Search results for: machine learning techniques
12159 Design of Mobile Teaching for Students Collaborative Learning in Distance Higher Education
Authors: Lisbeth Amhag
Abstract:
The aim of the study is to describe and analyze the design of mobile teaching for students collaborative learning in distance higher education with a focus on mobile technologies as online webinars (web-based seminars or conferencing) by using laptops, smart phones, or tablets. These multimedia tools can provide face-to-face interactions, recorded flipped classroom videos and parallel chat communications. The data collection consists of interviews with 22 students and observations of online face-to-face webinars, as well two surveys. Theoretically, the study joins the research tradition of Computer Supported Collaborative learning, CSCL, as well as Computer Self-Efficacy, CSE concerned with individuals’ media and information literacy. Important conclusions from the study demonstrated mobile interactions increased student centered learning. As the students were appreciating the working methods, they became more engaged and motivated. The mobile technology using among student also contributes to increased flexibility between space and place, as well as media and information literacy.Keywords: computer self-efficacy, computer supported collaborative learning, distance and open learning, educational design and technologies, media and information literacy, mobile learning
Procedia PDF Downloads 35812158 A Comparative Study of Deep Learning Methods for COVID-19 Detection
Authors: Aishrith Rao
Abstract:
COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks
Procedia PDF Downloads 16012157 Application of ICT in the Teaching and Learning of English Language in Nigerian Secondary Schools
Authors: Richard Ayobayowa Foyewa
Abstract:
This work examined the application of ICT in the teaching and learning of English language in Nigerian secondary schools. The definition of ICT was given briefly before areas in which the ICT could be applied in teaching and learning of English language were observed. Teachers’ attitudes towards the use of the computer and Internet facilities were also observed. The conclusion drawn was that ICT is very relevant in the teaching and learning of English language in Nigerian secondary schools. It was therefore recommended that teachers who are not computer literate should go for the training without further delay; government should always employ English language teachers who are computer literates. Government should make fund available in schools for the training and re-training of English language teachers in various computer programmes and in making internet facilities available in secondary schools.Keywords: ICT, Nigerian secondary schools, teaching and learning of English
Procedia PDF Downloads 31812156 Analysis of Erosion Quantity on Application of Conservation Techniques in Ci Liwung Hulu Watershed
Authors: Zaenal Mutaqin
Abstract:
The level of erosion that occurs in the upsteam watersheed will lead to limited infiltrattion, land degradation and river trivialisation and estuaries in the body. One of the watesheed that has been degraded caused by using land is the DA Ci Liwung Upstream. The high degradation that occurs in the DA Ci Liwung upstream is indicated by the hugher rate of erosion on the region, especially in the area of agriculture. In this case, agriculture cultivation intent to the agricultural land that has been applied conservation techniques. This study is applied to determine the quantity of erosion by reviewing Hidrologic Response Unit (HRU) in agricuktural cultivation land which is contained in DA Ci Liwung upstream by using the Soil and Water Assessmen Tool (SWAT). Conservation techniques applied are terracing, agroforestry and gulud terrace. It was concluded that agroforestry conservation techniques show the best value of erosion (lowest) compared with other conservation techniques with the contribution of erosion of 25.22 tonnes/ha/year. The results of the calibration between the discharge flow models with the observation that R²=0.9014 and NS=0.79 indicates that this model is acceptable and feasible applied to the Ci Liwung Hulu watershed.Keywords: conservation, erosion, SWAT analysis, watersheed
Procedia PDF Downloads 29212155 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 18412154 Moving from Computer Assisted Learning Language to Mobile Assisted Learning Language Edutainment: A Trend for Teaching and Learning
Authors: Ahmad Almohana
Abstract:
Technology has led to rapid changes in the world, and most importantly to education, particularly in the 21st century. Technology has enhanced teachers’ potential and has resulted in the provision of greater interaction and choices for learners. In addition, technology is helping to improve individuals’ learning experiences and building their capacity to read, listen, speak, search, analyse, memorise and encode languages, as well as bringing learners together and creating a sense of greater involvement. This paper has been organised in the following way: the first section provides a review of the literature related to the implementation of CALL (computer assisted learning language), and it explains CALL and its phases, as well as attempting to highlight and analyse Warschauer’s article. The second section is an attempt to describe the move from CALL to mobilised systems of edutainment, which challenge existing forms of teaching and learning. It also addresses the role of the teacher and the curriculum content, and how this is affected by the computerisation of learning that is taking place. Finally, an empirical study has been conducted to collect data from teachers in Saudi Arabia using quantitive and qualitative method tools. Connections are made between the area of study and the personal experience of the researcher carrying out the study with a methodological reflection on the challenges faced by the teachers of this same system. The major findings were that it is worth spelling out here that despite the circumstances in which students and lecturers are currently working, the participants revealed themselves to be highly intelligent and articulate individuals who were constrained from revealing this criticality and creativity by the system of learning and teaching operant in most schools.Keywords: CALL, computer assisted learning language, EFL, English as a foreign language, ELT, English language teaching, ETL, enhanced technology learning, MALL, mobile assisted learning language
Procedia PDF Downloads 17012153 Teachers’ and Students’ Reactions to a Guided Reading Program Designed by a Teachers’ Professional Learning Community
Authors: Yea-Mei Leou, Shiu-Hsung Huang, T. C. Shen, Chin-Ya Fang
Abstract:
The purposes of this study were to explore how to establish a professional learning community for English teachers at a junior high school, and to explore how teachers and students think about the guided reading program. The participants were three experienced English teachers and their ESL seventh-grade students from three classes in a junior high school. Leveled picture books and worksheets were used in the program. Questionnaires and interviews were used for gathering information. The findings were as follows: First, most students enjoyed this guided reading program. Second, the teachers thought the guided reading program was helpful to students’ learning and the discussions in the professional learning community refreshed their ideas, but the preparation for the teaching was time-consuming. Suggestions based on the findings were provided.Keywords: ESL students, guided reading, leveled books, professional learning community
Procedia PDF Downloads 37712152 The Possible Double-Edged Sword Effects of Online Learning on Academic Performance: A Quantitative Study of Preclinical Medical Students
Authors: Atiwit Sinyoo, Sekh Thanprasertsuk, Sithiporn Agthong, Pasakorn Watanatada, Shaun Peter Qureshi, Saknan Bongsebandhu-Phubhakdi
Abstract:
Background: Since the SARS-CoV-2 virus became extensively disseminated throughout the world, online learning has become one of the most hotly debated topics in educational reform. While some studies have already shown the advantage of online learning, there are still questions concerning how online learning affects students’ learning behavior and academic achievement when each student learns in a different way. Hence, we aimed to develop a guide for preclinical medical students to avoid drawbacks and get benefits from online learning that possibly a double-edged sword. Methods: We used a multiple-choice questionnaire to evaluate the learning behavior of second-year Thai medical students in the neuroscience course. All traditional face-to-face lecture classes were video-recorded and promptly posted to the online learning platform throughout this course. Students could pick and choose whatever classes they wanted to attend, and they may use online learning as often as they wished. Academic performance was evaluated as summative score, spot exam score and pre-post-test improvement. Results: More frequently students used online learning platform, the less they attended lecture classes (P = 0.035). High proactive online learners (High PO) who were irregular attendee (IrA) had significantly lower summative scores (P = 0.026), spot exam score (P = 0.012) and pre-post-test improvement (P = 0.036). In the meanwhile, conditional attendees (CoA) who only attended classes with attendance check had significantly higher summative score (P = 0.025) and spot exam score (P = 0.001) if they were in the High PO group. Conclusions: The benefit and drawbacks edges of using an online learning platform were demonstrated in our research. Based on this double-edged sword effect, we believe that online learning is a valuable learning strategy, but students must carefully plan their study schedule to gain the “benefit edge” meanwhile avoiding its “drawback edge”.Keywords: academic performance, assessment, attendance, online learning, preclinical medical students
Procedia PDF Downloads 15812151 Deliberate Learning and Practice: Enhancing Situated Learning Approach in Professional Communication Course
Authors: Susan Lee
Abstract:
Situated learning principles are adopted in the design of the module, professional communication, in its iteration of tasks and assignments to create a learning environment that simulates workplace reality. The success of situated learning is met when students are able to transfer and apply their skills beyond the classroom, in their personal life, and workplace. The learning process should help students recognize the relevance and opportunities for application. In the module’s learning component on negotiation, cases are created based on scenarios inspired by industry practices. The cases simulate scenarios that students on the course may encounter when they enter the workforce when they take on executive roles in the real estate sector. Engaging in the cases has enhanced students’ learning experience as they apply interpersonal communication skills in negotiation contexts of executives. Through the process of case analysis, role-playing, and peer feedback, students are placed in an experiential learning space to think and act in a deliberate manner not only as students but as professionals they will graduate to be. The immersive skills practices enable students to continuously apply a range of verbal and non-verbal communication skills purposefully as they stage their negotiations. The theme in students' feedback resonates with their awareness of the authentic and workplace experiences offered through visceral role-playing. Students also note relevant opportunities for the future transfer of the skills acquired. This indicates that students recognize the possibility of encountering similar negotiation episodes in the real world and realize they possess the negotiation tools and communication skills to deliberately apply them when these opportunities arise outside the classroom.Keywords: deliberate practice, interpersonal communication skills, role-play, situated learning
Procedia PDF Downloads 21412150 Recurrent Neural Networks for Complex Survival Models
Authors: Pius Marthin, Nihal Ata Tutkun
Abstract:
Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)
Procedia PDF Downloads 9012149 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes
Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez
Abstract:
Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability
Procedia PDF Downloads 23312148 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data
Authors: Minjuan Sun
Abstract:
Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.Keywords: credit score, digital footprint, Fintech, machine learning
Procedia PDF Downloads 16112147 The Impact of Artificial Intelligence on E-Learning
Authors: Sameil Hanna Samweil Botros
Abstract:
The variation of social networking websites inside higher training has garnered enormous hobby in recent years, with numerous researchers thinking about it as a possible shift from the conventional lecture room-based learning paradigm. However, this boom in research and carried out research, but the adaption of SNS-based modules has not proliferated inside universities. This paper commences its contribution with the aid of studying the numerous fashions and theories proposed in the literature and amalgamates together various effective aspects for the inclusion of social technology within e-gaining knowledge. A three-phased framework is similarly proposed, which informs the important concerns for the hit edition of SNS in improving the student's mastering experience. This suggestion outlines the theoretical foundations as a way to be analyzed in sensible implementation across worldwide university campuses.Keywords: eLearning, institutionalization, teaching and learning, transformation vtuber, ray tracing, avatar agriculture, adaptive, e-learning, technology eLearning, higher education, social network sites, student learning
Procedia PDF Downloads 2512146 Effects of Research-Based Blended Learning Model Using Adaptive Scaffolding to Enhance Graduate Students' Research Competency and Analytical Thinking Skills
Authors: Panita Wannapiroon, Prachyanun Nilsook
Abstract:
This paper is a report on the findings of a Research and Development (R&D) aiming to develop the model of Research-Based Blended Learning Model Using Adaptive Scaffolding (RBBL-AS) to enhance graduate students’ research competency and analytical thinking skills, to study the result of using such model. The sample consisted of 10 experts in the fields during the model developing stage, while there were 23 graduate students of KMUTNB for the RBBL-AS model try out stage. The research procedures included 4 phases: 1) literature review, 2) model development, 3) model experiment, and 4) model revision and confirmation. The research results were divided into 3 parts according to the procedures as described in the following session. First, the data gathering from the literature review were reported as a draft model; followed by the research finding from the experts’ interviews indicated that the model should be included 8 components to enhance graduate students’ research competency and analytical thinking skills. The 8 components were 1) cloud learning environment, 2) Ubiquitous Cloud Learning Management System (UCLMS), 3) learning courseware, 4) learning resources, 5) adaptive Scaffolding, 6) communication and collaboration tolls, 7) learning assessment, and 8) research-based blended learning activity. Second, the research finding from the experimental stage found that there were statistically significant difference of the research competency and analytical thinking skills posttest scores over the pretest scores at the .05 level. The Graduate students agreed that learning with the RBBL-AS model was at a high level of satisfaction. Third, according to the finding from the experimental stage and the comments from the experts, the developed model was revised and proposed in the report for further implication and references.Keywords: research based learning, blended learning, adaptive scaffolding, research competency, analytical thinking skills
Procedia PDF Downloads 41812145 Effects of Analogy Method on Children's Learning: Practice of Rainbow Experiments
Authors: Hediye Saglam
Abstract:
This research has been carried out to bring in the 6 acquisitions in the 2014 Preschool Teaching Programme of the Turkish Ministry of Education through the method of analogy. This research is practiced based on the experimental pattern with pre-test and final test controlling groups. The working group of the study covers the group between 5-6 ages. The study takes 5 weeks including the 2 weeks spent for pre-test and the final test. It is conducted with the preschool teacher who gives the lesson along with the researcher in the in-class and out-of-class rainbow experiments of the students for 5 weeks. 'One Sample T Test' is used for the evaluation of the pre-test and final test. SPSS 17 programme is applied for the analysis of the data. Results: As an outcome of the study it is observed that analogy method affects children’s learning of the rainbow. For this very reason teachers should receive inservice training for different methods and techniques like analogy. This method should be included in preschool education programme and should be applied by teachers more often.Keywords: acquisitions of preschool education programme, analogy method, pre-test/final test, rainbow experiments
Procedia PDF Downloads 50512144 Interaction Tasks of CUE Model in Virtual Language Learning in Travel English for Taiwanese College EFL Learners
Authors: Kuei-Hao Li, Eden Huang
Abstract:
Motivation suggests the willingness one person has towards taking action. Learners’ motivation has frequently been regarded as the most crucial factor in successful language acquisition. Without sufficient motivation, learners cannot achieve long-term learning goals despite remarkable abilities. Therefore, the study aims to investigate motivation of interaction tasks designed by the researchers for college EFL learners in Travel English class in virtual reality environment, integrating CUE model, Cognition, Usage and Expansion in the course. Thirty college learners were asked to join the virtual language learning website designed by the researchers. Data was collected via feedback questionnaire, interview, and learner interactions. The findings indicated that the course in the CUE model in language learning website of virtual reality environment was effective at motivating EFL learners and improving their oral communication and social interactions in the learning process. Some pedagogical implications are also provided in helping both language instructors and EFL learners in virtual reality environment.Keywords: motivation, virtual reality, virtual language learning, second language acquisition
Procedia PDF Downloads 39112143 Reflections of AB English Students on Their English Language Experiences
Authors: Roger G. Pagente Jr.
Abstract:
This study seeks to investigate the language learning experiences of the thirty-nine AB-English majors who were selected through fish-bowl technique from the 157 students enrolled in the AB-English program. Findings taken from the diary, questionnaire and unstructured interview revealed that motivation, learners’ belief, self-monitoring, language anxiety, activities and strategies were the prevailing factors that influenced the learning of English of the participants.Keywords: diary, English language learning experiences, self-monitoring, language anxiety
Procedia PDF Downloads 60712142 Creative Potential of Children with Learning Disabilities
Authors: John McNamara
Abstract:
Growing up creative is an important idea in today’s classrooms. As education seeks to prepare children for their futures, it is important that the system considers traditional as well as non-traditional pathways. This poster describes the findings of a research study investigating creative potential in children with learning disabilities. Children with learning disabilities were administered the Torrance Test of Creative Problem Solving along with subtests from the Comprehensive Test of Phonological Processing. A quantitative comparative analysis was computed using paired-sample t-tests. Results indicated statistically significant difference between children’s creative problem-solving skills and their reading-based skills. The results lend support to the idea that children with learning disabilities have inherent strengths in the area of creativity. It can be hypothesized that the success of these children may be associated with the notion that they are using a type of neurological processing that is not otherwise used in academic tasks. Children with learning disabilities, a presumed left-side neurological processing problem, process information with the right side of the brain – even with tasks that should be processed with the left side (i.e. language). In over-using their right hemisphere, it is hypothesized that children with learning disabilities have well-developed right hemispheres and, as such, have strengths associated with this type of processing, such as innovation and creativity. The current study lends support to the notion that children with learning disabilities may be particularly primed to succeed in areas that call on creativity and creative thinking.Keywords: learning disabilities, educational psychology, education, creativity
Procedia PDF Downloads 7012141 The Flipped Education Case Study on Teacher Professional Learning Community in Technology and Media Implementation
Authors: Juei-Hsin Wang, Yen-Ting Chen
Abstract:
The paper examines teacher professional learning community theory and implementation by using technology and media tools in Taiwan. After literature review, the researcher concluded in five elements of teacher professional learning community theory. They are ‘sharing the vision and value', ‘collaborative cooperation’, ‘ to support the situation', ‘to share practice' and 'Pay Attention to Student Learning Effectiveness' five levels by using technology and media in flipped education. Teacher professional learning community is one kind of models for teacher professional development in flipped education. Due to Taiwan education culture, there is no summative evaluation for teachers. So, there are multiple kinds of ways and education practice in teacher professional learning community nowadays. This study used literature review and quality analysis to analyze the connection theory and practice and discussed the official and non‐official strategies on teacher professional learning community by using technology and media in flipped education. The tablet is used as a camera tool for classroom students to solve problems. The students can instantly see and enable other students to watch the whole class discussion by operating the tablet. This would allow teachers and students to focus on discussing the connotation of subjects, especially bottom‐up and non‐official cases from teachers become an important influence in Taiwan.Keywords: professional learning community, collaborative cooperation, flipped education, technology application, media application
Procedia PDF Downloads 14712140 A Collaborative Teaching and Learning Model between Academy and Industry for Multidisciplinary Engineering Education
Authors: Moon-Soo Kim
Abstract:
In order to cope with the increasing demand for multidisciplinary learning between academy and industry, a collaborative teaching and learning model and related operational tools enabling applications to engineering education are essential. This study proposes a web-based collaborative framework for interactive teaching and learning between academy and industry as an initial step for the development of a web- and mobile-based integrated system for both engineering students and industrial practitioners. The proposed web-based collaborative teaching and learning framework defines several entities such as learner, solver and supporter or sponsor for industrial problems, and also has a systematic architecture to build information system including diverse functions enabling effective interaction among the defined entities regardless of time and places. Furthermore, the framework, which includes knowledge and information self-reinforcing mechanism, focuses on the previous problem-solving records as well as subsequent learners’ creative reusing in solving process of new problems.Keywords: collaborative teaching and learning model, academy and industry, web-based collaborative framework, self-reinforcing mechanism
Procedia PDF Downloads 32612139 Charting the Course: Using group Charters to Enhance Engagement and Learning Outcomes
Authors: Angela Knox
Abstract:
Student diversity in postgraduate classes puts major challengesoneducatorsseekingtoencouragestudentengagementand desired learning outcomes. This paper outlines the impact of a set of teaching initiatives aimed at addressing challenges associated with teaching and learning in an environment characterized by diversity in the student cohort. The study examines postgraduate students completing the core capstone unit within a specialized business degree. Although relatively small, the student cohort is highly diverse in terms of cultural backgrounds represented, prior learning and/or qualifications,aswellasdurationandtypeofworkexperiencerelevant to the degree being completed. The wide range of cultures, existing knowledge, and experience create enormous challenges with respect to students’ learning needs and outcomes. Subsequently, a suite of teaching innovations has been adopted to enhance curriculum content/delivery and the design of assessments. This paperexplores the impact of formalized group charters on students’ learning outcomes. Data from surveys and focus groups are used to assess the effectiveness of these practices. The results highlight the effectiveness of formalizedgroup charters in addressing diverse student needs and enhancing student engagement and learning outcomes. Thesefindings suggest that such practices would benefit students’ learning in environments marked by diversity in the student cohort. Specific recommendationsareofferedforothereducatorsworkingwithdiverse classes.Keywords: assessment design, curriculum content, curriculum delivery, group charter, student diversity
Procedia PDF Downloads 13512138 Efl Learner’s Perceptions of Online Learning and Motivation
Authors: Sonia Achour
Abstract:
Owing to the outbreak of the Corona pandemic, the shift to online learning took place abruptly. Neither practitioners nor learners were prepared for this sudden move. Higher education providers were compelled to implement online courses on a very short notice. Sultan Qaboos University is one among these. The question of motivation attracted a great number of educators. A case study was carried out so as to shed some lights on students' perceptions towards virtual learning and how it influenced their motivation to learning. The data was collected by means of semi-structured interviews of a focused group of 16 students along with classroom observation over a 12 week period. Both interviews and class observation revealed that there was a general negative feeling about the online teaching platform and its impact on the learners' motivation. Several factors were identified, namely the absence of interaction, social isolation, inconsistency of instructional knowledge, unfamiliarity with the new learning environment, IT illiteracy, and teacher development. The researcher aims at demonstrating the effect of virtual classrooms on students' motivation to acquire L2. The findings may be used to inform future decisions about courses, curriculum design. And teacher developmentKeywords: online learning, motivation, EFL context, virtual setting
Procedia PDF Downloads 9012137 Experiential Learning: Roles and Attributes of an Optometry Educator Recommended by a Millennial Generation
Authors: E. Kempen, M. J. Labuschagne, M. P. Jama
Abstract:
There is evidence that experiential learning is truly influential and favored by the millennial generation. However, little is known about the role and attributes an educator has to adopt during the experiential learning cycle, especially when applied in optometry education. This study aimed to identify the roles and attributes of an optometry educator during the different modes of the experiential learning cycle. Methods: A qualitative case study design was used. Data was collected using an open-ended questionnaire survey, following the application of nine different teaching-learning methods based on the experimental learning cycle. The total sample population of 68 undergraduate students from the Department of Optometry at the University of the Free State, South Africa were invited to participate. Focus group interviews (n=15) added additional data that contributed to the interpretation and confirmation of the data obtained from the questionnaire surveys. Results: The perceptions and experiences of the students identified a variety of roles and attributes as well as recommendations on the effective adoption of these roles and attributes. These roles and attributes included being knowledgeable, creating an interest, providing guidance, being approachable, building confidence, implementing ground rules, leading by example, and acting as a mediator. Conclusion: The findings suggest that the actions of an educator have the most substantial impact on students’ perception of a learning experience. Not only are the recommendations based on the views of a millennial generation, but the implementation of the personalized recommendations may also transform a learning environment. This may lead an optometry student to a deeper understanding of knowledge.Keywords: experiences and perceptions, experiential learning, millennial generation, recommendation for optometry education
Procedia PDF Downloads 11612136 An Analysis of Machine Translation: Instagram Translation vs Human Translation on the Perspective Translation Quality
Authors: Aulia Fitri
Abstract:
This aims to seek which part of the linguistics with the common mistakes occurred between Instagram translation and human translation. Instagram is a social media account that is widely used by people in the world. Everyone with the Instagram account can consume the captions and pictures that are shared by their friends, celebrity, and public figures across countries. Instagram provides the machine translation under its caption space that will assist users to understand the language of their non-native. The researcher takes samples from an Indonesian public figure whereas the account is followed by many followers. The public figure tries to help her followers from other countries understand her posts by putting up the English version after the Indonesian version. However, the research on Instagram account has not been done yet even though the account is widely used by the worldwide society. There are 20 samples that will be analysed on the perspective of translation quality and linguistics tools. As the MT, Instagram tends to give a literal translation without regarding the topic meant. On the other hand, the human translation tends to exaggerate the translation which leads a different meaning in English. This is an interesting study to discuss when the human nature and robotic-system influence the translation result.Keywords: human translation, machine translation (MT), translation quality, linguistic tool
Procedia PDF Downloads 32112135 A Machine Learning-Assisted Crime and Threat Intelligence Hunter
Authors: Mohammad Shameel, Peter K. K. Loh, James H. Ng
Abstract:
Cybercrime is a new category of crime which poses a different challenge for crime investigators and incident responders. Attackers can mask their identities using a suite of tools and with the help of the deep web, which makes them difficult to track down. Scouring the deep web manually takes time and is inefficient. There is a growing need for a tool to scour the deep web to obtain useful evidence or intel automatically. In this paper, we will explain the background and motivation behind the research, present a survey of existing research on related tools, describe the design of our own crime/threat intelligence hunting tool prototype, demonstrate its capability with some test cases and lastly, conclude with proposals for future enhancements.Keywords: cybercrime, deep web, threat intelligence, web crawler
Procedia PDF Downloads 17312134 Development and Validation of Cylindrical Linear Oscillating Generator
Authors: Sungin Jeong
Abstract:
This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator
Procedia PDF Downloads 19512133 The Application of Action Research to Integrate the Innovation in Learning Experience in a Design Course
Authors: Walaa Mohammed Metwally
Abstract:
This case study used the action research concept as a tool to integrate the innovation in a learning experience on a design course. The action research was investigated at Prince Sultan University, College of Engineering in the Interior Design and Architecture Department in January 2015, through the Higher Education Academy program. The action research was presented first with the definition of the research, leading to how it was used and how solutions were found. It concluded by showing that once the action research application in interior design and architecture were studied it was an effective tool to improve student’s learning, develop their practice in design courses, and it discussed the negative and positive issues that were encountered.Keywords: action research, innovation, intervention, learning experience, peer review
Procedia PDF Downloads 33912132 Toward Automatic Chest CT Image Segmentation
Authors: Angely Sim Jia Wun, Sasa Arsovski
Abstract:
Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.Keywords: lung segmentation, binary masks, U-Net, medical software tools
Procedia PDF Downloads 9812131 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance
Authors: Eva Laryea, Clement Yeboah Authors
Abstract:
A pretest-posttest within subjects, experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising, as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers, and will continue to be a dynamic and rapidly evolving field for years to come.Keywords: pretest-posttest within subjects, experimental design, achievement, statistics-related anxiety
Procedia PDF Downloads 5812130 Observational Learning in Ecotourism: An Investigation into Ecotourists' Environmentally Responsible Behavioral Intentions in South Korea
Authors: Benjamin Morse, Michaela Zint, Jennifer Carman
Abstract:
This study proposes a behavioral model in which ecotourists’ level of observational learning shapes their subsequent environmentally responsible behavioral intentions through ecotourism participation. Unlike past studies that have focused on individual attributes such as attitudes, locus of control, personal responsibility, knowledge, skills or effect, this present study explores select social attributes as potential antecedents to environmentally responsible behaviors. A total of 207 completed questionnaires were obtained from ecotourists in Korea and path analyses were conducted to explore the degree in which the hypothesized model directly and indirectly explained ecotourists’ environmentally responsible behavioral intentions. Results suggest that observational learning and its associated predictors (i.e., engagement, observation, reproduction and reinforcement) are key determinants of ecotourists environmentally responsible behavioral intentions. The application of observational learning proved to be informative, and has a number of implications for improving ecotourism programs. Our model also lays out a theoretical framework for future research.Keywords: ecotourism, observational learning, environmentally responsible behavior, social learning theory
Procedia PDF Downloads 329