Search results for: industrial wireless network (IWN)
6214 A Cooperative Signaling Scheme for Global Navigation Satellite Systems
Authors: Keunhong Chae, Seokho Yoon
Abstract:
Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.Keywords: global navigation satellite network, cooperative signaling, data combining, nodes
Procedia PDF Downloads 2826213 Construction of Finite Woven Frames through Bounded Linear Operators
Authors: A. Bhandari, S. Mukherjee
Abstract:
Two frames in a Hilbert space are called woven or weaving if all possible merge combinations between them generate frames of the Hilbert space with uniform frame bounds. Weaving frames are powerful tools in wireless sensor networks which require distributed data processing. Considering the practical applications, this article deals with finite woven frames. We provide methods of constructing finite woven frames, in particular, bounded linear operators are used to construct woven frames from a given frame. Several examples are discussed. We also introduce the notion of woven frame sequences and characterize them through the concepts of gaps and angles between spaces.Keywords: frames, woven frames, gap, angle
Procedia PDF Downloads 1956212 The Iraqi Fibre-to-the-Home Networks, Problems, Challenges, and Solutions along with Less Expense
Authors: Hasanein Hasan, Mohammed Al-Taie, Basil Shanshool, Khalaf Abd-Ali
Abstract:
This approach aims to deal with establishing and operating Iraqi Fibre-To-The-Home (FTTH) projects. The problems they suffer from are organized sabotage, vandalism, accidental damage and poor planning. It provides practical solutions that deal with the aforementioned problems. These solutions consist of both technical and financial clarifications that ensure the achievement of the FTTH network’s stability for the purpose of equipping citizens, private sector companies, and governmental institutions with services, data transmission, the Internet, and other services. They aim to solve problems and obstacles accompanying the operation and maintenance of FTTH projects implemented by the Informatics and Telecommunications Public Company (ITPC)/ Iraqi Ministry of Communications (MoC). This approach takes the FTTH network of AlMaalif-AlMuaslat districts/ Baghdad-Iraq as a case study.Keywords: CCTV, FTTH, ITPC, MoC, NVR, PTZ
Procedia PDF Downloads 856211 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning
Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan
Abstract:
The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass
Procedia PDF Downloads 1176210 Semantic Network Analysis of the Saudi Women Driving Decree
Authors: Dania Aljouhi
Abstract:
September 26th, 2017, is a historic date for all women in Saudi Arabia. On that day, Saudi Arabia announced the decree on allowing Saudi women to drive. With the advent of vision 2030 and its goal to empower women and increase their participation in Saudi society, we see how Saudis’ Twitter users deliberate the 2017 decree from different social, cultural, religious, economic and political factors. This topic bridges social media 'Twitter,' gender and social-cultural studies to offer insights into how Saudis’ tweets reflect a broader discourse on Saudi women in the age of social media. The present study aims to explore the meanings and themes that emerge by Saudis’ Twitter users in response to the 2017 royal decree on women driving. The sample used in the current study involves (n= 1000) tweets that were collected from Sep 2017 to March 2019 to account for the Saudis’ tweets before and after implementing the decree. The paper uses semantic and thematic network analysis methods to examine the Saudis’ Twitter discourse on the women driving issue. The paper argues that Twitter as a platform has mediated the discourse of women driving among the Saudi community and facilitated social changes. Finally, framing theory (Goffman, 1974) and Networked framing (Meraz & Papacharissi 2013) are both used to explain the tweets on the decree of allowing Saudi women to drive based on # Saudi women-driving-cars.Keywords: Saudi Arabia, women, Twitter, semantic network analysis, framing
Procedia PDF Downloads 1596209 Production of Bioethanol through Hydrolysis of Agro-Industrial Banana Crop Residues
Authors: Sánchez Acuña, Juan Camilo, Granados Gómez, Mildred Magaly, Navarrete Rodríguez, Luisa Fernanda
Abstract:
Nowadays, the main biofuels source production as bioethanol is food crops. This means a high competition between foods and energy production. For this reason, it is necessary to take into account the use of new raw materials friendly to the environment. The main objective of this paper is to evaluate the potential of the agro-industrial banana crop residues in the production of bioethanol. A factorial design of 24 was used, the design has variables such as pH, time and concentration of hydrolysis, another variable is the time of fermentation that is of 7 or 15 days. In the hydrolysis phase, the pH is acidic (H2SO4) or basic (NaOH), the time is 30 or 15 minutes and the concentration is 0.1 or 0.5 M. It was observed that basic media, low concentrations, fermentation, and higher pretreatment times produced better performance in terms of biofuel obtained.Keywords: bioethanol, biofuels, banana waste, hydrolysis
Procedia PDF Downloads 4286208 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression
Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu
Abstract:
The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load
Procedia PDF Downloads 3536207 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks
Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry
Abstract:
Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices
Procedia PDF Downloads 566206 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 2106205 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification
Procedia PDF Downloads 1126204 Development of Model for Effective Sub- District Municipality Wastewater Management
Authors: Vitool Suksankavanich
Abstract:
This preliminary research aimed to explore the development of wastewater management of Bang Pu Sub- District Municipality, Samutprakan Province, in order to establish appropriate model for effective wastewater management that fit to the context of the area. The research posed three questions: [i] to what extent the promotion of social responsibility awareness built among the local community resulted in effectiveness of the local wastewater management; [ii] did the waste disposal management of Bang Pu Industrial Estate contribute to the overall environmental quality of Bang Pu Sub- District Municipality; and [iii] did the relationship between the community and the industrial factories have any effect on the wastewater management. The in- depth interview revealed main obstacles occurred in the process of wastewater management in the area. The fieldwork also contributed to a product of an appropriate model of effective wastewater management.Keywords: legitimacy theory, stakeholder theory, social responsibility, wastewater management
Procedia PDF Downloads 4156203 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures
Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse
Abstract:
A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.Keywords: industrial sludge drying, heat transfer, mass transfer, mathematical modelling
Procedia PDF Downloads 1356202 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning
Authors: Kwaku Damoah
Abstract:
This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.
Procedia PDF Downloads 716201 SISSLE in Consensus-Based Ripple: Some Improvements in Speed, Security, Last Mile Connectivity and Ease of Use
Authors: Mayank Mundhra, Chester Rebeiro
Abstract:
Cryptocurrencies are rapidly finding wide application in areas such as Real Time Gross Settlements and Payments Systems. Ripple is a cryptocurrency that has gained prominence with banks and payment providers. It solves the Byzantine General’s Problem with its Ripple Protocol Consensus Algorithm (RPCA), where each server maintains a list of servers, called Unique Node List (UNL) that represents the network for the server, and will not collectively defraud it. The server believes that the network has come to a consensus when members of the UNL come to a consensus on a transaction. In this paper we improve Ripple to achieve better speed, security, last mile connectivity and ease of use. We implement guidelines and automated systems for building and maintaining UNLs for resilience, robustness, improved security, and efficient information propagation. We enhance the system so as to ensure that each server receives information from across the whole network rather than just from the UNL members. We also introduce the paradigm of UNL overlap as a function of information propagation and the trust a server assigns to its own UNL. Our design not only reduces vulnerabilities such as eclipse attacks, but also makes it easier to identify malicious behaviour and entities attempting to fraudulently Double Spend or stall the system. We provide experimental evidence of the benefits of our approach over the current Ripple scheme. We observe ≥ 4.97x and 98.22x in speedup and success rate for information propagation respectively, and ≥ 3.16x and 51.70x in speedup and success rate in consensus.Keywords: Ripple, Kelips, unique node list, consensus, information propagation
Procedia PDF Downloads 1506200 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis
Authors: Hyun-Woo Cho
Abstract:
Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques
Procedia PDF Downloads 3886199 GIS-Based Identification of Overloaded Distribution Transformers and Calculation of Technical Electric Power Losses
Authors: Awais Ahmed, Javed Iqbal
Abstract:
Pakistan has been for many years facing extreme challenges in energy deficit due to the shortage of power generation compared to increasing demand. A part of this energy deficit is also contributed by the power lost in transmission and distribution network. Unfortunately, distribution companies are not equipped with modern technologies and methods to identify and eliminate these losses. According to estimate, total energy lost in early 2000 was between 20 to 26 percent. To address this issue the present research study was designed with the objectives of developing a standalone GIS application for distribution companies having the capability of loss calculation as well as identification of overloaded transformers. For this purpose, Hilal Road feeder in Faisalabad Electric Supply Company (FESCO) was selected as study area. An extensive GPS survey was conducted to identify each consumer, linking it to the secondary pole of the transformer, geo-referencing equipment and documenting conductor sizes. To identify overloaded transformer, accumulative kWH reading of consumer on transformer was compared with threshold kWH. Technical losses of 11kV and 220V lines were calculated using the data from substation and resistance of the network calculated from the geo-database. To automate the process a standalone GIS application was developed using ArcObjects with engineering analysis capabilities. The application uses GIS database developed for 11kV and 220V lines to display and query spatial data and present results in the form of graphs. The result shows that about 14% of the technical loss on both high tension (HT) and low tension (LT) network while about 4 out of 15 general duty transformers were found overloaded. The study shows that GIS can be a very effective tool for distribution companies in management and planning of their distribution network.Keywords: geographical information system, GIS, power distribution, distribution transformers, technical losses, GPS, SDSS, spatial decision support system
Procedia PDF Downloads 3766198 Octagon Shaped Wearable Antenna for Band at 4GHz
Authors: M. Khazini, M.Damou, Z. Souar
Abstract:
In this paper, octagon antenna ultra wideband (UWB) low band wearable antenna designs have been proposed for in-body to on-body communication channel of wireless. Single element antenna, dual elements, are designed and compared in free space and in body proximity. Conformal design has been focused. Liquid crystal polymer (LCP) is a material that has gained attention as a potential high-performance microwave substrate and packaging material. This investigation uses several methods to determine the electrical properties of LCP for millimeter-wave frequencies.Keywords: ultra wideband, wearable antenna, slot antenna, liquid crystal polymer (LCP), CST studio
Procedia PDF Downloads 3626197 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 516196 Implementation of the Interlock Protocol to Enhance Security in Unmanned Aerial Vehicles
Authors: Vikram Prabhu, Mohammad Shikh Bahaei
Abstract:
This paper depicts the implementation of a new infallible technique to protect an Unmanned Aerial Vehicle from cyber-attacks. An Unmanned Aerial Vehicle (UAV) could be vulnerable to cyber-attacks because of jammers or eavesdroppers over the network which pose as a threat to the security of the UAV. In the field of network security, there are quite a few protocols which can be used to establish a secure connection between UAVs and their Operators. In this paper, we discuss how the Interlock Protocol could be implemented to foil the Man-in-the-Middle Attack. In this case, Wireshark has been used as the sniffer (man-in-the-middle). This paper also shows a comparison between the Interlock Protocol and the TCP Protocols using cryptcat and netcat and at the same time highlights why the Interlock Protocol is the most efficient security protocol to prevent eavesdropping over the communication channel.Keywords: interlock protocol, Diffie-Hellman algorithm, unmanned aerial vehicles, control station, man-in-the-middle attack, Wireshark
Procedia PDF Downloads 3046195 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area
Procedia PDF Downloads 2726194 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2966193 Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics
Authors: F. Lhafiane, A. Elbyed, M. Bouchoum
Abstract:
The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.Keywords: reverse logistics, multi agent system, prometheus methodology
Procedia PDF Downloads 4746192 Off-Topic Text Detection System Using a Hybrid Model
Authors: Usama Shahid
Abstract:
Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.Keywords: off topic, text detection, eco state network, machine learning
Procedia PDF Downloads 886191 Urban Vegetative Planning for Ambient Ozone Pollution: An Eco-Management Approach
Authors: M. Anji Reddy, R. Uma Devi
Abstract:
Environmental planning for urban development is very much needed to reduce air pollution through the enhancement of vegetative cover in the cities like Hyderabad. This can be mainly based on the selection of appropriate native plant species as bioindicators to assess the impact of ambient Ozone. In the present study, tolerant species are suggested aimed to reduce the magnitude of ambient ozone concentrations which not only increase eco-friendly vegetation but also moderate air pollution. Hyderabad city is divided into 5 zones based on Land Use/Land Cover category further each zone divided into residential, traffic, industrial, and peri-urban areas. Highest ambient ozone levels are recorded in Industrial areas followed by traffic areas in the entire study area ( > 180 µg/m3). Biomonitoring of selected sixteen local urban plant species with the help of Air Pollution Tolerance Index (APTI) showed its susceptibility to air pollution. Statistical regression models in between the tolerant plant species and ambient ozone levels suggested five plant species namely Azardirachta indica A. Juss which have a high tolerant response to ambient ozone followed by Delonix regia Hook. along with Millingtonia hortensis L.f., Alestonia Scholaries L., and Samania saman Jacq. in the industrial and traffic areas of the study area to mitigate ambient Ozone pollution and also to improve urban greenery.Keywords: air pollution tolerance index, bio-indicators, eco-friendly vegetation, urban greenery
Procedia PDF Downloads 4546190 Case Analysis of Bamboo Based Social Enterprises in India-Improving Profitability and Sustainability
Authors: Priyal Motwani
Abstract:
The current market for bamboo products in India is about Rs. 21000 crores and is highly unorganised and fragmented. In this study, we have closely analysed the structure and functions of a major bamboo craft based organisation in Kerela, India and elaborated about its value chain, product mix, pricing strategy and supply chain, collaborations and competitive landscape. We have identified six major bottlenecks that are prevalent in such organisations, based on the Indian context, in relation to their product mix, asset management, and supply chain- corresponding waste management and retail network. The study has identified that the target customers for the bamboo based products and alternative revenue streams (eco-tourism, microenterprises, training), by carrying out secondary and primary research (5000 sample space), that can boost the existing revenue by 150%. We have then recommended an optimum product mix-covering premium, medium and low valued processing, for medium sized bamboo based organisations, in accordance with their capacity to maximize their revenue potential. After studying such organisations and their counter parts, the study has established an optimum retail network, considering B2B, B2C physical and online retail, to maximize their sales to their target groups. On the basis of the results obtained from the analysis of the future and present trends, our study gives recommendations to improve the revenue potential of bamboo based organisation in India and promote sustainability.Keywords: bamboo, bottlenecks, optimization, product mix, retail network, value chain
Procedia PDF Downloads 2176189 An Application of Fuzzy Analytical Network Process to Select a New Production Base: An AEC Perspective
Authors: Walailak Atthirawong
Abstract:
By the end of 2015, the Association of Southeast Asian Nations (ASEAN) countries proclaim to transform into the next stage of an economic era by having a single market and production base called ASEAN Economic Community (AEC). One objective of the AEC is to establish ASEAN as a single market and one production base making ASEAN highly competitive economic region and competitive with new mechanisms. As a result, it will open more opportunities to enterprises in both trade and investment, which offering a competitive market of US$ 2.6 trillion and over 622 million people. Location decision plays a key role in achieving corporate competitiveness. Hence, it may be necessary for enterprises to redesign their supply chains via enlarging a new production base which has low labor cost, high labor skill and numerous of labor available. This strategy will help companies especially for apparel industry in order to maintain a competitive position in the global market. Therefore, in this paper a generic model for location selection decision for Thai apparel industry using Fuzzy Analytical Network Process (FANP) is proposed. Myanmar, Vietnam and Cambodia are referred for alternative location decision from interviewing expert persons in this industry who have planned to enlarge their businesses in AEC countries. The contribution of this paper lies in proposing an approach model that is more practical and trustworthy to top management in making a decision on location selection.Keywords: apparel industry, ASEAN Economic Community (AEC), Fuzzy Analytical Network Process (FANP), location decision
Procedia PDF Downloads 2376188 Performance of HVOF Sprayed Ni-20CR and Cr3C2-NiCr Coatings on Fe-Based Superalloy in an Actual Industrial Environment of a Coal Fired Boiler
Authors: Tejinder Singh Sidhu
Abstract:
Hot corrosion has been recognized as a severe problem in steam-powered electricity generation plants and industrial waste incinerators as it consumes the material at an unpredictably rapid rate. Consequently, the load-carrying ability of the components reduces quickly, eventually leading to catastrophic failure. The inability to either totally prevent hot corrosion or at least detect it at an early stage has resulted in several accidents, leading to loss of life and/or destruction of infrastructures. A number of countermeasures are currently in use or under investigation to combat hot corrosion, such as using inhibitors, controlling the process parameters, designing a suitable industrial alloy, and depositing protective coatings. However, the protection system to be selected for a particular application must be practical, reliable, and economically viable. Due to the continuously rising cost of the materials as well as increased material requirements, the coating techniques have been given much more importance in recent times. Coatings can add value to products up to 10 times the cost of the coating. Among the different coating techniques, thermal spraying has grown into a well-accepted industrial technology for applying overlay coatings onto the surfaces of engineering components to allow them to function under extreme conditions of wear, erosion-corrosion, high-temperature oxidation, and hot corrosion. In this study, the hot corrosion performances of Ni-20Cr and Cr₃C₂-NiCr coatings developed by High Velocity Oxy-Fuel (HVOF) process have been studied. The coatings were developed on a Fe-based superalloy, and experiments were performed in an actual industrial environment of a coal-fired boiler. The cyclic study was carried out around the platen superheater zone where the temperature was around 1000°C. The study was conducted for 10 cycles, and one cycle was consisting of 100 hours of heating followed by 1 hour of cooling at ambient temperature. Both the coatings deposited on Fe-based superalloy imparted better hot corrosion resistance than the uncoated one. The Ni-20Cr coated superalloy performed better than the Cr₃C₂-NiCr coated in the actual working conditions of the coal fired boiler. It is found that the formation of chromium oxide at the boundaries of Ni-rich splats of the coating blocks the inward permeation of oxygen and other corrosive species to the substrate.Keywords: hot corrosion, coating, HVOF, oxidation
Procedia PDF Downloads 856187 Reconfigurable Ubiquitous Computing Infrastructure for Load Balancing
Authors: Khaled Sellami, Lynda Sellami, Pierre F. Tiako
Abstract:
Ubiquitous computing helps make data and services available to users anytime and anywhere. This makes the cooperation of devices a crucial need. In return, such cooperation causes an overload of the devices and/or networks, resulting in network malfunction and suspension of its activities. Our goal in this paper is to propose an approach of devices reconfiguration in order to help to reduce the energy consumption in ubiquitous environments. The idea is that when high-energy consumption is detected, we proceed to a change in component distribution on the devices to reduce and/or balance the energy consumption. We also investigate the possibility to detect high-energy consumption of devices/network based on devices abilities. As a result, our idea realizes a reconfiguration of devices aimed at reducing the consumption of energy and/or load balancing in ubiquitous environments.Keywords: ubiquitous computing, load balancing, device energy consumption, reconfiguration
Procedia PDF Downloads 2766186 Restructuring of Embedded System Design Course: Making It Industry Compliant
Authors: Geetishree Mishra, S. Akhila
Abstract:
Embedded System Design, the most challenging course of electronics engineering has always been appreciated and well acclaimed by the students of electronics and its related branches of engineering. Embedded system, being a product of multiple application domains, necessitates skilled man power to be well designed and tested in every important aspect of both hardware and software. In the current industrial scenario, the requirements are even more rigorous and highly demanding and needs to be to be on par with the advanced technologies. Fresh engineers are expected to be thoroughly groomed by the academic system and the teaching community. Graduates with the ability to understand both complex technological processes and technical skills are increasingly sought after in today's embedded industry. So, the need of the day is to restructure the under-graduate course- both theory and lab practice along with the teaching methodologies to meet the industrial requirements. This paper focuses on the importance of such a need in the present education system.Keywords: embedded system design, industry requirement, syllabus restructuring, project-based learning, teaching methodology
Procedia PDF Downloads 6656185 Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems
Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj K. Biswas, Frank Ferrese
Abstract:
This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system
Procedia PDF Downloads 512