Search results for: Jones learning center
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9211

Search results for: Jones learning center

7201 Neural Style Transfer Using Deep Learning

Authors: Shaik Jilani Basha, Inavolu Avinash, Alla Venu Sai Reddy, Bitragunta Taraka Ramu

Abstract:

We can use the neural style transfer technique to build a picture with the same "content" as the beginning image but the "style" of the picture we've chosen. Neural style transfer is a technique for merging the style of one image into another while retaining its original information. The only change is how the image is formatted to give it an additional artistic sense. The content image depicts the plan or drawing, as well as the colors of the drawing or paintings used to portray the style. It is a computer vision programme that learns and processes images through deep convolutional neural networks. To implement software, we used to train deep learning models with the train data, and whenever a user takes an image and a styled image, the output will be as the style gets transferred to the original image, and it will be shown as the output.

Keywords: neural networks, computer vision, deep learning, convolutional neural networks

Procedia PDF Downloads 95
7200 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection

Authors: Maryam Heidari, James H. Jones Jr.

Abstract:

Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.

Keywords: bot detection, natural language processing, neural network, social media

Procedia PDF Downloads 116
7199 Gaia (Earth) Education Philosophy – A Journey Back to the Future

Authors: Darius Singh

Abstract:

This study adopts a research, develop, and deploy methodology to create a state-of-the-art forest preschool environment using technology and the Gaia (Earth) Education Philosophy as design support. The new philosophy adopts an ancient Greek terminology, “Gaia,” meaning “Mother Earth”, and it take its principle to model everything with the oldest living and breathing entity that it know – Earth. This includes using nature and biomimicry-based principles in building design, environments, curricula, teaching, learning, values and outcomes for children. The study highlights the potential effectiveness of the Gaia (Earth) Education Philosophy as a means of designing Earth-inspired environments for children’s learning. The discuss the strengths of biomimicry-based design principles and propose a curriculum that emphasizes natural outcomes for early childhood learning. Theoretical implications of the study are that the Gaia (Earth) Education Philosophy could serve as a strong foundation for educating young learners.it present a unique approach that promotes connections with Earth-principles and lessons that can contribute to the development of social and environmental consciousness among children and help educate generations to come into a stable and balanced future.

Keywords: earth science, nature education, sustainability, gaia, forest school, nature, inspirational teaching and learning

Procedia PDF Downloads 65
7198 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 95
7197 Media Literacy: Information and Communication Technology Impact on Teaching and Learning Methods in Albanian Education System

Authors: Loreta Axhami

Abstract:

Media literacy in the digital age emerges not only as a set of skills to generate true knowledge and information but also as a pedagogy methodology, as a kind of educational philosophy. In addition to such innovations as information integration and communication technologies, media infrastructures, and web usage in the educational system, media literacy enables the change in the learning methods, pedagogy, teaching programs, and school curriculum itself. In this framework, this study focuses on ICT's impact on teaching and learning methods and the degree they are reflected in the Albanian education system. The study is based on a combination of quantitative and qualitative methods of scientific research. Referring to the study findings, it results that student’s limited access to the internet in school, focus on the hardcopy textbooks and the role of the teacher as the only or main source of knowledge and information are some of the main factors contributing to the implementation of authoritarian pedagogical methods in the Albanian education system. In these circumstances, the implementation of media literacy is recommended as an apt educational process for the 21st century, which requires a reconceptualization of textbooks as well as the application of modern teaching and learning methods by integrating information and communication technologies.

Keywords: authoritarian pedagogic model, education system, ICT, media literacy

Procedia PDF Downloads 140
7196 Challenges of the Implementation of Real Time Online Learning in a South African Context

Authors: Thifhuriwi Emmanuel Madzunye, Patricia Harpur, Ephias Ruhode

Abstract:

A review of the pertinent literature identified a gap concerning the hindrances and opportunities accompanying the implementation of real-time online learning systems (RTOLs) in rural areas. Whilst RTOLs present a possible solution to teaching and learning issues in rural areas, little is known about the implementation of digital strategies among schools in isolated communities. This study explores associated guidelines that have the potential to inform decision-making where Internet-based education could improve educational opportunities. A systematic literature review has the potential to consolidate and focus on disparate literature served to collect interlinked data from specific sources in a structured manner. During qualitative data analysis (QDA) of selected publications via the application of a QDA tool - ATLAS.ti, the following overarching themes emerged: digital divide, educational strategy, human factors, and support. Furthermore, findings from data collection and literature review suggest that signiant factors include a lack of digital knowledge, infrastructure shortcomings such as a lack of computers, poor internet connectivity, and handicapped real-time online may limit students’ progress. The study recommends that timeous consideration should be given to the influence of the digital divide. Additionally, the evolution of educational strategy that adopts digital approaches, a focus on training of role-players and stakeholders concerning human factors, and the seeking of governmental funding and support are essential to the implementation and success of RTOLs.

Keywords: communication, digital divide, digital skills, distance, educational strategy, government, ICT, infrastructures, learners, limpopo, lukalo, network, online learning systems, political-unrest, real-time, real-time online learning, real-time online learning system, pass-rate, resources, rural area, school, support, teachers, teaching and learning and training

Procedia PDF Downloads 334
7195 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication

Authors: Rui Mao, Heming Ji, Xiaoyu Wang

Abstract:

Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.

Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM

Procedia PDF Downloads 155
7194 A Case Study of Remote Location Viewing, and Its Significance in Mobile Learning

Authors: James Gallagher, Phillip Benachour

Abstract:

As location aware mobile technologies become ever more omnipresent, the prospect of exploiting their context awareness to enforce learning approaches thrives. Utilizing the growing acceptance of ubiquitous computing, and the steady progress both in accuracy and battery usage of pervasive devices, we present a case study of remote location viewing, how the application can be utilized to support mobile learning in situ using an existing scenario. Through the case study we introduce a new innovative application: Mobipeek based around a request/response protocol for the viewing of a remote location and explore how this can apply both as part of a teacher lead activity and informal learning situations. The system developed allows a user to select a point on a map, and send a request. Users can attach messages alongside time and distance constraints. Users within the bounds of the request can respond with an image, and accompanying message, providing context to the response. This application can be used alongside a structured learning activity such as the use of mobile phone cameras outdoors as part of an interactive lesson. An example of a learning activity would be to collect photos in the wild about plants, vegetation, and foliage as part of a geography or environmental science lesson. Another example could be to take photos of architectural buildings and monuments as part of an architecture course. These images can be uploaded then displayed back in the classroom for students to share their experiences and compare their findings with their peers. This can help to fosters students’ active participation while helping students to understand lessons in a more interesting and effective way. Mobipeek could augment the student learning experience by providing further interaction with other peers in a remote location. The activity can be part of a wider study between schools in different areas of the country enabling the sharing and interaction between more participants. Remote location viewing can be used to access images in a specific location. The choice of location will depend on the activity and lesson. For example architectural buildings of a specific period can be shared between two or more cities. The augmentation of the learning experience can be manifested in the different contextual and cultural influences as well as the sharing of images from different locations. In addition to the implementation of Mobipeek, we strive to analyse this application, and a subset of other possible and further solutions targeted towards making learning more engaging. Consideration is given to the benefits of such a system, privacy concerns, and feasibility of widespread usage. We also propose elements of “gamification”, in an attempt to further the engagement derived from such a tool and encourage usage. We conclude by identifying limitations, both from a technical, and a mobile learning perspective.

Keywords: context aware, location aware, mobile learning, remote viewing

Procedia PDF Downloads 291
7193 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 67
7192 Parental Involvement and Motivation as Predictors of Learning Outcomes in Yoruba Language Value Concepts among Senior Secondary School Students in Ibadan, Nigeria

Authors: Adeyemi Adeyinka, Yemisi Ilesanmi

Abstract:

This study investigated parental involvement and motivation as predictors of students’ learning outcomes in value concepts in Yoruba language in Ibadan, Nigeria. Value concepts in Yoruba language aimed at teaching moral lessons and transmitting Yoruba culture. However, feelers from schools and the society reported students’ poor achievement in examinations and negative attitude to the subject. Previous interventions focused on teaching strategies with little consideration for student-related factors. The study was anchored on psychosocial learning theory. The respondents were senior secondary II students with mean age of 15.50 ± 2.25 from 20 public schools in Ibadan, Oyo-State. In all, 1000 students were selected (486 males and 514 females) through proportionate to sample size technique. Instruments used were Students’ Motivation (r=0.79), Parental Involvement (r=0.87), and Attitude to Yoruba Value Concepts (r=0.94) scales and Yoruba Value Concepts Achievement Test (r=0.86). Data were analyzed using descriptive statistics, Pearson product moment correlation and Multiple regressions at 0.05 level of significance. Findings revealed a significant relationship between parental involvement (r=0.54) and students’ achievement in and attitude to (r=0.229) value concepts in Yoruba. The composite contribution of parental involvement and motivation to students’ achievement and attitude was significant, contributing 20.3% and 5.1% respectively. The relative contributions of parental involvement to students’ achievement (β = 0.073; t = 1.551) and attitude (β = 0.228; t = 7.313) to value concepts in Yoruba were significant. Parental involvement was the independent variable that strongly predicts students’ achievement in and attitude to Yoruba value concepts. Parents should inculcate indigenous knowledge in their children and support its learning at school.

Keywords: parental involvement, motivation, predictors, learning outcomes, value concepts in Yoruba

Procedia PDF Downloads 201
7191 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150
7190 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions

Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu

Abstract:

Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.

Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge

Procedia PDF Downloads 482
7189 Project-Based Learning in Engineering Education

Authors: M. Greeshma, V. Ashvini, P. Jayarekha

Abstract:

Project based learning (PBL) is a student-driven educational framework and offers the student an opportunity for in-depth investigations of courses. This paper presents the need of PBL in engineering education for the student to graduate with a capacity to design and implement complex problems. The implementation strategy of PBL and its related challenges are presented. The case study that energizes the engineering curriculum with a relevance to the real-world of technology along with its benefits to the students is also included.

Keywords: PBL, engineering education, curriculum, implement complex

Procedia PDF Downloads 473
7188 Assessment on Communication Students’ Internship Performances from the Employers’ Perspective

Authors: Yesuselvi Manickam, Tan Soon Chin

Abstract:

Internship is a supervised and structured learning experience related to one’s field of study or career goal. Internship allows students to obtain work experience and the opportunity to apply skills learned during university. Internship is a valuable learning experience for students; however, literature on employer assessment is scarce on Malaysian student’s internship experience. This study focuses on employer’s perspective on student’s performances during their three months of internship. The results are based on the descriptive analysis of 45 sets of question gathered from the on-site supervisors of the interns. The survey of 45 on-site supervisor’s feedback was collected through postal mail. It was found that, interns have not met their on-site supervisor’s expectations in many areas. The significance of this study is employer’s assessment on the internship shall be used as feedback to improve on ways how to prepare students for their internship and employments in future.

Keywords: employers perspective, internship, structured learning, student’s performances

Procedia PDF Downloads 295
7187 Using Podcasts as an Educational Medium to Deliver Education to Pre-Registered Mental Health Nursing Students

Authors: Jane Killough

Abstract:

A podcast series was developed to support learning amongst first-year undergraduate mental health nursing students. Many first-year students do not have any clinical experience and find it difficult to engage with theory, which can present as cumbersome. Further, it can be challenging to relate abstract concepts to everyday mental health practice. Mental health professionals and service users from practice were interviewed on a range of core topics that are key to year one learning. The podcasts were made available, and students could access these recordings at their convenience to fit in with busy daily routines. The aim was to enable meaningful learning by providing access to those who have lived experience and who can, in effect, bring to life the theory being taught in university and essentially bridge the theory and practice gap while fostering working relationships between practice and academics. The student experience will be evaluated using a logic model.

Keywords: education, mental health nursing students, podcast, practice, undergraduate

Procedia PDF Downloads 150
7186 Participation in Co-Curricular Activities of Undergraduate Nursing Students Attending the Leadership Promoting Program Based on Self-Directed Learning Approach

Authors: Porntipa Taksin, Jutamas Wongchan, Amornrat Karamee

Abstract:

The researchers’ experience of student affairs in 2011-2013, we found that few undergraduate nursing students become student association members who participated in co-curricular activities, they have limited skill of self-directed-learning and leadership. We developed “A Leadership Promoting Program” using Self-Directed Learning concept. The program included six activities: 1) Breaking the ice, Decoding time, Creative SMO, Know me-Understand you, Positive thinking, and Creative dialogue, which include four aspects of these activities: decision-making, implementation, benefits, and evaluation. The one-group, pretest-posttest quasi-experimental research was designed to examine the effects of the program on participation in co-curricular activities. Thirty five students participated in the program. All were members of the board of undergraduate nursing student association of Boromarajonani College of Nursing, Chonburi. All subjects completed the questionnaire about participation in the activities at beginning and at the end of the program. Data were analyzed using descriptive statistics and dependent t-test. The results showed that the posttest scores of all four aspects mean were significantly higher than the pretest scores (t=3.30, p<.01). Three aspects had high mean scores, Benefits (Mean = 3.24, S.D. = 0.83), Decision-making (Mean = 3.21, S.D. = 0.59), and Implementation (Mean=3.06, S.D.=0.52). However, scores on evaluation falls in moderate scale (Mean = 2.68, S.D. = 1.13). Therefore, the Leadership Promoting Program based on Self-Directed Learning Approach could be a method to improve students’ participation in co-curricular activities and leadership.

Keywords: participation in co-curricular activities, undergraduate nursing students, leadership promoting program, self-directed learning

Procedia PDF Downloads 353
7185 Teachers’ Continuance Intention Towards Using Madrasati Platform: A Conceptual Framework

Authors: Fiasal Assiri, Joanna Wincenciak, David Morrison-Love

Abstract:

With the rapid spread of the COVID-19 pandemic, the Saudi government suspended students from going to school to combat the outbreak. As e-learning was not applied at all in schools, online teaching and learning have been revived in Saudi Arabia by providing a new platform called ‘Madrasati.’ Several studies have used the Decomposed Theory of Planned Behaviour (DTPB)to examineindividuals’ intention behavior in many fields. However, there is a lack of studies investigating the determinants of teachers’ continued intention touseMadrasati platform. The purpose of this paper is to present a conceptual model in light of DTPB. To enhance the predictability of the model, the study incorporates other variables, including learning content quality and interactivity as sub-factors under the perceived usefulness, students and government influences under the subjective norms, and technical support and prior e-learning experience under the perceived behavioral control. The model will be further validated using a mixed methods approach. Such findings would help administrators and stakeholders to understand teachers’ needs and develop new methods that might encourage teachers to continue using Madrasati effectively in their teaching.

Keywords: madrasati, decomposed theory of planned behaviour, continuance intention, attitude, subjective norms, perceived behavioural control

Procedia PDF Downloads 105
7184 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model

Authors: Elham Sharifineyestani, Mohammad Farshchin

Abstract:

Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.

Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management

Procedia PDF Downloads 247
7183 Review Architectural Standards in Design and Development Children's Educational Centers

Authors: Ahmad Torkaman, Suogol Shomtob, Hadi Akbari Seddigh

Abstract:

In this paper it has been attempted to investigate the lack of attention to how specific spatial characteristics of the children except existing places such as nurseries. In order to achieve the standard center to faster children understanding their mentality is the first issue that must be studied. Exploring the spiritual characteristics and complexities of children cannot be possible except in accordance with the different aspects and background of their growth in various age periods. In order to achieving the standard center for fostering children, the first issue that must be studied understands their mentality. Exploring the spiritual qualities and complexities of children are not provided except in accordance with the characteristics and their different growth backgrounds in different age periods. According to previous researches game or playing is the most important activity that helps children to communicate and educate and sometimes therapy in specific fields. Investigating game as a proper way to train, the variety of games, the various kind of play environment and how to treat some abnormalities thereby are the issues discussed in recent research. Another consideration concerns the importance of artistic activities among children which is very evident in studying identification of their abnormalities. At the end of this study after investigating how to understand child and communicate with him/her, aiming to recognize Specific spatial characteristics for better training children, the physical and physiological criteria and characteristics is Reviewed and ends up to a list of required spaces and dimensional characteristic of spaces and needed children's equipment.

Keywords: children, space, interior design, development, growth

Procedia PDF Downloads 333
7182 A Case Study of Mobile Game Based Learning Design for Gender Responsive STEM Education

Authors: Raluca Ionela Maxim

Abstract:

Designing a gender responsive Science, Technology, Engineering and Mathematics (STEM) mobile game based learning solution (mGBL) is a challenge in terms of content, gamification level and equal engagement of girls and boys. The goal of this case study was to research and create a high-fidelity prototype design of a mobile game that contains role-models as avatars that guide and expose girls and boys to STEM learning content. For this research purpose it was applied the methodology of design sprint with five-phase process that combines design thinking principles. The technique of this methodology comprises smart interviews with STEM experts, mind-map creation, sketching, prototyping and usability testing of the interactive prototype of the gender responsive STEM mGBL. The results have shown that the effect of the avatar/role model had a positive impact. Therefore, by exposing students (boys and girls) to STEM role models in an mGBL tool is helpful for the decreasing of the gender inequalities in STEM fields.

Keywords: design thinking, design sprint, gender-responsive STEM education, mobile game based learning, role-models

Procedia PDF Downloads 135
7181 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: cancer classification, feature selection, deep learning, genetic algorithm

Procedia PDF Downloads 111
7180 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 274
7179 Enhancing Students’ Achievement, Interest and Retention in Chemistry through an Integrated Teaching/Learning Approach

Authors: K. V. F. Fatokun, P. A. Eniayeju

Abstract:

This study concerns the effects of concept mapping-guided discovery integrated teaching approach on the learning style and achievement of chemistry students. The sample comprised 162 senior secondary school (SS 2) students drawn from two science schools in Nasarawa State which have equivalent mean scores of 9.68 and 9.49 in their pre-test. Five instruments were developed and validated while the sixth was purely adopted by the investigator for the study, Four null hypotheses were tested at α = 0.05 level of significance. Chi square analysis showed that there is a significant shift in students’ learning style from accommodating and diverging to converging and assimilating when exposed to concept mapping- guided discovery approach. Also t-test and ANOVA that those in experimental group achieve and retain content learnt better. Results of the Scheffe’s test for multiple comparisons showed that boys in the experimental group performed better than girls. It is therefore concluded that the concept mapping-guided discovery integrated approach should be used in secondary schools to successfully teach electrochemistry. It is strongly recommended that chemistry teachers should be encouraged to adopt this method for teaching difficult concepts.

Keywords: integrated teaching approach, concept mapping-guided discovery, achievement, retention, learning styles and interest

Procedia PDF Downloads 328
7178 The Role of Artificial Intelligence Algorithms in Psychiatry: Advancing Diagnosis and Treatment

Authors: Netanel Stern

Abstract:

Artificial intelligence (AI) algorithms have emerged as powerful tools in the field of psychiatry, offering new possibilities for enhancing diagnosis and treatment outcomes. This article explores the utilization of AI algorithms in psychiatry, highlighting their potential to revolutionize patient care. Various AI algorithms, including machine learning, natural language processing (NLP), reinforcement learning, clustering, and Bayesian networks, are discussed in detail. Moreover, ethical considerations and future directions for research and implementation are addressed.

Keywords: AI, software engineering, psychiatry, neuroimaging

Procedia PDF Downloads 116
7177 Information Technology Outsourcing and Knowledge Transfer: Achieving Strategic Alignment through Organizational Learning

Authors: M. Kolotylo, H. Zheng, R. Parente, R. Dahiya

Abstract:

Large number of organizations, frequently motivated by budget and cost cuts, outsource their Information Technology (IT) positions every year. Although the objective of reduction in financial obligations is often not accomplished, many buyer companies still manage to benefit from outsourcing projects. Knowledge Transfer (KT), being one of the major processes that take place during IT outsourcing partnership, may exert a strong impact on the performance of the parties involved, particularly that of the buyer. Research, however, lacks strong conceptual basis for the possible benefits that KT from supplier may bring to the buyer; and for the mechanisms that may be adopted by the buyer to maximize such benefit. This paper aims to fill this gap by proposing a conceptual framework of organizational learning and development of dynamic capabilities enabled by KT from the supplier to the buyer. The study examines buyer-supplier relationships in the context of IT outsourcing transactions, and theorizes how KT from the supplier to the buyer helps the performance of the buyer. It warrants that more research is carried out in order to explicate and provide evidence regarding the role that KT plays in strategic improvements for the buyer. The paper proposes to take up a two-fold approach to the research: conceptual development that utilizes logical argumentation and interpretive historical research, as well as a qualitative case study which aims to capture and understand the complex processes involved. Thus, the study provides a comprehensive visualization of the dynamics of the conditions under which participation in IT outsourcing partnership might be of benefit to the buyer company. The framework demonstrates the mechanisms involved in buyer’s achievement of strategic alignment through organizational learning enabled by KT from the supplier. It highlights that organizational learning involves a balance between exploitation of assets and exploration of new possibilities, and further notes that the dynamic capabilities mediate the effect of organizational learning on firm performance. The paper explicates in what ways managers can leverage outsourcing projects to execute strategy, which would enable their organization achieve better performance. The study concludes that organizational learning enables the firm to develop IT capabilities of strategic planning, IT integration, and IT relationships in the outsourcing context, and that IT capabilities developed through the organizational learning would help the firm in achieving strategic alignment.

Keywords: dynamic capabilities, it outsourcing, knowledge transfer, organizational learning, strategic alignment

Procedia PDF Downloads 439
7176 K-12 Students’ Digital Life: Activities and Attitudes

Authors: Meital Amzalag, Sharon Hardof-Jaffe

Abstract:

In the last few decades, children and youth have been immersed in digital technologies. Indeed, recent studies explored the implication of technology use in their leisure and learning activities. Educators face an essential need to utilize technology and implement them into the curriculum. To do that, educators need to understand how young people use digital technology. This study aims to explore K12 students' digital lives from their point of view, to reveal their digital activities, age and gender differences with respect to digital activities, and to present the students' attitudes towards technologies in learning. The study approach is quantitative and includes354 students ages 6-16 from three schools in Israel. The online questionnaire was based on self-reports and consists of four parts: Digital activities: leisure time activities (such as social networks, gaming types), search activities (information types and platforms), and digital application use (e.g., calendar, notes); Digital skills (requisite digital platform skills such as evaluation and creativity); Social and emotional aspects of digital use (conducting digital activities alone and with friends, feelings, and emotions during digital use such as happiness, bullying); Digital attitudes towards digital integration in learning. An academic ethics board approved the study. The main findings reveal the most popular K12digital activities: Navigating social network sites, watching TV, playing mobile games, seeking information on the internet, and playing computer games. In addition, the findings reveal age differences in digital activities, such as significant differences in the use of social network sites. Moreover, the finding raises gender differences as girls use more social network sites and boys use more digital games, which are characterized by high complexity and challenges. Additionally, we found positive attitudes towards technology integration in school. Students perceive technology as enhancing creativity, promoting active learning, encouraging self-learning, and helping students with learning difficulties. The presentation will provide an up-to-date, accurate picture of the use of various digital technologies by k12 students. In addition, it will discuss the learning potentials of such use and how to implement digital technologies in the curriculum. Acknowledgments: This study is a part of a broader study about K-12 digital life in Israel and is supported by Mofet-the Israel Institute for Teachers'Development.

Keywords: technology and learning, K-12, digital life, gender differences

Procedia PDF Downloads 134
7175 Mental Contrasting with Implementation Intentions: A Metacognitive Strategy on Educational Context

Authors: Paula Paulino, Alzira Matias, Ana Margarida Veiga Simão

Abstract:

Self-regulated learning (SRL) directs students in analyzing proposed tasks, setting goals and designing plans to achieve those goals. The literature has suggested a metacognitive strategy for goal attainment known as Mental Contrasting with Implementation Intentions (MCII). This strategy involves Mental Contrasting (MC), in which a significant goal and an obstacle are identified, and Implementation Intentions (II), in which an "if... then…" plan is conceived and operationalized to overcome that obstacle. The present study proposes to assess the MCII process and whether it promotes students’ commitment towards learning goals during school tasks in sciences subjects. In this investigation, we intended to study the MCII strategy in a systemic context of the classroom. Fifty-six students from middle school and secondary education attending a public school in Lisbon (Portugal) participated in the study. The MCII strategy was explicitly taught in a procedure that included metacognitive modeling, guided practice and autonomous practice of strategy. A mental contrast between a goal they wanted to achieve and a possible obstacle to achieving that desire was instructed, and then the formulation of plans in order to overcome the obstacle identified previously. The preliminary results suggest that the MCII metacognitive strategy, applied to the school context, leads to more sophisticated reflections, the promotion of learning goals and the elaboration of more complex and specific self-regulated plans. Further, students achieve better results on school tests and worksheets after strategy practice. This study presents important implications since the MCII has been related to improved outcomes and increased attendance. Additionally, MCII seems to be an innovative process that captures students’ efforts to learn and enhances self-efficacy beliefs during learning tasks.

Keywords: implementation intentions, learning goals, mental contrasting, metacognitive strategy, self-regulated learning

Procedia PDF Downloads 241
7174 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator

Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong

Abstract:

Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.

Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce

Procedia PDF Downloads 33
7173 Improving Patient Outcomes for Aspiration Pneumonia

Authors: Mary Farrell, Maria Soubra, Sandra Vega, Dorothy Kakraba, Joanne Fontanilla, Moira Kendra, Danielle Tonzola, Stephanie Chiu

Abstract:

Pneumonia is the most common infectious cause of hospitalizations in the United States, with more than one million admissions annually and costs of $10 billion every year, making it the 8th leading cause of death. Aspiration pneumonia is an aggressive type of pneumonia that results from inhalation of oropharyngeal secretions and/or gastric contents and is preventable. The authors hypothesized that an evidence-based aspiration pneumonia clinical care pathway could reduce 30-day hospital readmissions and mortality rates, while improving the overall care of patients. We conducted a retrospective chart review on 979 patients discharged with aspiration pneumonia from January 2021 to December 2022 at Overlook Medical Center. The authors identified patients who were coded with aspiration pneumonia and/or stable sepsis. Secondarily, we identified 30-day readmission rates for aspiration pneumonia from a SNF. The Aspiration Pneumonia Clinical Care Pathway starts in the emergency department (ED) with the initiation of antimicrobials within 4 hours of admission and early recognition of aspiration. Once this is identified, a swallow test is initiated by the bedside nurse, and if the patient demonstrates dysphagia, they are maintained on strict nothing by mouth (NPO) followed by a speech and language pathologist (SLP) referral for an appropriate modified diet recommendation. Aspiration prevention techniques included the avoidance of straws, 45-degree positioning, no talking during meals, taking small bites, placement of the aspiration wrist band, and consuming meals out of the bed in a chair. Nursing education was conducted with a newly created online learning module about aspiration pneumonia. The authors identified 979 patients, with an average age of 73.5 years old, who were diagnosed with aspiration pneumonia on the index hospitalization. These patients were reviewed for a 30-day readmission for aspiration pneumonia or stable sepsis, and mortality rates from January 2021 to December 2022 at Overlook Medical Center (OMC). The 30-day readmission rates were significantly lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011). When evaluating the mortality rates in the pre and post intervention cohort the authors discovered the mortality rates were lower in the post intervention cohort (23.7% vs 22.4%, p = 0.61) Mortality among non-white (self-reported as non-white) patients were lower in the post intervention cohort (34.4% vs. 21.0% , p = 0.05). Patients who reported as a current smoker/vaper in the pre and post cohorts had increased mortality rates (5.9% vs 22%). There was a decrease in mortality for the male population but an increase in mortality for women in the pre and post cohorts (19% vs. 25%). The authors attributed this increase in mortality in the post intervention cohort to more active smokers, more former smokers, and more being admitted from a SNF. This research identified that implementation of an Aspiration Pneumonia Clinical Care Pathway showed a statistically significant decrease in readmission rates and mortality rates in non-whites. The 30-day readmission rates were lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011).

Keywords: aspiration pneumonia, mortality, quality improvement, 30-day pneumonia readmissions

Procedia PDF Downloads 62
7172 Strategies for Enhancing Academic Honesty as an Ethical Concern in Electronic Learning (E-learning) among University Students: A Philosophical Perspective

Authors: Ekeh Greg

Abstract:

Learning has been part of human existence from time immemorial. The aim of every learning is to know the truth. In education, it is desirable that true knowledge is imparted and imbibed. For this to be achieved, there is need for honesty, in this context, academic honesty among students, especially in e-learning. This is an ethical issue since honesty bothers on human conduct. However, research findings have shown that academic honesty has remained a big challenge to online learners, especially among the university students. This is worrisome since the university education is the final education system and a gateway to life in the wider society after schooling. If they are practicing honesty in their academic life, it is likely that they will practice honesty in the in the society, thereby bringing positive contributions to the society wherever they find themselves. With this in mind, the significance of this study becomes obvious. On grounds of this significance, this paper focuses on strategies that are adjudged certain to enhance the practice of honesty in e-learning so as to enable learners to be well equipped to contribute to the society through honest ways. The aim of the paper is to contribute to the efforts of instilling the consciousness and practice of honesty in the minds and hearts of learners. This will, in turn, promote effective teaching and learning, academic high standard, competence and self-confidence in university education. Philosophical methods of conceptual analysis, clarification, description and prescription are adopted for the study. Philosophical perspective is chosen so as to ground the paper on the basis of rationality rather than emotional sentiments and biases emanating from cultural, religious and ethnic differences and orientations. Such sentiments and biases can becloud objective reasoning and sound judgment. A review of related literature is also carried out. The findings show that academic honesty in e-learning is a cherished value, but it is bedeviled by some challenges, such as care-free attitude on the part of students and absence of monitoring. The findings also show that despite the challenges facing academic honesty, strategies such as self-discipline, determination, hard work, imbibing ethical and philosophical principles, among others, can certainly enhance the practice of honesty in e-learning among university students. The paper, therefore, concludes that these constitute strategies for enhancing academic honesty among students. Consequently, it is suggested that instructors, school counsellors and other stakeholders should endeavour to see that students are helped to imbibe these strategies and put them into practice. Students themselves are enjoined to cherish honesty in their academic pursuit and avoid short-cuts. Short-cuts can only lead to mediocrity and incompetence on the part of the learners, which may have long adverse consequences, both on themselves and others.

Keywords: academic, ethical, philosophical, strategies

Procedia PDF Downloads 76