship is one of friendship and not of caretaking. There is always a nurse on-hand to tend to any caretaking needs. Two essential elements of Krembo Wings' model is the broadening of concepts – shifting and changing the understanding of certain concepts such as what it means to be 'independent' or 'able' – and the development of a unique language – creating a language which both reflects and shapes reality. These elements of Krembo Wings' model foster the development of the values of acceptance and appreciation of those who are 'different'. It instills in members and counselors a new way of perceiving the world, one in which inclusion and integration are achievable and natural. Krembo Wings is certain that implementation of this model will promote the participation and inclusion of individuals with disabilities in society while promoting diversity. This model can serve as a platform which can be replicated and adjusted to suit any environment.

Keywords: innovative model for inclusion, socio-educational movement, youth leadership, youth with and without disabilities

Procedia PDF Downloads 128
3798 Influence of Shear Parameter on Liquefaction Susceptibility of Ramsar Sand

Authors: Siavash Salamatpoor, Hossein Motaghedi, Jr., Mehrdad Nategh

Abstract:

In this study, undrained triaxial tests under anisotropic consolidation were conducted on the reconstituted samples of Ramsar sand, which underlies a densely populated, seismic region of the southern coast of Caspian Sea in Mazandaran province, Iran. Ramsar costal city is regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. The specimens were consolidated anisotropically to simulate initial shear stress which is mobilized due to surface constructions. Different states of soil behavior were obtained by applying different levels of initial relative density, shear stress, and effective stress. It is shown that Ramsar clean sand can experience the whole possible states of liquefiable soils i.e. fully liquefaction, limited liquefaction, and dilation behaviors. It would be shown that by increasing the shear parameter in high confine pressure, the liquefaction susceptibility has increased while for low confine pressure it would be vice versa.

Keywords: anisotropic, triaxial test, shear parameter, static liquefaction

Procedia PDF Downloads 415
3797 Decisional Regret in Men with Localized Prostate Cancer among Various Treatment Options and the Association with Erectile Functioning and Depressive Symptoms: A Moderation Analysis

Authors: Caren Hilger, Silke Burkert, Friederike Kendel

Abstract:

Men with localized prostate cancer (PCa) have to choose among different treatment options, such as active surveillance (AS) and radical prostatectomy (RP). All available treatment options may be accompanied by specific psychological or physiological side effects. Depending on the nature and extent of these side effects, patients are more or less likely to be satisfied or to struggle with their treatment decision in the long term. Therefore, the aim of this study was to assess and explain decisional regret in men with localized PCa. The role of erectile functioning as one of the main physiological side effects of invasive PCa treatment, depressive symptoms as a common psychological side effect, and the association of erectile functioning and depressive symptoms with decisional regret were investigated. Men with localized PCa initially managed with AS or RP (N=292) were matched according to length of therapy (mean 47.9±15.4 months). Subjects completed mailed questionnaires assessing decisional regret, changes in erectile functioning, depressive symptoms, and sociodemographic variables. Clinical data were obtained from case report forms. Differences among the two treatment groups (AS and RP) were calculated using t-tests and χ²-tests, relationships of decisional regret with erectile functioning and depressive symptoms were computed using multiple regression. Men were on average 70±7.2 years old. The two treatment groups differed markedly regarding decisional regret (p<.001, d=.50), changes in erectile functioning (p<.001, d=1.2), and depressive symptoms (p=.01, d=.30), with men after RP reporting higher values, respectively. Regression analyses showed that after adjustment for age, tumor risk category, and changes in erectile functioning, depressive symptoms were still significantly associated with decisional regret (B=0.52, p<.001). Additionally, when predicting decisional regret, the interaction of changes in erectile functioning and depressive symptoms reached significance for men after RP (B=0.52, p<.001), but not for men under AS (B=-0.16, p=.14). With increased changes in erectile functioning, the association of depressive symptoms with decisional regret became stronger in men after RP. Decisional regret is a phenomenon more prominent in men after RP than in men under AS. Erectile functioning and depressive symptoms interact in their prediction of decisional regret. Screening and treating depressive symptoms might constitute a starting point for interventions aiming to reduce decisional regret in this target group.

Keywords: active surveillance, decisional regret, depressive symptoms, erectile functioning, prostate cancer, radical prostatectomy

Procedia PDF Downloads 218
3796 Oxide Based Memristor and Its Potential Application in Analog-Digital Electronics

Authors: P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu

Abstract:

Oxide based memristors were fabricated in order to establish its potential applications in analog/digital electronics. BaTiO₃-BiFeO₃ (BT-BFO) was employed as an active material, whereas platinum (Pt) and Nb-doped SrTiO₃ (Nb:STO) were served as a top and bottom electrodes, respectively. Piezoelectric force microscopy (PFM) was utilized to present the ferroelectricity and repeatable polarization inversion in the BT-BFO, demonstrating its effectiveness for resistive switching. The fabricated memristors exhibited excellent electrical characteristics, such as hysteresis current-voltage (I-V), high on/off ratio, high retention time, cyclic endurance, and low operating voltages. The band-alignment between the active material BT-BFO and the substrate Nb:STO was experimentally investigated using X-Ray photoelectron spectroscopy, and it attributed to staggered heterojunction alignment. An energy band diagram was proposed in order to understand the electrical transport in BT-BFO/Nb:STO heterojunction. It was identified that the I-V curves of these memristors have several discontinuities. Curve fitting technique was utilized to analyse the I-V characteristic, and the obtained I-V equations were found to be parabolic. Utilizing this analysis, a non-linear BT-BFO memristors equivalent circuit model was developed. Interestingly, the obtained equivalent circuit of the BT-BFO memristors mimics the identical electrical performance, those obtained in the fabricated devices. Based on the developed equivalent circuit, a finite state machine (FSM) design was proposed. Efforts were devoted to fabricate the same FSM, and the results were well matched with those in the simulated FSM devices. Its multilevel noise filtering and immunity to external noise characteristics were also studied. Further, the feature of variable negative resistance was established by controlling the current through the memristor.

Keywords: band alignment, finite state machine, polarization inversion, resistive switching

Procedia PDF Downloads 137
3795 An Investigation on Overstrength Factor (Ω) of Reinforced Concrete Buildings in Turkish Earthquake Draft Code (TEC-2016)

Authors: M. Hakan Arslan, I. Hakkı Erkan

Abstract:

Overstrength factor is an important parameter of load reduction factor. In this research, the overstrength factor (Ω) of reinforced concrete (RC) buildings and the parameters of Ω in TEC-2016 draft version have been explored. For this aim, 48 RC buildings have been modeled according to the current seismic code TEC-2007 and Turkish Building Code-500-2000 criteria. After modelling step, nonlinear static pushover analyses have been applied to these buildings by using TEC-2007 Section 7. After the nonlinear pushover analyses, capacity curves (lateral load-lateral top displacement curves) have been plotted for 48 RC buildings. Using capacity curves, overstrength factors (Ω) have been derived for each building. The obtained overstrength factor (Ω) values have been compared with TEC-2016 values for related building types, and the results have been interpreted. According to the obtained values from the study, overstrength factor (Ω) given in TEC-2016 draft code is found quite suitable.

Keywords: reinforced concrete buildings, overstrength factor, earthquake, static pushover analysis

Procedia PDF Downloads 357
3794 Development of Bilayer Coating System for Mitigating Corrosion of Offshore Wind Turbines

Authors: Adamantini Loukodimou, David Weston, Shiladitya Paul

Abstract:

Offshore structures are subjected to harsh environments. It is documented that carbon steel needs protection from corrosion. The combined effect of UV radiation, seawater splash, and fluctuating temperatures diminish the integrity of these structures. In addition, the possibility of damage caused by floating ice, seaborne debris, and maintenance boats make them even more vulnerable. Their inspection and maintenance when far out in the sea are difficult, risky, and expensive. The most known method of mitigating corrosion of offshore structures is the use of cathodic protection. There are several zones in an offshore wind turbine. In the atmospheric zone, due to the lack of a continuous electrolyte (seawater) layer between the structure and the anode at all times, this method proves inefficient. Thus, the use of protective coatings becomes indispensable. This research focuses on the atmospheric zone. The conversion of commercially available and conventional paint (epoxy) system to an autonomous self-healing paint system via the addition of suitable encapsulated healing agents and catalyst is investigated in this work. These coating systems, which can self-heal when damaged, can provide a cost-effective engineering solution to corrosion and related problems. When the damage of the paint coating occurs, the microcapsules are designed to rupture and release the self-healing liquid (monomer), which then will react in the presence of the catalyst and solidify (polymerization), resulting in healing. The catalyst should be compatible with the system because otherwise, the self-healing process will not occur. The carbon steel substrate will be exposed to a corrosive environment, so the use of a sacrificial layer of Zn is also investigated. More specifically, the first layer of this new coating system will be TSZA (Thermally Sprayed Zn85/Al15) and will be applied on carbon steel samples with dimensions 100 x 150 mm after being blasted with alumina (size F24) as part of the surface preparation. Based on the literature, it corrodes readily, so one additional paint layer enriched with microcapsules will be added. Also, the reaction and the curing time are of high importance in order for this bilayer system of coating to work successfully. For the first experiments, polystyrene microcapsules loaded with 3-octanoyltio-1-propyltriethoxysilane were conducted. Electrochemical experiments such as Electrochemical Impedance Spectroscopy (EIS) confirmed the corrosion inhibiting properties of the silane. The diameter of the microcapsules was about 150-200 microns. Further experiments were conducted with different reagents and methods in order to obtain diameters of about 50 microns, and their self-healing properties were tested in synthetic seawater using electrochemical techniques. The use of combined paint/electrodeposited coatings allows for further novel development of composite coating systems. The potential for the application of these coatings in offshore structures will be discussed.

Keywords: corrosion mitigation, microcapsules, offshore wind turbines, self-healing

Procedia PDF Downloads 115
3793 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System

Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji

Abstract:

Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.

Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources

Procedia PDF Downloads 144
3792 A Near Ambient Pressure X-Ray Photoelectron Spectroscopy Study on Platinum Nanoparticles Supported on Zr-Based Metal Organic Frameworks

Authors: Reza Vakili, Xiaolei Fan, Alex Walton

Abstract:

The first near ambient pressure (NAP)-XPS study of CO oxidation over Pt nanoparticles (NPs) incorporated into Zr-based UiO (UiO for Universitetet i Oslo) MOFs was carried out. For this purpose, the MOF-based Catalysts were prepared by wetness impregnation (WI-PtNPs@UiO-67) and linker design (LD-PtNPs@UiO-67) methods along with PtNPs@ZrO₂ as the control catalyst. Firstly, the as-synthesized catalysts were reduced in situ prior to the operando XPS analysis. The existence of Pt(II) species was proved in UiO-67 by observing Pt 4f core level peaks at a high binding energy of 72.6 ± 0.1 eV. However, by heating the WI-PtNPs@UiO-67 catalyst in situ to 200 °C under vacuum, the higher BE components disappear, leaving only the metallic Pt 4f doublet, confirming the formation of Pt NPs. The complete reduction of LD-PtNPs@UiO-67 is achieved at 250 °C and 1 mbar H₂. To understand the chemical state of Pt NPs in UiO-67 during catalytic turnover, we analyzed the Pt 4f region using operando NAP-XPS in the temperature-programmed measurements (100-260 °C) with reference to PtNPs@ZrO₂ catalyst. CO conversion during NAP-XPS experiments with the stoichiometric mixture shows that LD-PtNPs@UiO-67 has a better CO turnover frequency (TOF, 0.066 s⁻¹ at 260 °C) than the other two (ca. 0.055 s⁻¹). Pt 4f peaks only show one chemical species present at all temperatures, but the core level BE shifts change as a function of reaction temperature, i.e., Pt 4f peak from 71.8 eV at T < 200 °C to 71.2 eV at T > 200 °C. As this higher BE state of 71.8 eV was not observed after in situ reductions of the catalysts and only once the CO/O₂ mixture was introduced, we attribute it to the surface saturation of Pt NPs with adsorbed CO. In general, the quantitative analysis of Pt 4f data from the operando NAP-XPS experiments shows that the surface chemistry of the Pt active phase in the two PtNPs@UiO-67 catalysts is the same, comparable to that of PtNPs@ZrO₂. The observed difference in the catalytic activity can be attributed to the particle sizes of Pt NPs, as well as the dispersion of active phase in the support, which are different in the three catalysts.

Keywords: CO oxidation, heterogeneous catalysis, MOFs, Metal Organic Frameworks, NAP-XPS, Near Ambient Pressure X-ray Photoelectron Spectroscopy

Procedia PDF Downloads 140
3791 Mercury and Selenium Levels in Swordfish (Xiphias gladius) Fished in the Exclusive Economic Zone of the Republic of Seychelles

Authors: Stephanie Hollanda, Nathalie Bodin, Carine Churlaud, Paco Bustamante

Abstract:

Total mercury (Hg), selenium (Se) and Hg-Se ratios were analyzed in the white muscle, liver and gonads of swordfish, in order to compare concentration between the different tissues and sex, and also the effect of size (fork length). The results show significant difference between tissue types, with the liver having the highest concentration of both Hg and Se. Positive significant correlations between moles of Hg and Se were obtained in the liver and white muscle, but no relationship was obtained in the gonads. No difference in the concentration of Hg and Se was obtained between the sexes in the tissue types, except for Hg in the gonads, which were found to be higher in males. Significant negative relationships were obtained when the Hg-Se ratio was plotted against fork length in all three tissue types.

Keywords: bioaccumulation, large pelagic fish, mercury, selenium, western Indian Ocean

Procedia PDF Downloads 232
3790 A Density Function Theory Based Comparative Study of Trans and Cis - Resveratrol

Authors: Subhojyoti Chatterjee, Peter J. Mahon, Feng Wang

Abstract:

Resveratrol (RvL), a phenolic compound, is a key ingredient in wine and tomatoes that has been studied over the years because of its important bioactivities such as anti-oxidant, anti-aging and antimicrobial properties. Out of the two isomeric forms of resveratrol i.e. trans and cis, the health benefit is primarily associated with the trans form. Thus, studying the structural properties of the isomers will not only provide an insight into understanding the RvL isomers, but will also help in designing parameters for differentiation in order to achieve 99.9% purity of trans-RvL. In the present study, density function theory (DFT) study is conducted, using the B3LYP/6-311++G** model to explore the through bond and through space intramolecular interactions. Properties such as vibrational spectroscopy (IR and Raman), nuclear magnetic resonance (NMR) spectra, excess orbital energy spectrum (EOES), energy based decomposition analyses (EDA) and Fukui function are calculated. It is discovered that the structure of trans-RvL, although it is C1 non-planar, the backbone non-H atoms are nearly in the same plane; whereas the cis-RvL consists of two major planes of R1 and R2 that are not in the same plane. The absence of planarity gives rise to a H-bond of 2.67Å in cis-RvL. Rotation of the C(5)-C(8) single bond in trans-RvL produces higher energy barriers since it may break the (planar) entire conjugated structure; while such rotation in cis-RvL produces multiple minima and maxima depending on the positions of the rings. The calculated FT-IR spectrum shows very different spectral features for trans and cis-RvL in the region 900 – 1500 cm-1, where the spectral peaks at 1138-1158 cm-1 are split in cis-RvL compared to a single peak at 1165 cm-1 in trans-RvL. In the Raman spectra, there is significant enhancement of cis-RvL in the region above 3000cm-1. Further, the carbon chemical environment (13C NMR) of the RvL molecule exhibit a larger chemical shift for cis-RvL compared to trans-RvL (Δδ = 8.18 ppm) for the carbon atom C(11), indicating that the chemical environment of the C group in cis-RvL is more diverse than its other isomer. The energy gap between highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) is 3.95 eV for trans and 4.35 eV for cis-RvL. A more detailed inspection using the recently developed EOES revealed that most of the large energy differences i.e. Δεcis-trans > ±0.30 eV, in their orbitals are contributed from the outer valence shell. They are MO60 (HOMO), MO52-55 and MO46. The active sites that has been captured by Fukui function (f + > 0.08) are associated with the stilbene C=C bond of RvL and cis-RvL is more active at these sites than in trans-RvL, as cis orientation breaks the large conjugation of trans-RvL so that the hydroxyl oxygen’s are more active in cis-RvL. Finally, EDA highlights the interaction energy (ΔEInt) of the phenolic compound, where trans is preferred over the cis-RvL (ΔΔEi = -4.35 kcal.mol-1) isomer. Thus, these quantum mechanics results could help in unwinding the diversified beneficial activities associated with resveratrol.

Keywords: resveratrol, FT-IR, Raman, NMR, excess orbital energy spectrum, energy decomposition analysis, Fukui function

Procedia PDF Downloads 196
3789 Environmental Catalysts for Refining Technology Application: Reduction of CO Emission and Gasoline Sulphur in Fluid Catalytic Cracking Unit

Authors: Loganathan Kumaresan, Velusamy Chidambaram, Arumugam Velayutham Karthikeyani, Alex Cheru Pulikottil, Madhusudan Sau, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar

Abstract:

Environmentally driven regulations throughout the world stipulate dramatic improvements in the quality of transportation fuels and refining operations. The exhaust gases like CO, NOx, and SOx from stationary sources (e.g., refinery) and motor vehicles contribute to a large extent for air pollution. The refining industry is under constant environmental pressure to achieve more rigorous standards on sulphur content in the fuel used in the transportation sector and other off-gas emissions. Fluid catalytic cracking unit (FCCU) is a major secondary process in refinery for gasoline and diesel production. CO-combustion promoter additive and gasoline sulphur reduction (GSR) additive are catalytic systems used in FCCU to assist the combustion of CO to CO₂ in the regenerator and regulate sulphur in gasoline faction respectively along with main FCC catalyst. Effectiveness of these catalysts is governed by the active metal used, its dispersion, the type of base material employed, and retention characteristics of additive in FCCU such as attrition resistance and density. The challenge is to have a high-density microsphere catalyst support for its retention and high activity of the active metals as these catalyst additives are used in low concentration compare to the main FCC catalyst. The present paper discusses in the first part development of high dense microsphere of nanocrystalline alumina by hydro-thermal method for CO combustion promoter application. Performance evaluation of additive was conducted under simulated regenerator conditions and shows CO combustion efficiency above 90%. The second part discusses the efficacy of a co-precipitation method for the generation of the active crystalline spinels of Zn, Mg, and Cu with aluminium oxides as an additive. The characterization and micro activity test using heavy combined hydrocarbon feedstock at FCC unit conditions for evaluating gasoline sulphur reduction activity are studied. These additives were characterized by X-Ray Diffraction, NH₃-TPD & N₂ sorption analysis, TPR analysis to establish structure-activity relationship. The reaction of sulphur removal mechanisms involving hydrogen transfer reaction, aromatization and alkylation functionalities are established to rank GSR additives for their activity, selectivity, and gasoline sulphur removal efficiency. The sulphur shifting in other liquid products such as heavy naphtha, light cycle oil, and clarified oil were also studied. PIONA analysis of liquid product reveals 20-40% reduction of sulphur in gasoline without compromising research octane number (RON) of gasoline and olefins content.

Keywords: hydrothermal, nanocrystalline, spinel, sulphur reduction

Procedia PDF Downloads 99
3788 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction

Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat

Abstract:

The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.

Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision

Procedia PDF Downloads 488
3787 Inductive Grammar, Student-Centered Reading, and Interactive Poetry: The Effects of Teaching English with Fun in Schools of Two Villages in Lebanon

Authors: Talar Agopian

Abstract:

Teaching English as a Second Language (ESL) is a common practice in many Lebanese schools. However, ESL teaching is done in traditional ways. Methods such as constructivism are seldom used, especially in villages. Here lies the significance of this research which joins constructivism and Piaget’s theory of cognitive development in ESL classes in Lebanese villages. The purpose of the present study is to explore the effects of applying constructivist student-centered strategies in teaching grammar, reading comprehension, and poetry on students in elementary ESL classes in two villages in Lebanon, Zefta in South Lebanon and Boqaata in Mount Lebanon. 20 English teachers participated in a training titled “Teaching English with Fun”, which focused on strategies that create a student-centered class where active learning takes place and there is increased learner engagement and autonomy. The training covered three main areas in teaching English: grammar, reading comprehension, and poetry. After participating in the training, the teachers applied the new strategies and methods in their ESL classes. The methodology comprised two phases: in phase one, practice-based research was conducted as the teachers attended the training and applied the constructivist strategies in their respective ESL classes. Phase two included the reflections of the teachers on the effects of the application of constructivist strategies. The results revealed the educational benefits of constructivist student-centered strategies; the students of teachers who applied these strategies showed improved engagement, positive attitudes towards poetry, increased motivation, and a better sense of autonomy. Future research is required in applying constructivist methods in the areas of writing, spelling, and vocabulary in ESL classrooms of Lebanese villages.

Keywords: active learning, constructivism, learner engagement, student-centered strategies

Procedia PDF Downloads 144
3786 Experimental and Numerical Analysis on Enhancing Mechanical Properties of CFRP Adhesive Joints Using Hybrid Nanofillers

Authors: Qiong Rao, Xiongqi Peng

Abstract:

In this work, multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were dispersed into epoxy adhesive to investigate their synergy effects on the shear properties, mode I and mode II fracture toughness of unidirectional composite bonded joints. Testing results showed that the incorporation of MWCNTs and GNPs significantly improved the shear strength, the mode I and mode II fracture toughness by 36.6%, 45% and 286%, respectively. In addition, the fracture surfaces of the bonding area as well as the toughening mechanism of nanofillers were analyzed. Finally, a nonlinear cohesive/friction coupled model for delamination analysis of adhesive layer under shear and normal compression loadings was proposed and implemented in ABAQUS/Explicit via user subroutine VUMAT.

Keywords: nanofillers, adhesive joints, fracture toughness, cohesive zone model

Procedia PDF Downloads 134
3785 The Power of in situ Characterization Techniques in Heterogeneous Catalysis: A Case Study of Deacon Reaction

Authors: Ramzi Farra, Detre Teschner, Marc Willinger, Robert Schlögl

Abstract:

Introduction: The conventional approach of characterizing solid catalysts under static conditions, i.e., before and after reaction, does not provide sufficient knowledge on the physicochemical processes occurring under dynamic conditions at the molecular level. Hence, the necessity of improving new in situ characterizing techniques with the potential of being used under real catalytic reaction conditions is highly desirable. In situ Prompt Gamma Activation Analysis (PGAA) is a rapidly developing chemical analytical technique that enables us experimentally to assess the coverage of surface species under catalytic turnover and correlate these with the reactivity. The catalytic HCl oxidation (Deacon reaction) over bulk ceria will serve as our example. Furthermore, the in situ Transmission Electron Microscopy is a powerful technique that can contribute to the study of atmosphere and temperature induced morphological or compositional changes of a catalyst at atomic resolution. The application of such techniques (PGAA and TEM) will pave the way to a greater and deeper understanding of the dynamic nature of active catalysts. Experimental/Methodology: In situ Prompt Gamma Activation Analysis (PGAA) experiments were carried out to determine the Cl uptake and the degree of surface chlorination under reaction conditions by varying p(O2), p(HCl), p(Cl2), and the reaction temperature. The abundance and dynamic evolution of OH groups on working catalyst under various steady-state conditions were studied by means of in situ FTIR with a specially designed homemade transmission cell. For real in situ TEM we use a commercial in situ holder with a home built gas feeding system and gas analytics. Conclusions: Two complimentary in situ techniques, namely in situ PGAA and in situ FTIR were utilities to investigate the surface coverage of the two most abundant species (Cl and OH). The OH density and Cl uptake were followed under multiple steady-state conditions as a function of p(O2), p(HCl), p(Cl2), and temperature. These experiments have shown that, the OH density positively correlates with the reactivity whereas Cl negatively. The p(HCl) experiments give rise to increased activity accompanied by Cl-coverage increase (opposite trend to p(O2) and T). Cl2 strongly inhibits the reaction, but no measurable increase of the Cl uptake was found. After considering all previous observations we conclude that only a minority of the available adsorption sites contribute to the reactivity. In addition, the mechanism of the catalysed reaction was proposed. The chlorine-oxygen competition for the available active sites renders re-oxidation as the rate-determining step of the catalysed reaction. Further investigations using in situ TEM are planned and will be conducted in the near future. Such experiments allow us to monitor active catalysts at the atomic scale under the most realistic conditions of temperature and pressure. The talk will shed a light on the potential and limitations of in situ PGAA and in situ TEM in the study of catalyst dynamics.

Keywords: CeO2, deacon process, in situ PGAA, in situ TEM, in situ FTIR

Procedia PDF Downloads 292
3784 Photoemission Momentum Microscopy of Graphene on Ir (111)

Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense

Abstract:

Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.

Keywords: band structure, graphene, momentum microscopy, LDAD

Procedia PDF Downloads 342
3783 Development of Strategy for Enhanced Production of Industrial Enzymes by Microscopic Fungi in Submerged Fermentation

Authors: Zhanara Suleimenova, Raushan Blieva, Aigerim Zhakipbekova, Inkar Tapenbayeva, Zhanar Narmuratova

Abstract:

Green processes are based on innovative technologies that do not negatively affect the environment. Industrial enzymes originated from biological systems can effectively contribute to sustainable development through being isolated from microorganisms which are fermented using primarily renewable resources. Many widespread microorganisms secrete a significant amount of biocatalysts into the environment, which greatly facilitates the task of their isolation and purification. The ability to control the enzyme production through the regulation of their biosynthesis and the selection of nutrient media and cultivation conditions allows not only to increase the yield of enzymes but also to obtain enzymes with certain properties. In this regard, large potentialities are embedded in immobilized cells. Enzyme production technology in a secreted active form enabling industrial application on an economically feasible scale has been developed. This method is based on the immobilization of enzyme producers on a solid career. Immobilizing has a range of advantages: decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, the ability of various enzymes' simultaneous production, etc. Design of proposed equipment gives the opportunity to increase the activity of immobilized cell culture filtrate comparing to free cells, growing in periodic culture conditions. Such technology allows giving a 10-times raise in culture productivity, to prolong the process of fungi cultivation and periods of active culture liquid generation. Also, it gives the way to improve the quality of filtrates (to make them more clear) and exclude time-consuming processes of recharging fermentative vials, that require manual removing of mycelium.

Keywords: industrial enzymes, immobilization, submerged fermentation, microscopic fungi

Procedia PDF Downloads 141
3782 Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures

Authors: Antonina Semakova, Karim Mynbaev, Nikolai Bazhenov, Anton Chernyaev, Sergei Kizhaev, Nikolai Stoyanov

Abstract:

At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range.

Keywords: Electroluminescence, InAsSb, light emitting diode, quantum wells

Procedia PDF Downloads 214
3781 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites

Authors: M. Palizvan, M. T. Abadi, M. H. Sadr

Abstract:

Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.

Keywords: homogenization, cohesive zone model, fiber-matrix debonding, RVE

Procedia PDF Downloads 167
3780 Effect of Subsequent Drying and Wetting on the Small Strain Shear Modulus of Unsaturated Soils

Authors: A. Khosravi, S. Ghadirian, J. S. McCartney

Abstract:

Evaluation of the seismic-induced settlement of an unsaturated soil layer depends on several variables, among which the small strain shear modulus, Gmax, and soil’s state of stress have been demonstrated to be of particular significance. Recent interpretation of trends in Gmax revealed considerable effects of the degree of saturation and hydraulic hysteresis on the shear stiffness of soils in unsaturated states. Accordingly, the soil layer is expected to experience different settlement behaviors depending on the soil saturation and seasonal weathering conditions. In this study, a semi-empirical formulation was adapted to extend an existing Gmax model to infer hysteretic effects along different paths of the SWRC including scanning curves. The suitability of the proposed approach is validated against experimental results from a suction-controlled resonant column test and from data reported in literature. The model was observed to follow the experimental data along different paths of the SWRC, and showed a slight hysteresis in shear modulus along the scanning curves.

Keywords: hydraulic hysteresis, scanning path, small strain shear modulus, unsaturated soil

Procedia PDF Downloads 389