Search results for: Adiabatic Quantum Dynamics
1443 Monthly River Flow Prediction Using a Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to developed an efficient water management system to optimize the allocation water resources.Keywords: river flow, nonlinear prediction method, phase space, local linear approximation
Procedia PDF Downloads 4091442 Simulation Model for Evaluating the Impact of Adaptive E-Learning in the Agricultural Sector
Authors: Maria Nabakooza
Abstract:
Efficient agricultural production is very significant in attaining food sufficiency and security in the world. Many methods are employed by the farmers while attending to their gardens, from manual to mechanized, with Farmers range from subsistence to commercial depending on the motive. This creates a lacuna in the modes of operation in this field as different farmers will take different approaches. This has led to many e-Learning courses being introduced to address this gap. Many e-learning systems use advanced network technologies like Web services, grid computing to promote learning at any time and any place. Many of the existing systems have not inculcated the applicability of the modules in them, the tools to be used and further access whether they are the right tools for the right job. A thorough investigation into the applicability of adaptive eLearning in the agricultural sector has not been taken into account; enabling the assumption that eLearning is the right tool for boosting productivity in this sector. This study comes in to provide an insight and thorough analysis as to whether adaptive eLearning is the right tool for boosting agricultural productivity. The Simulation will adopt a system dynamics modeling approach as a way of examining causality and effect relationship. This study will provide teachers with an insight into which tools they should adopt in designing, and provide students the opportunities to achieve an orderly learning experience through adaptive navigating e-learning services.Keywords: agriculture, adaptive, e-learning, technology
Procedia PDF Downloads 2501441 Tax System Reform in Nepal: Analysis of Contemporary Issues, Challenges, and Ways Forward
Authors: Dilliram Paudyal
Abstract:
The history of taxation in Nepal dates back to antiquity. However, the modern tax system gained its momentum after the establishment of democracy in 1951, which initially focused only land tax and tariff on foreign trade. In the due time, several taxes were introduced, such as direct taxes, indirect taxes, and non-taxes. However, the tax structure in Nepal is heavily dominated by indirect taxes that contribute more than 60 % of the total revenue. The government has been mobilizing revenues through a series of tax reforms during the Tenth Five-year Plan (2002 – 2007) and successive Three-year Interim Development Plans by introducing several tax measures. However, these reforms are regressive in nature, which does not lead the overall economy towards short-run stability as well as in the long run development. Based on the literature review and discussion among government officials and few taxpayers individually and groups, this paper aims to major issues and challenges that hinder the tax reform effective in Nepal. Additionally, this paper identifies potential way and process of tax reform in Nepal. The results of the study indicate that transparency in a major problem in Nepalese tax system in Nepal, where serious structural constraints with administrative and procedural complexities envisaged in the Income Tax Act and taxpayers are often unaware of the specific size of tax which is to comply them. Some other issues include high tax rate, limited tax base, leakages in tax collection, rigid and complex Income Tax Act, inefficient and corrupt tax administration, limited potentialities of direct taxes and negative responsiveness of land tax with higher administrative costs. In the context, modality of tax structure and mobilize additional resources is to be rectified on a greater quantum by establishing an effective, dynamic and highly power driven Autonomous Revenue Board.Keywords: corrupt, development, inefficient, taxation
Procedia PDF Downloads 1781440 Study of Effect of Gear Tooth Accuracy on Transmission Mount Vibration
Authors: Kalyan Deepak Kolla, Ketan Paua, Rajkumar Bhagate
Abstract:
Transmission dynamics occupy major role in customer perception of the product in both senses of touch and quality of sound. The quantity and quality of sound perceived is more concerned with the whine noise of the gears engaged. Whine noise is tonal in nature and tonal noises cause fatigue and irritation to customers, which in turn affect the quality of the product. Transmission error is the usual suspect for whine noise, which can be caused due to misalignments, tolerances, manufacturing variabilities. In-cabin noise is also more sensitive to the gear design. As the details of the gear tooth design and manufacturing are in microns, anything out of the tolerance zone, either in design or manufacturing, will cause a whine noise. This will also cause high variation in stress and deformation due to change in the load and leads to the fatigue failure of the gears. Hence gear design and development take priority in the transmission development process. This paper aims to study such variability by considering five pairs of helical spur gears and their effect on the transmission error, contact pattern and vibration level on the transmission.Keywords: gears, whine noise, manufacturing variability, mount vibration variability
Procedia PDF Downloads 1501439 Dynamic Simulation for Surface Wear Prognosis of the Main Bearings in the Internal Combustion Engine
Authors: Yanyan Zhang, Ziyu Diao, Zhentao Liu, Ruidong Yan
Abstract:
The wear character of the main bearing is one of the critical indicators for the overhaul of an internal combustion engine, and the aim of this paper is to reveal the dynamic wear mechanism of the main bearings. A numerical simulation model combined multi-body dynamic equations of the engine, the average Reynolds equations of the bearing lubricant, asperity contact and wear model of the joint surfaces were established under typical operating conditions. The wear results were verified by experimental data, and then the influence of operating conditions, bearing clearance and cylinder pressure on the wear character of selected main bearings were analyzed. The results show that the contribution degree of different working conditions on the wear profile and depth of each bearing is obviously different, and the increase of joint clearance or cylinder pressure will accelerate the wear. The numerical model presented can be used to wear prognosis for joints and provide guidance for optimization design of sliding bearings.Keywords: dynamic simulation, multi-body dynamics, sliding bearing, surface wear
Procedia PDF Downloads 1461438 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model
Authors: Bin Wang, Hengyu Ji, Zhifeng Ye
Abstract:
Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.Keywords: fuel metering unit, stepping motor, AMESim/Matlab, full digital simulation
Procedia PDF Downloads 2451437 A Computational Analysis of Gas Jet Flow Effects on Liquid Aspiration in the Collison Nebulizer
Authors: James Q. Feng
Abstract:
Pneumatic nebulizers (as variations based on the Collison nebulizer) have been widely used for producing fine aerosol droplets from a liquid material. As qualitatively described by many authors, the basic working principle of those nebulizers involves utilization of the negative pressure associated with an expanding gas jet to syphon liquid into the jet stream, then to blow and shear into liquid sheets, filaments, and eventually droplets. But detailed quantitative analysis based on fluid mechanics theory has been lacking in the literature. The purpose of present work is to investigate the nature of negative pressure distribution associated with compressible gas jet flow in the Collison nebulizer by a computational fluid dynamics (CFD) analysis, using an OpenFOAM® compressible flow solver. The value of the negative pressure associated with a gas jet flow is examined by varying geometric parameters of the jet expansion channel adjacent to the jet orifice outlet. Such an analysis can provide valuable insights into fundamental mechanisms in liquid aspiration process, helpful for effective design of the pneumatic atomizer in the Aerosol Jet® direct-write system for micro-feature, high-aspect-ratio material deposition in additive manufacturing.Keywords: collison nebulizer, compressible gas jet flow, liquid aspiration, pneumatic atomization
Procedia PDF Downloads 1791436 A Parametric Study on Aerodynamic Performance of Tyre Using CFD
Authors: Sowntharya L.
Abstract:
Aerodynamics is the most important factor when it comes to resistive forces such as lift, drag and side forces acting on the vehicle. In passenger vehicles, reducing the drag will not only unlock the door for higher achievable speed but will also reduce the fuel consumption of the vehicle. Generally, tyre contributes significantly to the overall aerodynamics of the vehicle. Hence, understanding the air-flow behaviour around the tyre is vital to optimize the aerodynamic performance in the early stage of design process. Nowadays, aerodynamic simulation employing Computational Fluid Dynamics (CFD) is gaining more importance as it reduces the number of physical wind-tunnel experiments during vehicle development process. This research develops a methodology to predict aerodynamic drag of a standalone tyre using Numerical CFD Solver and to validate the same using a wind tunnel experiment. A parametric study was carried out on different tread pattern tyres such as slick, circumferential groove & patterned tyre in stationary and rotating boundary conditions. In order to represent wheel rotation contact with the ground, moving reference frame (MRF) approach was used in this study. Aerodynamic parameters such as drag lift & air flow behaviour around the tire were simulated and compared with experimental results.Keywords: aerodynamics, CFD, drag, MRF, wind-tunnel
Procedia PDF Downloads 1921435 Understanding Parental Style and Its Effect on the Wellbeing of Adolescents with Epilepsy
Authors: Arthy Vinayakam, Emilda Judith Ezhil Rajan
Abstract:
Adolescents with epilepsy living in developing country like India face many difficulties on stigma towards the disease. The psychological wellbeing of adolescents who are living with epilepsy has a varied influence on their daily activities and decision-making. Parental involvement with adolescents has always been a subject of caution. The dynamics in adolescents with epilepsy is much varied as their parental aspects has been known to have an impact on their education, socialization and wellbeing. The current study aims to identify the effect of parental styles, how they tend to effect the perception of self-concept that relate to the stigma in adolescents with epilepsy. A sample of 30 adolescents with epilepsy and their parents were taken; a control group of 30 adolescents and their parents were also taken. The General Health Questionnaire -12 was used as a screening for both groups to be included in the study. Parents were evaluated with Parenting Practices Questionnaire (PPQ). Adolescents were administered the Epilepsy Stigma Scale (ESS), Rosenberg Self-esteem Scale (RSS) and Adolescent Wellbeing Scale (AWS). Descriptive statistics was used to analyze the data. The findings of the study highlight the challenges of both parent and their influence on adolescent’s wellbeing. The findings also establish the impact of parenting style on the stigma in adolescents having epilepsy and how this influences their self-concept whereby their emotional strength.Keywords: epilepsy, parenting style, stigma, wellbeing
Procedia PDF Downloads 2811434 Prediction of Trailing-Edge Noise under Adverse-Pressure Gradient Effect
Authors: Li Chen
Abstract:
For an aerofoil or hydrofoil in high Reynolds number flows, broadband noise is generated efficiently as the result of the turbulence convecting over the trailing edge. This noise can be related to the surface pressure fluctuations, which can be predicted by either CFD or empirical models. However, in reality, the aerofoil or hydrofoil often operates at an angle of attack. Under this situation, the flow is subjected to an Adverse-Pressure-Gradient (APG), and as a result, a flow separation may occur. This study is to assess trailing-edge noise models for such flows. In the present work, the trailing-edge noise from a 2D airfoil at 6 degree of angle of attach is investigated. Under this condition, the flow is experiencing a strong APG, and the flow separation occurs. The flow over the airfoil with a chord of 300 mm, equivalent to a Reynold Number 4x10⁵, is simulated using RANS with the SST k-ɛ turbulent model. The predicted surface pressure fluctuations are compared with the published experimental data and empirical models, and show a good agreement with the experimental data. The effect of the APG on the trailing edge noise is discussed, and the associated trailing edge noise is calculated.Keywords: aero-acoustics, adverse-pressure gradient, computational fluid dynamics, trailing-edge noise
Procedia PDF Downloads 3351433 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor
Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna
Abstract:
The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis
Procedia PDF Downloads 2711432 Management of Jebusaea hammerschmidtii and Batrachedra amydraula on Date Palm Trees in UAE
Authors: Mohammad Ali Al-Deeb, Hamda Ateeq Al Dhaheri
Abstract:
Insects cause major damage to crops and fruit trees worldwide. In the United Arab Emirates, the date palm tree is the most economically important tree which is used for date production as well as an ornamental tree. In 2002, the number of date palm trees in UAE was 40,700,000 and it is increasing over time. The longhorn stem borer (Jebusaea hammerschmidtii) and the lesser date month (Batrachedra amydraula) are important insect pests causing damage to date palm trees in UAE. Population dynamics of the Jebusaea hammerschmidtii and Batrachedra amydraula were studied by using light and pheromons traps, respectively in Al-Ain, UAE. The first trap catch of B. amydraula adults occurred on 19 April and the insect population peaked up on 26 April 2014. The first trap catch of J. hammerschmidtii occurred in April 2014. The numbers increased over time and the population peak occurred in June. The trapping was also done in 2015. The changes in insect numbers in relation to weather parameters are discussed. Also, the importance of the results on the management of these two pests is highlighted.Keywords: date palm, integrated pest management, UAE, light trap, pheromone trap
Procedia PDF Downloads 2801431 Carbohydrate Intake Estimation in Type I Diabetic Patients Described by UVA/Padova Model
Authors: David A. Padilla, Rodolfo Villamizar
Abstract:
In recent years, closed loop control strategies have been developed in order to establish a healthy glucose profile in type 1 diabetic mellitus (T1DM) patients. However, the controller itself is unable to define a suitable reference trajectory for glucose. In this paper, a control strategy Is proposed where the shape of the reference trajectory is generated bases in the amount of carbohydrates present during the digestive process, due to the effect of carbohydrate intake. Since there no exists a sensor to measure the amount of carbohydrates consumed, an estimator is proposed. Thus this paper presents the entire process of designing a carbohydrate estimator, which allows estimate disturbance for a predictive controller (MPC) in a T1MD patient, the estimation will be used to establish a profile of reference and improve the response of the controller by providing the estimated information of ingested carbohydrates. The dynamics of the diabetic model used are due to the equations described by the UVA/Padova model of the T1DMS simulator, the system was developed and simulated in Simulink, taking into account the noise and limitations of the glucose control system actuators.Keywords: estimation, glucose control, predictive controller, MPC, UVA/Padova
Procedia PDF Downloads 2601430 Analyzing the Market Growth in Application Programming Interface Economy Using Time-Evolving Model
Authors: Hiroki Yoshikai, Shin’ichi Arakawa, Tetsuya Takine, Masayuki Murata
Abstract:
API (Application Programming Interface) economy is expected to create new value by converting corporate services such as information processing and data provision into APIs and using these APIs to connect services. Understanding the dynamics of a market of API economy under the strategies of participants is crucial to fully maximize the values of the API economy. To capture the behavior of a market in which the number of participants changes over time, we present a time-evolving market model for a platform in which API providers who provide APIs to service providers participate in addition to service providers and consumers. Then, we use the market model to clarify the role API providers play in expanding market participants and forming ecosystems. The results show that the platform with API providers increased the number of market participants by 67% and decreased the cost to develop services by 25% compared to the platform without API providers. Furthermore, during the expansion phase of the market, it is found that the profits of participants are mostly the same when 70% of the revenue from consumers is distributed to service providers and API providers. It is also found that when the market is mature, the profits of the service provider and API provider will decrease significantly due to their competition, and the profit of the platform increases.Keywords: API economy, ecosystem, platform, API providers
Procedia PDF Downloads 901429 Adult-Child Relationships: Nurturing Development and Well-Being
Authors: Obafemi Richard Jegede
Abstract:
The relationship between adults and children is pivotal for the social, emotional, and cognitive development of the latter. This paper explores the multifaceted dynamics of adult-child relationships, emphasizing their significance in fostering positive outcomes for children's well-being. It delves into dimensions such as attachment, communication, and parenting styles, addressing their impact on children's mental health and development. Furthermore, the role of supportive environments and interventions in enhancing adult-child relationships is examined. Understanding the complexities of these relationships is crucial for promoting healthy and nurturing interactions that contribute to children's holistic development. Positive interactions with caring adults promote children's self-regulation, empathy, and resilience, while negative or inconsistent relationships can lead to emotional distress and impaired social skills. Creating supportive environments that prioritize positive adult-child relationships is essential for promoting children's well-being. By comprehensively understanding the factors that shape adult-child relationships, we can better support children's development and well-being. This paper aims to provide insights into the complexities of adult-child relationships and their profound impact on children's development and overall well-being.Keywords: impact on children's development, supportive environments and interventions, parenting style, communication between adult and children
Procedia PDF Downloads 661428 Infrared Photodetectors Based on Nanowire Arrays: Towards Far Infrared Region
Authors: Mohammad Karimi, Magnus Heurlin, Lars Samuelson, Magnus Borgstrom, Hakan Pettersson
Abstract:
Nanowire semiconductors are promising candidates for optoelectronic applications such as solar cells, photodetectors and lasers due to their quasi-1D geometry and large surface to volume ratio. The functional wavelength range of NW-based detectors is typically limited to the visible/near-infrared region. In this work, we present electrical and optical properties of IR photodetectors based on large square millimeter ensembles (>1million) of vertically processed semiconductor heterostructure nanowires (NWs) grown on InP substrates which operate in longer wavelengths. InP NWs comprising single or multiple (20) InAs/InAsP QDics axially embedded in an n-i-n geometry, have been grown on InP substrates using metal organic vapor phase epitaxy (MOVPE). The NWs are contacted in vertical direction by atomic layer deposition (ALD) deposition of 50 nm SiO2 as an insulating layer followed by sputtering of indium tin oxide (ITO) and evaporation of Ti and Au as top contact layer. In order to extend the sensitivity range to the mid-wavelength and long-wavelength regions, the intersubband transition within conduction band of InAsP QDisc is suggested. We present first experimental indications of intersubband photocurrent in NW geometry and discuss important design parameters for realization of intersubband detectors. Key advantages with the proposed design include large degree of freedom in choice of materials compositions, possible enhanced optical resonance effects due to periodically ordered NW arrays and the compatibility with silicon substrates. We believe that the proposed detector design offers the route towards monolithic integration of compact and sensitive III-V NW long wavelength detectors with Si technology.Keywords: intersubband photodetector, infrared, nanowire, quantum disc
Procedia PDF Downloads 3841427 Problems of Innovation Development of Wireless Data Transfer Branch in the Cellular Market of Kazakhstan
Authors: Yessengeldy Kuanyshpayev
Abstract:
Now in some countries of the world the cellular market is on the point of saturation, in others - positive dynamics of development kept on. The reasons for it are also different, but there are united by their general susceptibility to innovation changes, if they are really innovative. If to take as an example the cellular market of Kazakhstan it is defined by the low percent of smart phones at consumers, the low population density, undercapacity of the 3G channel, and absence of universal access to the LTE technology that limits dynamical growth of this branch. These moments are aggravated by failures of starting commercial projects by private companies which prevent to be implemented and widely adopted to a new product among consumers. The object of the research is possible integration of wireless and program technologies at which introduction the idea can regenerate in an innovation. The analysis of existing projects in the market and the possible union of the technologies through a prism of theoretical bases of innovative activity shows that efficiency of the company by development and introduction of innovations is possible only thanks to strict observance of all terms and conditions of the innovative process which main term is profit. Despite that fact that on a global scale the innovativeness issue of companies is very popular, there are no research about possibility of innovative breaks in the field of wireless access to the Internet in the cellular market of Kazakhstan.Keywords: innovation, the effectiveness of company, commercialization, cellular market
Procedia PDF Downloads 3921426 Multi-Generational Analysis of Perception and Acceptance of Mental Illnesses: Current Indian Context
Authors: Anvi Kumar
Abstract:
This paper explores the attitudes and awareness of multiple generations ranging from Boomers I to GenZ (i.e. from 1954 to 2012) towards mental health issues. A convenient sample of 191 people was gathered in India aged 11-77. 20 people each were considered from 5 generational cohorts, namely- Boomers I, Boomers II, Gen X, Millennials, and Gen Z. The study tool comprised a survey that included demographic questions and the Community Attitude towards Mental Illness (CAMI) scale by Taylor & Dear (1981). Descriptive statistics, ANOVA, and Bonferonni’s post-hoc analysis have been used to perform the analysis. The findings reveal that the level of kindness towards those who struggle with mental health varies through certain age groups. An overall sense of exclusion of those struggling with mental health is prevalent among all age groups. GenZ’s awareness of mental health issues is primarily via social media, as against the rest of the generations seeking it from close relatives and friends. The study’s findings suggest a need to investigate further the quality of mental health knowledge content and its consumption pattern. Understanding the dynamics of information sharing and the potential for biases requires further discovery.Keywords: attitude, behaviour, mental illness, Gen Z, millennials, Gen Y, multi-generations, generational differences
Procedia PDF Downloads 731425 Predatory Rule and the Rise of Military Coups: Insights From the 2020 Malian Case
Authors: Deretha Bester
Abstract:
This research employs a theoretical framework to investigate the interplay between factors that lead from predatory governance and predatory rule to military coups, utilizing the frustration-aggression theory as its guiding lens. It adopts a case-oriented approach and employs thematic analysis to examine the socio-economic, governance, and political environment that precipitated the August 2020 Malian military coup. Presenting seven key themes, it reveals how predatory rule and its manifestation in the Malian context was a critical factor in paving the way for the military coup. The study provides critical reflections into the historical, regional, and political dynamics reshaping Africa’s changing political landscape. It presents a conceptual model to comprehend how predatory governance fosters conditions favorable for military coups. Insights from the Malian case study offer valuable perspectives for analyzing events in comparable contexts. This understanding is crucial for grasping the precursors and impact of predatory rule and popular frustrations in contexts where military coups emerge.Keywords: predatory rule, military coups, socio-political analysis, frustration-aggression theory, Mali
Procedia PDF Downloads 701424 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors
Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov
Abstract:
Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model
Procedia PDF Downloads 2171423 Assessing Vertical Distribution of Soil Organic Carbon Stocks in Westleigh Soil under Shrub Encroached Rangeland, Limpopo Province, South Africa
Authors: Abel L. Masotla, Phesheya E. Dlamini, Vusumuzi E. Mbanjwa
Abstract:
Accurate quantification of the vertical distribution of soil organic carbon (SOC) in relation to land cover transformations, associated with shrub encroachment is crucial because deeper lying horizons have been shown to have greater capacity to sequester SOC. Despite this, in-depth soil carbon dynamics remain poorly understood, especially in arid and semi-arid rangelands. The objective of this study was to quantify and compare the vertical distribution of soil organic carbon stocks (SOCs) in shrub-encroached and open grassland sites. To achieve this, soil samples were collected vertically at 10 cm depth intervals under both sites. The results showed that SOC was on average 19% and 13% greater in the topsoil and subsoil respectively, under shrub-encroached grassland compared to open grassland. In both topsoil and subsoil, lower SOCs were found under shrub-encroached (4.53 kg m⁻² and 3.90 kgm⁻²) relative to open grassland (4.39 kgm⁻² and 3.67 kgm⁻²). These results demonstrate that deeper soil horizon play a critical role in the storage of SOC in savanna grassland.Keywords: savanna grasslands, shrub-encroachment, soil organic carbon, vertical distribution
Procedia PDF Downloads 1371422 Norm Evolution through Contestation: Role of Legality from Humanitarian Intervention to Responsibility to Protect
Authors: Nazlı Üstünes Demirhan
Abstract:
International norms are subject to pressures of change through contestation during the course of their lifetimes. The nature of the contestation is one of the factors that are likely to have a determinative role in the direction of this change towards a stronger or weaker norm. This paper aims to understand the relation between the legality of contestation and the direction of change in norm strength. Based on a multidimensional norm strength conceptualization, it is hypothesized that use of legal logic and rhetoric of argumentation would have a positive influence for norm strength, whereas non-legal nature of contestation would lack this and weaken the norm. In order to show this, the evolution of the human protection norm between 1999 and 2018 will be examined with reference to two major contestation periods; Kosovo intervention of 1999, which led to the development of R2P doctrine, and Libya intervention of 2011, which is followed by the demise of the norm. The comparative analysis will be conducted through process tracing method with a document analysis on the Security Council meeting minutes, resolutions, and press releases. This study aims to contribute to the norm contestation literature with the introduction of legal process analysis. It also relates to further questions in IR/IL nexus, relating to the value added of norm legality as well as the politics of legalization.Keywords: humanitarian intervention, legality, norm contestation, norm dynamics, norm strength, responsibility to protect
Procedia PDF Downloads 1571421 Acceleration of Lagrangian and Eulerian Flow Solvers via Graphics Processing Units
Authors: Pooya Niksiar, Ali Ashrafizadeh, Mehrzad Shams, Amir Hossein Madani
Abstract:
There are many computationally demanding applications in science and engineering which need efficient algorithms implemented on high performance computers. Recently, Graphics Processing Units (GPUs) have drawn much attention as compared to the traditional CPU-based hardware and have opened up new improvement venues in scientific computing. One particular application area is Computational Fluid Dynamics (CFD), in which mature CPU-based codes need to be converted to GPU-based algorithms to take advantage of this new technology. In this paper, numerical solutions of two classes of discrete fluid flow models via both CPU and GPU are discussed and compared. Test problems include an Eulerian model of a two-dimensional incompressible laminar flow case and a Lagrangian model of a two phase flow field. The CUDA programming standard is used to employ an NVIDIA GPU with 480 cores and a C++ serial code is run on a single core Intel quad-core CPU. Up to two orders of magnitude speed up is observed on GPU for a certain range of grid resolution or particle numbers. As expected, Lagrangian formulation is better suited for parallel computations on GPU although Eulerian formulation represents significant speed up too.Keywords: CFD, Eulerian formulation, graphics processing units, Lagrangian formulation
Procedia PDF Downloads 4121420 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors
Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski
Abstract:
In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride
Procedia PDF Downloads 4521419 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior
Authors: N. Manoj
Abstract:
The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.Keywords: aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake
Procedia PDF Downloads 2831418 Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor
Authors: Junting Xiang, Jörg Uwe Schlüter, Fei Duan
Abstract:
The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressors are selected as the configuration in this study and Computational Fluid Dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.Keywords: axial compressor, CFD, heat transfer, miniature gas turbines, Reynolds number
Procedia PDF Downloads 4141417 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students
Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle
Abstract:
The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education
Procedia PDF Downloads 951416 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison
Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran
Abstract:
This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.Keywords: heat transfer, nanofluid, single-phase models, two-phase models
Procedia PDF Downloads 4831415 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS
Authors: David A. Harness
Abstract:
Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks
Procedia PDF Downloads 1791414 Shared Beliefs and Behavioral Labels in Bullying among Middle Schoolers: Qualitative Analysis of Peer Group Dynamics
Authors: Malgorzata Wojcik
Abstract:
Groups are a powerful and significant part of human development. They serve as major emergent microsocial structures in children’s and youth’s ecological system. During middle and secondary school, peer groups become a particularly salient influence. While they promote a range of prosocial and positive emotional and behavioral attributes, they can also elicit negative or antisocial attributes, effectively “bringing out the worst” in some individuals. The grounded theory approach was employed to guide data collection and analysis, as it allows for a deeper understanding of the group processes and students’ perspectives on complex intragroup relations. Students’ perspectives on bullying cases were investigated by observing daily interactions among those involved and interviewing 47 students. The results complement theories of labeling in bullying by showing that all students self-label themselves and find it difficult to break patterns of behaviors related to bullying, such as supporting the bully or not defending the victim. In terms of the practical implications, the findings indicate that it could be beneficial to use non-punitive, restorative anti-bullying interventions that implement peer influence to transform bullying relations by removing behavioral labels.Keywords: bullying, peer group, victimization, class reputation
Procedia PDF Downloads 117