Search results for: small scale effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22587

Search results for: small scale effect

2397 Alumina Supported Copper-Manganese-Cobalt Catalysts for CO and VOCs Oxidation

Authors: Elitsa Kolentsova, Dimitar Dimitrov, Vasko Idakiev, Tatyana Tabakova, Krasimir Ivanov

Abstract:

Formaldehyde production by selective oxidation of methanol is an important industrial process. The main by-products in the waste gas are CO and dimethyl ether (DME). The idea of this study is to combine the advantages of both Cu-Mn and Cu-Co catalytic systems by obtaining a new mixed Cu-Mn-Co catalyst with high activity and selectivity at the simultaneous oxidation of CO, methanol, and DME. Two basic Cu-Mn samples with high activity were selected for further investigation: (i) manganese-rich Cu-Mn/γ–Al2O3 catalyst with Cu/Mn molar ratio 1:5 and (ii) copper-rich Cu-Mn/γ-Al2O3 catalyst with Cu/Mn molar ratio 2:1. Manganese in these samples was replaced by cobalt in the whole concentration region, and catalytic properties were determined. The results show a general trend of decreasing the activity toward DME oxidation and increasing the activity toward CO and methanol oxidation with the increase of cobalt up to 60% for both groups of catalyst. This general trend, however, contains specific features, depending on the composition of the catalyst and the nature of the oxidized gas. The catalytic activity of the sample with Cu/(Mn+Co) molar ratio of 2:1 is gradually changed with increasing the cobalt content. The activity of the sample with Cu/(Mn+Co) molar ratio of 1: 5 passes through a maximum at 60% manganese replacement by cobalt, probably due to the formation of highly dispersed Co-based spinel structures (Co3O4 and/or MnCo2O4). In conclusion, the present study demonstrates that the Cu-Mn-Co/γ–alumina supported catalysts have enhanced activity toward CO, methanol and DME oxidation. Cu/(Mn+Co) molar ratio 1:5 and Co/Mn molar ratio 1.5 in the active component can ensure successful oxidation of CO, CH3OH and DME. The active component of the mixed Cu-Mn-Co/γ–alumina catalysts consists of at least six compounds - CuO, Co3O4, MnO2, Cu1.5Mn1.5O4, MnCo2O4 and CuCo2O4, depending on the Cu/Mn/Co molar ratio. Chemical composition strongly influences catalytic properties, this effect being quite variable with regards to the different processes.

Keywords: Cu-Mn-Co catalysts, oxidation, carbon oxide, VOCs

Procedia PDF Downloads 208
2396 Adhesive Bonded Joints Characterization and Crack Propagation in Composite Materials under Cyclic Impact Fatigue and Constant Amplitude Fatigue Loadings

Authors: Andres Bautista, Alicia Porras, Juan P. Casas, Maribel Silva

Abstract:

The Colombian aeronautical industry has stimulated research in the mechanical behavior of materials under different loading conditions aircrafts are generally exposed during its operation. The Calima T-90 is the first military aircraft built in the country, used for primary flight training of Colombian Air Force Pilots, therefore, it may be exposed to adverse operating situations such as hard landings which cause impact loads on the aircraft that might produce the impact fatigue phenomenon. The Calima T-90 structure is mainly manufactured by composites materials generating assemblies and subassemblies of different components of it. The main method of bonding these components is by using adhesive joints. Each type of adhesive bond must be studied on its own since its performance depends on the conditions of the manufacturing process and operating characteristics. This study aims to characterize the typical adhesive joints of the aircraft under usual loads. To this purpose, the evaluation of the effect of adhesive thickness on the mechanical performance of the joint under quasi-static loading conditions, constant amplitude fatigue and cyclic impact fatigue using single lap-joint specimens will be performed. Additionally, using a double cantilever beam specimen, the influence of the thickness of the adhesive on the crack growth rate for mode I delamination failure, as a function of the critical energy release rate will be determined. Finally, an analysis of the fracture surface of the test specimens considering the mechanical interaction between the substrate (composite) and the adhesive, provide insights into the magnitude of the damage, the type of failure mechanism that occurs and its correlation with the way crack propagates under the proposed loading conditions.

Keywords: adhesive, composites, crack propagation, fatigue

Procedia PDF Downloads 194
2395 Mechanism of Modeling the Level of Bcr-Abl Oncoprotein by Ubiquitin-Proteasome System in Chronic Myeloid Leukemia

Authors: Svitlana Antonenko, Gennady Telegeev

Abstract:

Introductive statement: The development of chronic myeloid leukemia (CML) is caused by Bcr-Abl oncoprotein. Modern treatments with tyrosine kinase inhibitors are greatly complicated by the mutational variability of the Bcr-Abl oncoprotein, which causes drug resistance. Therefore, there is an urgent need to develop new approaches to the treatment of the disease, which will allow modeling the level of Bcr-Abl oncoprotein in the cell. Promising in this direction is the identification of proteases that can selectively promote cellular proteolysis of oncoproteins. The aim of the study was to study the effect of the interaction of Bcr-Abl with deubiquitinase USP1 on the level of oncoprotein in CML cells. Methodology: K562 cells were selected for the experiment. Сells were incubated with ML323 inhibitor for 24 hours. Precipitation of endogenous proteins from K562 cell lysate was performed using anti-Bcr-Abl antibodies. Cell lysates and precipitation results were studied by Western blot. Subcellular localization of proteins was studied by immunofluorescence analysis followed by confocal microscopy. The results were analyzed quantitatively and statistically. Major findings: The Bcr-Abl/USP1 protein complex was detected in CML cells, and it was found that inhibition of USP1 deubiquitinating activity by the compound ML323 leads to disruption of this protein complex and a decrease in the level of Bcr-Abl oncoprotein in cells. The interaction of Bcr-Abl with USP1 may result in deubiquitination of the oncoprotein, which disrupts its proteasomal degradation and leads to the accumulation of CML in cells. Conclusion: We believe that the interaction of oncoprotein with USP1 may be one of the prerequisites that contribute to malignant cell transformation due to the deubiquitination of oncoprotein, which leads to its accumulation and disease progression. A correlation was found between the deubiquitinating activity of USP1 and the level of oncoprotein in CML cells. Thus, we identify deubiquitinase USP1 as a promising therapeutic target for the development of a new strategy for the treatment of CML by modulating the level of Bcr-Abl in the cell.

Keywords: chronic myeloid leukemia, Bcr-Abl, USP1, deubiquitination Bcr-Abl, K562 cell

Procedia PDF Downloads 54
2394 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation

Authors: Pengfei Meng, Shuangcheng Jia, Qian Li

Abstract:

We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.

Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling

Procedia PDF Downloads 128
2393 Thermo-Oxidative Degradation of Esterified Starch (with Lauric Acid) -Plastic Composite Assembled with Pro-Oxidants and Elastomers

Authors: R. M. S. Sachini Amararathne

Abstract:

This research is striving to develop a thermo degradable starch plastic compound/ masterbatch for industrial packaging applications. A native corn starch-modified with an esterification reaction of lauric acid is melt blent with an unsaturated elastomer (styrene-butadiene-rubber/styrene-butadiene-styrene). A trace amount of metal salt is added into the internal mixer to study the effect of pro-oxidants in a thermo oxidative environment. Then the granulated polymer composite which is consisted with 80-86% of polyolefin (LLDP/LDPE/PP) as the pivotal agent; is extruded with processing aids, antioxidants and some other additives in a co-rotating twin-screw extruder. The pelletized composite is subjected to compression molding/ Injection molding or blown film extrusion processes to acquire the samples/specimen for tests. The degradation process is explicated by analyzing the results of fourier transform infrared spectroscopy (FTIR) measurements, thermo oxidative aging studies (placing the dumb-bell specimen in an air oven at 70 °C for four weeks of exposure.) governed by tensile and impact strength test reports. Furthermore, the samples were elicited into manifold outdoors to inspect the degradation process. This industrial process is implemented to reduce the volume of fossil-based garbage by achieving the biodegradability and compostability in the natural cycle. Hence the research leads to manufacturing a degradable plastic packaging compound which is now available in the Sri Lankan market.

Keywords: blown film extrusion, compression moulding, polyolefin, pro-oxidant, styrene-butadine-rubber, styrene-butadiene-styrene, thermo oxidative aging, unsaturated elastomer

Procedia PDF Downloads 84
2392 Gene Distribution of CB1 Receptor rs2023239 in Thailand Cannabis Patients

Authors: Tanyaporn Chairoch

Abstract:

Introduction: Cannabis is a drug to treat patients with many diseases such as Multiple sclerosis, Alzheimer’s disease, and Epilepsy, where theycontain many active compounds such as delta-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). Especially, THC is the primary psychoactive ingredient in cannabis and binds to cannabinoid 1 (CB1) receptors. Moreover, CB1 is located on the neocortex, hippocampus, basal ganglia, cerebellum, and brainstem. In previous study, we found the association between the variant of CB1recptors gene (rs2023239) and decreased effect of nicotine reinforcement in patients. However, there are no data describing whether the distribution of CB1 receptor gene is a genetic marker for Thai patients who are treated with cannabis. Objective: Thus, the aim of this study we want to investigate the frequency of the CB1 receptor gene in Thai patients. Materials and Methods: All of sixty Thai patients received the medical cannabis for treatment who were recruited in this study. DNA will be extracted from EDTA whole blood by Genomic DNA Mini Kit. The genotyping of CNR1 gene (rs 2023239) was genotyped by the TaqMan real time PCR assay (ABI, Foster City, CA, USA).and using the real-time PCR ViiA7 (ABI, Foster City, CA, USA). Results: We found thirty-eight (63.3%) Thai patients were female, and twenty-two (36.70%) were male in this study with median age of 45.8 (range19 – 87 ) years. Especially, thirty-two (53.30%) medical cannabis tolerant controls were female ( 55%) and median age of52.1 (range 27 – 79 ) years. The most adverse effects for medical cannabis treatment was tachycardia. Furthermore, the number of rs 2023239 (TT) carriers was 26 of 27 (96.29%) in medical cannabis-induced adverse effects and 32 of 33 (96.96%) in tolerant controls. Additionally, rs 2023239 (CT) variant was found just only one of twenty-seven (3.7%) in medical cannabis-induced adverse effects and 1 of 33 (3.03%) in tolerant controls. Conclusions: The distribution of genetic variant in CNR1 gene might serve as a pharmacogenetics markers for screening before initiating the therapy with medical cannabis in Thai patients.

Keywords: cannabis, pharmacogenetics, CNR1 gene, thai patient

Procedia PDF Downloads 88
2391 Effects of Bilateral Electroconvulsive Therapy on Autobiographical Memories in Asian Patients

Authors: Lai Gwen Chan, Yining Ong, Audrey Yoke Poh Wong

Abstract:

Background. The efficacy of electroconvulsive therapy (ECT) as a form of treatment to a range of mental disorders is well-established. However, ECT is often associated with either temporary or persistent cognitive side-effects, resulting in the failure of wider prescription. Of which, retrograde amnesia is the most commonly reported cognitive side-effect. Most studies found a recalling deficit in autobiographical memories to be short-term, although a few have reported more persistent amnesic effects. Little is known about ECT-related amnesic effects in Asian population. Hence, this study aims to resolve conflicting findings, as well as to better elucidate the effects of ECT on cognitive functioning in a local sample. Method: 12 patients underwent bilateral ECT under the care of Psychological Medicine Department, Tan Tock Seng Hospital, Singapore. Participants’ cognition and level of functioning were assessed at four time-points: before ECT, between the third and fourth induced seizure, at the end of the whole course of ECT, and two months after the index course of ECT. Results: It was found that Global Assessment of Functioning scores increased significantly at the completion of ECT. Case-by-case analyses also revealed an overall improvement in Personal Semantic and Autobiographical memory two months after the index course of ECT. A transient dip in both personal semantic and autobiographical memory scores was observed in one participant between the third and fourth induced seizure, but subsequently resolved and showed better performance than at baseline. Conclusions: The findings of this study suggest that ECT is an effective form of treatment to alleviate the severity of symptoms of the diagnosis. ECT does not affect attention, language, executive functioning, personal semantic and autobiographical memory adversely. The findings suggest that Asian patients may respond to bilateral ECT differently from Western samples.

Keywords: electroconvulsive therapy (ECT), autobiographical memory, cognitive impairment, psychiatric disorder

Procedia PDF Downloads 182
2390 Characterization and Correlation of Neurodegeneration and Biological Markers of Model Mice with Traumatic Brain Injury and Alzheimer's Disease

Authors: J. DeBoard, R. Dietrich, J. Hughes, K. Yurko, G. Harms

Abstract:

Alzheimer’s disease (AD) is a predominant type of dementia and is likely a major cause of neural network impairment. The pathogenesis of this neurodegenerative disorder has yet to be fully elucidated. There are currently no known cures for the disease, and the best hope is to be able to detect it early enough to impede its progress. Beyond age and genetics, another prevalent risk factor for AD might be traumatic brain injury (TBI), which has similar neurodegenerative hallmarks. Our research focuses on obtaining information and methods to be able to predict when neurodegenerative effects might occur at a clinical level by observation of events at a cellular and molecular level in model mice. First, we wish to introduce our evidence that brain damage can be observed via brain imaging prior to the noticeable loss of neuromuscular control in model mice of AD. We then show our evidence that some blood biomarkers might be able to be early predictors of AD in the same model mice. Thus, we were interested to see if we might be able to predict which mice might show long-term neurodegenerative effects due to differing degrees of TBI and what level of TBI causes further damage and earlier death to the AD model mice. Upon application of TBIs via an apparatus to effectively induce extremely mild to mild TBIs, wild-type (WT) mice and AD mouse models were tested for cognition, neuromuscular control, olfactory ability, blood biomarkers, and brain imaging. Experiments are currently still in process, and more results are therefore forthcoming. Preliminary data suggest that neuromotor control diminishes as well as olfactory function for both AD and WT mice after the administration of five consecutive mild TBIs. Also, seizure activity increases significantly for both AD and WT after the administration of the five TBI treatment. If future data supports these findings, important implications about the effect of TBI on those at risk for AD might be possible.

Keywords: Alzheimer's disease, blood biomarker, neurodegeneration, neuromuscular control, olfaction, traumatic brain injury

Procedia PDF Downloads 133
2389 Synthetic Bis(2-Pyridylmethyl)Amino-Chloroacetyl Chloride- Ethylenediamine-Grafted Graphene Oxide Sheets Combined with Magnetic Nanoparticles: Remove Metal Ions and Catalytic Application

Authors: Laroussi Chaabane, Amel El Ghali, Emmanuel Beyou, Mohamed Hassen V. Baouab

Abstract:

In this research, the functionalization of graphene oxide sheets by ethylenediamine (EDA) was accomplished and followed by the grafting of bis(2-pyridylmethyl) amino group (BPED) onto the activated graphene oxide sheets in the presence of chloroacetylchloride (CAC) and then combined with magnetic nanoparticles (Fe₃O₄NPs) to produce a magnetic graphene-based composite [(Go-EDA-CAC)@Fe₃O₄NPs-BPED]. The physicochemical properties of [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] composites were investigated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA). Additionally, the catalysts can be easily recycled within ten seconds by using an external magnetic field. Moreover, [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] was used for removing Cu(II) ions from aqueous solutions using a batch process. The effect of pH, contact time and temperature on the metal ions adsorption were investigated, however weakly dependent on ionic strength. The maximum adsorption capacity values of Cu(II) on the [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] at the pH of 6 is 3.46 mmol.g⁻¹. To examine the underlying mechanism of the adsorption process, pseudo-first, pseudo-second-order, and intraparticle diffusion models were fitted to experimental kinetic data. Results showed that the pseudo-second-order equation was appropriate to describe the Cu (II) adsorption by [(Go-EDA-CAC)@Fe₃O₄NPs-BPED]. Adsorption data were further analyzed by the Langmuir, Freundlich, and Jossens adsorption approaches. Additionally, the adsorption properties of the [(Go-EDA-CAC)@Fe₃O₄NPs-BPED], their reusability (more than 6 cycles) and durability in the aqueous solutions open the path to removal of Cu(II) from water solution. Based on the results obtained, we report the activity of Cu(II) supported on [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] as a catalyst for the cross-coupling of symmetric alkynes.

Keywords: graphene, magnetic nanoparticles, adsorption kinetics/isotherms, cross coupling

Procedia PDF Downloads 120
2388 Indoor Air Pollution Effects on Physical Growth of Children under 5 Years from Solid Fuel Combustion

Authors: Nayomi Ranathunga, Priyantha Perera, Sumal Nandasena, Nalini Sathiakumar, Anuradhini Kasthuriratne, Rajitha Wikremasinghe

Abstract:

Solid fuel combustion is an important source of indoor air pollution (IAP) in developing countries that has adverse health impacts particularly in children. This study was conducted to determine the effect of IAP due to solid fuel combustion on physical growth of children under five in a Sri Lankan setting. A prospective study was conducted in a mixed population comprising urban and semi urban residents. The study included 240 children under 5 who were permanent residents of the area. Physical growth was assessed by measuring anthropometric indices based on the World Health Organization (WHO) guidelines and standards. Exposure levels were defined according to the main type of fuel used for cooking at home: children residing in households using biomass fuel or kerosene as the main type of fuel for cooking were classified as the “high exposure” group and children resident in households using liquefied petroleum gas (LPG) or electricity for cooking were classified as the “low exposure” group. Sixty percent of the children were classified as from the “high” exposure group and 40% of the children were classified as from the “low” exposure group; 54% of the children were male. At baseline, the prevalence of wasting was 17.1% and the prevalence of stunting was 10.4%; the mean z-score for weight for height was - 0.85, weight for age was - 0.46 and height for age was -0.38. At baseline, children from the “high” exposure group had a significantly lower mean weight for height z-score (p=0.02) and a mean height for age z-score (p=0.001) as compared to children from the “low” exposure group after adjusting for confounding factors such as father’s education, mother’s education and family income. Poor maternal education was significantly associated with lower height for age z-scores (p=0.04) after adjusting for exposure status. IAP due to combustion of biomass fuel leads to chronic malnutrition.

Keywords: children, growth, indoor air pollution, solid fuel

Procedia PDF Downloads 284
2387 Bacillus thuringiensis CHGP12 Uses a Multifaceted Strategy to Suppress Fusarium Wilt of Chickpea and to Enhance the Total Biomass of Chickpea Plants

Authors: Muhammad Naveed Aslam, Rida Fatima, Anam Moosa, Muhammad Taimoor Shakeel

Abstract:

Bacillus strains produce antifungal secondary metabolites making them potential candidates for suppressing Fusarium wilt of chickpea disease. In this study, eighteen Bacillus strains were evaluated for their antagonistic effect against Fusarium oxysporum f. sp. ciceris causing Fusarium wilt of chickpea disease. In a direct antifungal assay, thirteen strains showed significant inhibition zones while the remaining five strains did not produce inhibition zones of FOC. Bacillus thuringiensis CHGP12 was the most promising strain exhibiting the highest inhibition of FOC. Antifungal lipopeptides were extracted from CHGP12 strain which showed significant inhibition of the pathogen. Liquid chromatography mass spectrometry (LCMS) analysis revealed that CHGP12 was positive for the presence of iturin, fengycin, surfactin, bacillaene, bacillibactin, plantazolicin, and bacilysin. CHGP12 was tested for biochemical determinants in an in vitro qualitative test where it showed the ability to produce lipase, amylase, cellulase, protease, siderophores, and indole 3-acetic acid (IAA). Furthermore, in a greenhouse experiment CHGP12 also showed a significant decrease in the disease severity in treated plants compared to control. Moreover, CHGP12 also exhibited a significant increase in plant growth parameters viz, root and shoot growth parameters, stomatal conductance, and photosynthesis rate. Conclusively, our findings present the promising potential of Bacillus strain CHGP12 to suppress Fusarium wilt of chickpea and to promote plant growth.

Keywords: liquid chromatography mass spectrometry, growth promotion, antagonism, hydrolytic enzymes, inhibition, lipopeptides.

Procedia PDF Downloads 114
2386 Airborne Pollutants and Lung Surfactant: Biophysical Impacts of Surface Oxidation Reactions

Authors: Sahana Selladurai, Christine DeWolf

Abstract:

Lung surfactant comprises a lipid-protein film that coats the alveolar surface and serves to prevent alveolar collapse upon repeated breathing cycles. Exposure of lung surfactant to high concentrations of airborne pollutants, for example tropospheric ozone in smog, can chemically modify the lipid and protein components. These chemical changes can impact the film functionality by decreasing the film’s collapse pressure (minimum surface tension attainable), altering it is mechanical and flow properties and modifying lipid reservoir formation essential for re-spreading of the film during the inhalation process. In this study, we use Langmuir monolayers spread at the air-water interface as model membranes where the compression and expansion of the film mimics the breathing cycle. The impact of ozone exposure on model lung surfactant films is measured using a Langmuir film balance, Brewster angle microscopy and a pendant drop tensiometer as a function of film and sub-phase composition. The oxidized films are analyzed using mass spectrometry where lipid and protein oxidation products are observed. Oxidation is shown to reduce surface activity, alter line tension (and film morphology) and in some cases visibly reduce the viscoelastic properties of the film when compared to controls. These reductions in functionality of the films are highly dependent on film and sub-phase composition, where for example, the effect of oxidation is more pronounced when using a physiologically relevant buffer as opposed to water as the sub-phase. These findings can lead to a better understanding on the impact of continuous exposure to high levels of ozone on the mechanical process of breathing, as well as understanding the roles of certain lung surfactant components in this process.

Keywords: lung surfactant, oxidation, ozone, viscoelasticity

Procedia PDF Downloads 299
2385 Interaction of Elevated Carbon Dioxide and Temperature on Strawberry (Fragaria × ananassa) Growth and Fruit Yield

Authors: Himali N. Balasooriya, Kithsiri B. Dassanayake, Saman Seneweera, Said Ajlouni

Abstract:

Increase in atmospheric CO2 concentration [CO2] and ambient temperature associated with changing climatic conditions will have significant impacts on agriculture crop productivity and quality. Independent effects of the above two environmental variables on the growth, yield and quality of strawberry were well documented. Higher temperatures over the optimum range (20-25ºC) lead to crop failures, while elevated [CO2] stimulated plant growth and yield but compromised the physical quality of fruits. However, there is very limited understanding of the interaction between these variables on the plant growth, yield and quality. Therefore, this study was designed to investigate the interactive effect of high temperature and elevated [CO2] on growth, yield and quality of strawberries. Strawberry cultivars ‘Albion’ and ‘San Andreas’ were grown under six different combinations of two temperatures (25 and 30ºC) and three [CO2] (400, 650 and 950 µmol mol-1) in controlled-environmental growth chambers. Plant growth measurements such as plant height, canopy area, number of flowers, and fruit yield were measured during phonological development. Photosynthesis and transpiration, the ratio of intercellular to atmospheric [CO2] (Ci/Ca) were measured to estimate the physiological adjustment to climate stress. The impact of temperature and [CO2] interaction on growth and yield of strawberry was significant (p < 0.05). Across both cultivars, highest fruit yields were observed at 650 µmol mol-1 [CO2], which was particularly clear at 25°C. The fruit yield gradually decreased at 30°C under all the treatment combinations. However, photosynthesis rates were highest at 650 µmol mol-1 [CO2] but no increment was found at 900 µmol mol-1 [CO2]. Interestingly, Ci/Ca ratio increased with increasing atmospheric [CO2] which was predominant at high temperature. Similarly, fruit yield was substantially reduced at high [CO2] under high temperature. Our findings suggest that increased Ci/Ca ratio at high temperature is likely reduces the photosynthesis and thus yield response to elevated [CO2].

Keywords: atmospheric CO₂ concentration, fruit yield, strawberry, temperature

Procedia PDF Downloads 220
2384 Comparison of the Anthropometric Obesity Indices in Prediction of Cardiovascular Disease Risk: Systematic Review and Meta-analysis

Authors: Saeed Pourhassan, Nastaran Maghbouli

Abstract:

Statement of the problem: The relationship between obesity and cardiovascular diseases has been studied widely(1). The distribution of fat tissue gained attention in relation to cardiovascular risk factors during lang-time research (2). American College of Cardiology/American Heart Association (ACC/AHA) is widely and the most reliable tool to be used as a cardiovascular risk (CVR) assessment tool(3). This study aimed to determine which anthropometric index is better in discrimination of high CVR patients from low risks using ACC/AHA score in addition to finding the best index as a CVR predictor among both genders in different races and countries. Methodology & theoretical orientation: The literature in PubMed, Scopus, Embase, Web of Science, and Google Scholar were searched by two independent investigators using the keywords "anthropometric indices," "cardiovascular risk," and "obesity." The search strategy was limited to studies published prior to Jan 2022 as full-texts in the English language. Studies using ACC/AHA risk assessment tool as CVR and those consisted at least 2 anthropometric indices (ancient ones and novel ones) are included. Study characteristics and data were extracted. The relative risks were pooled with the use of the random-effect model. Analysis was repeated in subgroups. Findings: Pooled relative risk for 7 studies with 16,348 participants were 1.56 (1.35-1.72) for BMI, 1.67(1.36-1.83) for WC [waist circumference], 1.72 (1.54-1.89) for WHR [waist-to-hip ratio], 1.60 (1.44-1.78) for WHtR [waist-to-height ratio], 1.61 (1.37-1.82) for ABSI [A body shape index] and 1.63 (1.32-1.89) for CI [Conicity index]. Considering gender, WC among females and WHR among men gained the highest RR. The heterogeneity of studies was moderate (α²: 56%), which was not decreased by subgroup analysis. Some indices such as VAI and LAP were evaluated just in one study. Conclusion & significance: This meta-analysis showed WHR could predict CVR better in comparison to BMI or WHtR. Some new indices like CI and ABSI are less accurate than WHR and WC. Among women, WC seems to be a better choice to predict cardiovascular disease risk.

Keywords: obesity, cardiovascular disease, risk assessment, anthropometric indices

Procedia PDF Downloads 88
2383 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters

Procedia PDF Downloads 99
2382 Impact of Crime on Women and Their Families in Rural Areas of Haryana State in India

Authors: Rashmi Tyagi, Savita Vermani

Abstract:

Violence against women is the result of long-standing power imbalance between men and women and thus seriously compromises the well-being, productivity and contribution of one half the population. The costs incurred to the family especially children and society at large in terms of physical, psychological, social and financial losses are huge. The communities’ native to the state of Haryana in India is primarily patriarchal, burdened with age old regressive mindset under the socio-cultural and religious structures which discriminates against women. Therefore it was important to bring to light the issues affecting women in this region. Therefore this study focused on studying the consequences of crime on victim women and their families. Two hundred women were randomly selected and out of those one hundred twenty, who were affected with some kind of violence were interviewed. Data was collected and statistically analyzed for physical, psychological, inter-family and societal consequences of violence on these women. Women reported physical injuries, gynecological problems, unwanted pregnancies, frigidity, phobia and sexual dysfunction. 58.9% women felt decreased work efficiency. Psychological problems encountered were anxiety, isolation, depression, suicidal tendencies. 66.7% respondents suffered from anxiety followed by 65.0% faced depression symptoms. At family levels, 40.0% respondents felt the atmosphere was unsuitable for children while 39.2% reported lack of interaction. The societal consequences reported were breakdown of interaction with friends and family (44.2%) and resulting humiliation and demeaning remarks from others (38.3%). The impact of violence on women had an adverse effect on children. 36.7% children felt responsible for abuse and powerless to stop it, 29.2% reported living with fear. Concerted efforts are required to curb violence against women in Haryana.

Keywords: impact of violence against women on children, patriarchal society, physical psychological and societal consequences, violence against women

Procedia PDF Downloads 294
2381 Comparative Evaluation of the Effectiveness of Different Mindfulness-Based Interventions on Medically Unexplained Symptoms: A Systematic Review

Authors: R. R. Billones, N. Lukkahatai, L. N. Saligan

Abstract:

Mindfulness based interventions (MBIs) have been used in medically unexplained symptoms (MUS). This systematic review describes the literature investigating the general effect of MBIs on MUS and identifies the effects of specific MBIs on specific MUS conditions. The preferred reporting items for systematic reviews and meta-analysis guidelines (PRISMA) and the modified Oxford quality scoring system (JADAD) were applied to the review, yielding an initial 1,556 articles. The search engines included PubMed, ScienceDirect, Web of Science, Scopus, EMBASE, and PsychINFO using the search terms: mindfulness, or mediations, or mindful or MBCT or MBSR and medically unexplained symptoms or MUS or fibromyalgia or FMS. A total of 24 articles were included in the final systematic review. MBIs showed large effects on socialization skills for chronic fatigue syndrome (d=0.65), anger in fibromyalgia (d=0.61), improvement of somatic symptoms (d=1.6) and sleep (d=1.12) for painful conditions, physical health for chronic back pain (d=0.51), and disease intensity for irritable bowel disease/syndrome (d=1.13). A manualized MBI that applies the four fundamental elements present in all types of interventions were critical to efficacy. These elements were psycho-education sessions specific to better understand the medical symptoms, the practice of awareness, the non-judgmental observance of the experience at the moment, and the compassion to ones’ self. The effectiveness of different mindfulness interventions necessitates giving attention to improve the gaps that were identified related to home-based practice monitoring, competency training of mindfulness teachers, and sound psychometric properties to measure the mindfulness practice.

Keywords: mindfulness-based interventions, medically unexplained symptoms, mindfulness-based cognitive therapy, mindfulness-based stress reduction, fibromyalgia, irritable bowel syndrome

Procedia PDF Downloads 129
2380 Screening of Selected Medicinal Plants from Jordan for Their Protective Properties against Oxidative DNA Damage and Mutagenecity

Authors: Karem H. Alzoubi, Ahmad S. Alkofahi, Omar F. Khabour, Nizar M. Mhaidat

Abstract:

Herbal medicinal products represent a major focus for drug development and industry and it holds a significant share in drug-market all over the globe. In here, selected medicinal plant extracts from Jordan with high antioxidative capacity were tested for their protective effect against oxidative DNA damage using in vitro 8-hydroxydeoxyguanisine and sister chromatid exchanges (SCEs) assays in cultured human lymphocytes. The following plant extracts were tested Cupressus sempervirens L., Psidium guajava (L.) Gaerth., Silybum marianum L., Malva sylvestris L., Varthemia iphionoides Boiss., Eminium spiculatum L. Blume, Pistachia palaestina Boiss., Artemisia herba-alba Asso, Ficus carica L., Morus alba Linn , Cucumis sativus L., Eucalyptus camaldulensis Dehnh., Salvia triloba L., Zizyphus spina-christi L. Desf., and Laurus nobilis L. A fractionation scheme for the active plant extracts of the above was followed. Plants extract fractions with best protective properties against DNA damage included hexane fraction of S. marianum L. (aerial parts), chloroform fractions of P. palaestina Boiss. (Fruits), ethanolic fractions of E. camaldulensis Dehnh (leaves), S. triloba L. (leaves), and ethanolic fractions of Z. spina-christi L. Desf. (Fruits/leaves). On the other hand, the ethanolic extracts of V. iphionoides Boiss was found to increase oxidative DNA damage. Results of the SCEs are undergoing. In conclusion, plant extracts with antioxidative DNA damage properties might have clinical applications in cancer prevention.

Keywords: medicinal plants extract, fractionation, oxidative DNA damage, 8-hydroxydeoxyguanisine, SCEs, Jordan

Procedia PDF Downloads 284
2379 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment

Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha

Abstract:

The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.

Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding

Procedia PDF Downloads 193
2378 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study

Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya

Abstract:

The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.

Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory

Procedia PDF Downloads 393
2377 Glycyrrhizic Acid Inhibits Lipopolysaccharide-Stimulated Bovine Fibroblast-Like Synoviocyte, Invasion through Suppression of TLR4/NF-κB-Mediated Matrix Metalloproteinase-9 Expression

Authors: Hosein Maghsoudi

Abstract:

Rheumatois arthritis (RA) is progressive inflammatory autoimmune diseases that primarily affect the joints, characterized by synovial hyperplasia and inflammatory cell infiltration, deformed and painful joints, which can lead tissue destruction, functional disability systemic complications, and early dead and socioeconomic costs. The cause of rheumatoid arthritis is unknown, but genetic and environmental factors are contributory and the prognosis is guarded. However, advances in understanding the pathogenesis of the disease have fostered the development of new therapeutics, with improved outcomes. The current treatment strategy, which reflects this progress, is to initiate aggressive therapy soon after diagnosis and to escalate the therapy, guided by an assessment of disease activity, in pursuit of clinical remission. The pathobiology of RA is multifaceted and involves T cells, B cells, fibroblast-like synoviocyte (FLSc) and the complex interaction of many pro-inflammatory cytokine. Novel biologic agents that target tumor necrosis or interlukin (IL)-1 and Il-6, in addition T- and B-cells inhibitors, have resulted in favorable clinical outcomes in patients with RA. Despite this, at least 30% of RA patients are résistance to available therapies, suggesting novel mediators should be identified that can target other disease-specific pathway or cell lineage. Among the inflammatory cell population that might participated in RA pathogenesis, FLSc are crucial in initiaing and driving RA in concert of cartilage and bone by secreting metalloproteinase (MMPs) into the synovial fluid and by direct invasion into extracellular matrix (ECM), further exacerbating joint damage. Invasion of fibroblast-like synoviocytes (FLSc) is critical in the pathogenesis of rheumatoid-arthritis. The metalloproteinase (MMPs) and activator of Toll-like receptor 4 (TLR4)/nuclear factor- κB pthway play a critical role in RA-FLS invasion induced by lipopolysaccharide (LPS). The present study aimed to explore the anti-invasion activity of Glycyrrhizic Acid as a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in Bovine fibroblast-like synoviocyte ex- vitro, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Results showed that Glycyrrhizic Acid suppressed LPS-stimulated bovine FLS migration and invasion by inhibition MMP-9 expression and activity. In addition our results revealed that Glycyrrhizic Acid inhibited the transcriptional activity of MMP-9 by suppression the nbinding activity of NF- κB in the MMP-9 promoter pathway. The extract of licorice (Glycyrrhiza glabra L.) has been widely used for many centuries in the traditional Chinese medicine as native anti-allergic agent. Glycyrrhizin (GL), a triterpenoidsaponin, extracted from the roots of licorice is the most effective compound for inflammation and allergic diseases in human body. The biological and pharmacological studies revealed that GL possesses many pharmacological effects, such as anti-inflammatory, anti-viral and liver protective effects, and the biological effects, such as induction of cytokines (interferon-γ and IL-12), chemokines as well as extrathymic T and anti-type 2 T cells. GL is known in the traditional Chinese medicine for its anti-inflammatory effect, which is originally described by Finney in 1959. The mechanism of the GL-induced anti-inflammatory effect is based on different pathways of the GL-induced selective inhibition of the prostaglandin E2 production, the CK-II- mediated activation of both GL-binding lipoxygenas (gbLOX; 17) and PLA2, an anti-thrombin action of GL and production of the reactive oxygen species (ROS; GL exerts liver protection properties by inhibiting PLA2 or by the hydroxyl radical trapping action, leading to the lowering of serum alanine and aspartate transaminase levels. The present study was undertaken to examine the possible mechanism of anti-inflammatory properties GL on IL-1beta and TNF-alpha signalling pathways in bovine fibroblast-like synoviocyte ex-vivo, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Our results clearly showed that treatment of bovine fibroblast-like synoviocyte with GL suppressed LPS-induced cell migration and invasion. Furthermore, it revealed that GL inhibited the transcription activity of MMP-9 by suppressing the binding activity of NF-κB in the MM-9 promoter. MMP-9 is an important ECM-degrading enzyme and overexpression of MMPs in important of RA-FLSs. LPS can stimulate bovine FLS to secret MMPs, and this induction is regulated at the transcription and translational levels. In this study, LPS treatment of bovine FLS caused an increase in MMP-2 and MMP-9 levels. The increase in MMP-9 expression and secretion was inhibited by ex- vitro. Furthermore, these effects were mimicked by MMP-9 siRNA. These result therefore indicate the the inhibition of LPS-induced bovine FLS invasion by GL occurs primarily by inhibiting MMP-9 expression and activity. Next we analyzed the functional significance of NF-κB transcription of MMP-9 activation in Bovine FLSs. Results from EMSA showed that GL suppressed LPS-induced NF-κB binding to the MMP-9 promotor, as NF-κB regulates transcriptional activation of multiple inflammatory cytokines, we predicted that GL might target NF-κB to suppress MMP-9 transcription by LPS. Myeloid differentiation-factor 88 (MyD88) and TIR-domain containing adaptor protein (TIRAP) are critical proteins in the LPS-induced NF-κB and apoptotic signaling pathways, GL inhibited the expression of TLR4 and MYD88. These results demonstrated that GL suppress LPS-induced MMP-9 expression through the inhibition of the induced TLR4/NFκB signaling pathway. Taken together, our results provide evidence that GL exerts anti-inflammatory effects by inhibition LPS-induced bovine FLSs migration and invasion, and the mechanisms may involve the suppression of TLR4/NFκB –mediated MMP-9 expression. Although further work is needed to clarify the complicated mechanism of GL-induced anti-invasion of bovine FLSs, GL might be used as a further anti-invasion drug with therapeutic efficacy in the treatment of immune-mediated inflammatory disease such as RA.

Keywords: glycyrrhizic acid, bovine fibroblast-like synoviocyte, tlr4/nf-κb, metalloproteinase-9

Procedia PDF Downloads 372
2376 Influence of Magnetic Field on the Antibacterial Properties of Pine Oil

Authors: Dawid Sołoducha, Tomasz Borowski, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Many studies report varied effects of the magnetic field in medicine, but applications are still missing. Also, essential oils (EOs) were historically used in healing therapies, food preservation and the cosmetic industry due to their wound healing and antioxidant properties and antimicrobial activity. Unfortunately, the chemical characterization of EOs activates its antibacterial action only at a fairly high concentration. They can cause skin reactions, e.g., irritation (irritant contact dermatitis) or allergic contact dermatitis; therefore, they should always be used with caution. However, the administration of EOs to achieve the desired antimicrobial activity and stability with long-term medical usage in low concentration is challenging. The aim of this work was to investigate the antimicrobial activity of commercial Pinus sylvestris L. essential oil from Polish company Avicenna-Oil® under Rotating Magnetic Field (RMF) at f = 1 – 50 Hz. The novel construction of the magnetically assisted self-constructed reactor (MAP) was applied for this study. The chemical composition of essential pine oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Different concentrations of pine oil was prepared: 100% 50%, 25%, 12.5% and 6.25%. The disc diffusion and MIC test were done. To examine the effect of essential pine oil and rotating magnetic field RMF on antibacterial performance agar plate method was used. Pine oil consist of α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that the rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to 50 Hz, increase the antimicrobial efficiency of oil at lower than 50% concentration. The new method can be applied in many fields e.g. aromatherapy, medicine as a component of dressing, or as food preservatives.

Keywords: rotating magnetic field, pine oil, antimicrobial activity, Escherichia coli

Procedia PDF Downloads 202
2375 Assessment of Kinetic Trajectory of the Median Nerve from Wrist Ultrasound Images Using Two Dimensional Baysian Speckle Tracking Technique

Authors: Li-Kai Kuo, Shyh-Hau Wang

Abstract:

The kinetic trajectory of the median nerve (MN) in the wrist has shown to be capable of being applied to assess the carpal tunnel syndrome (CTS), and was found able to be detected by high-frequency ultrasound image via motion tracking technique. Yet, previous study may not quickly perform the measurement due to the use of a single element transducer for ultrasound image scanning. Therefore, previous system is not appropriate for being applied to clinical application. In the present study, B-mode ultrasound images of the wrist corresponding to movements of fingers from flexion to extension were acquired by clinical applicable real-time scanner. The kinetic trajectories of MN were off-line estimated utilizing two dimensional Baysian speckle tracking (TDBST) technique. The experiments were carried out from ten volunteers by ultrasound scanner at 12 MHz frequency. Results verified from phantom experiments have demonstrated that TDBST technique is able to detect the movement of MN based on signals of the past and present information and then to reduce the computational complications associated with the effect of such image quality as the resolution and contrast variations. Moreover, TDBST technique tended to be more accurate than that of the normalized cross correlation tracking (NCCT) technique used in previous study to detect movements of the MN in the wrist. In response to fingers’ flexion movement, the kinetic trajectory of the MN moved toward the ulnar-palmar direction, and then toward the radial-dorsal direction corresponding to the extensional movement. TDBST technique and the employed ultrasound image scanner have verified to be feasible to sensitively detect the kinetic trajectory and displacement of the MN. It thus could be further applied to diagnose CTS clinically and to improve the measurements to assess 3D trajectory of the MN.

Keywords: baysian speckle tracking, carpal tunnel syndrome, median nerve, motion tracking

Procedia PDF Downloads 481
2374 Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment

Authors: Fatma Ünal, Hasancan Okutan

Abstract:

Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal).

Keywords: energy, lignite reserve, techno-economic analysis, underground coal gasification.

Procedia PDF Downloads 50
2373 Female Victimization and Capitalist Patriarchy in Literature: An Eco-Feminist Study

Authors: Uzma Imtiaz

Abstract:

Ecological feminism adheres to the basic philosophy that patriarchy is the wellspring of natural and gender domination. It explores the relationship between women and nature in a patriarchal society. Eco-feminism argues that women and nature have an intrinsic association and exploitation of women is the exploitation of nature itself. It further views the world as a holistic institution that offers equal opportunities for men and women. Eco-feminism rejects male domination in a patriarchal society where men and women do not get equal rights to survival. Furthermore, it investigates modern capitalist practices that exert unjust male dominance over nature and women. Cultural eco-feminist theorists argue that industrialization and modern science are male-centered and exhibit male chauvinistic views in attempts to control females’ ability to reproduce. This research intends to analyze an eco-feminist novel by Laila Halaby from the eco-feminism theoretical framework of Maria Mies and Vandana Shiva. The feminist dystopian novel throws light on the double-faced processes of capitalism and housewifization that destroy the autonomy of women over their bodies and life. Moreover, this study aims to highlight the unjust capitalistic processes and policies that turn other countries and women into colonies to exploit them by white men in the name of progress and civilization. The novel brings the patriarchal ways of dominance over women into question. This research paper concludes that women and men should get equal opportunities to survive in society, and women should have given rights over their bodies to decide their future. The research is qualitative in nature, so the method of close reading is selected to analyze the hypodermic effect of patriarchy in society. This study is valuable in highlighting the exploitative ways of men to subjugate women and nature and helps to give awareness to women against gender exploitation in society.

Keywords: housewifization, exploitation, capitalist patriarchy, female victimization

Procedia PDF Downloads 62
2372 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System

Authors: Benjamin Chijioke Agwah, Paulinus Chinaenye Eze

Abstract:

Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC- VZLC provided fast tracking of desired wheel slip, eliminate chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.

Keywords: ABS, fuzzy logic controller, variable zero lag compensator, wheel slip tracking

Procedia PDF Downloads 134
2371 Chronic Impact of Silver Nanoparticle on Aerobic Wastewater Biofilm

Authors: Sanaz Alizadeh, Yves Comeau, Arshath Abdul Rahim, Sunhasis Ghoshal

Abstract:

The application of silver nanoparticles (AgNPs) in personal care products, various household and industrial products has resulted in an inevitable environmental exposure of such engineered nanoparticles (ENPs). Ag ENPs, released via household and industrial wastes, reach water resource recovery facilities (WRRFs), yet the fate and transport of ENPs in WRRFs and their potential risk in the biological wastewater processes are poorly understood. Accordingly, our main objective was to elucidate the impact of long-term continuous exposure to AgNPs on biological activity of aerobic wastewater biofilm. The fate, transport and toxicity of 10 μg.L-1and 100 μg.L-1 PVP-stabilized AgNPs (50 nm) were evaluated in an attached growth biological treatment process, using lab-scale moving bed bioreactors (MBBRs). Two MBBR systems for organic matter removal were fed with a synthetic influent and operated at a hydraulic retention time (HRT) of 180 min and 60% volumetric filling ratio of Anox-K5 carriers with specific surface area of 800 m2/m3. Both reactors were operated for 85 days after reaching steady state conditions to develop a mature biofilm. The impact of AgNPs on the biological performance of the MBBRs was characterized over a period of 64 days in terms of the filtered biodegradable COD (SCOD) removal efficiency, the biofilm viability and key enzymatic activities (α-glucosidase and protease). The AgNPs were quantitatively characterized using single-particle inductively coupled plasma mass spectroscopy (spICP-MS), determining simultaneously the particle size distribution, particle concentration and dissolved silver content in influent, bioreactor and effluent samples. The generation of reactive oxygen species and the oxidative stress were assessed as the proposed toxicity mechanism of AgNPs. Results indicated that a low concentration of AgNPs (10 μg.L-1) did not significantly affect the SCOD removal efficiency whereas a significant reduction in treatment efficiency (37%) was observed at 100 μg.L-1AgNPs. Neither the viability nor the enzymatic activities of biofilm were affected at 10 μg.L-1AgNPs but a higher concentration of AgNPs induced cell membrane integrity damage resulting in 31% loss of viability and reduced α-glucosidase and protease enzymatic activities by 31% and 29%, respectively, over the 64-day exposure period. The elevated intercellular ROS in biofilm at a higher AgNPs concentration over time was consistent with a reduced biological biofilm performance, confirming the occurrence of a nanoparticle-induced oxidative stress in the heterotrophic biofilm. The spICP-MS analysis demonstrated a decrease in the nanoparticles concentration over the first 25 days, indicating a significant partitioning of AgNPs into the biofilm matrix in both reactors. The concentration of nanoparticles increased in effluent of both reactors after 25 days, however, indicating a decreased retention capacity of AgNPs in biofilm. The observed significant detachment of biofilm also contributed to a higher release of nanoparticles due to cell-wall destabilizing properties of AgNPs as an antimicrobial agent. The removal efficiency of PVP-AgNPs and the biofilm biological responses were a function of nanoparticle concentration and exposure time. This study contributes to a better understanding of the fate and behavior of AgNPs in biological wastewater processes, providing key information that can be used to predict the environmental risks of ENPs in aquatic ecosystems.

Keywords: biofilm, silver nanoparticle, single particle ICP-MS, toxicity, wastewater

Procedia PDF Downloads 258
2370 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment

Authors: Innocent O. Arukalam, Emeka E. Oguzie

Abstract:

Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.

Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation

Procedia PDF Downloads 72
2369 The Evaluation of the Performance of CaCO3/Polymer Nano-Composites for the Preservation of Historic Limestone Monuments

Authors: Mohammed Badereldien, Rezk Diab, Mohamoud Ali, Ayman Aboelkassem

Abstract:

The stone surfaces of historical architectural heritage in Egypt are under threat from of various environmental factors such as temperature fluctuation, humidity, pollution, and microbes. Due to these factors, the facades of buildings are deteriorating deformation and disfiguration of external decoration and the formation of black accretion also often from the stone works. The aim of this study is to evaluate the effectiveness of CaCO₃ nano-particles as consolidation and protection material for calcareous stone monuments. Selected tests were carried out in order to estimate the superficial consolidating and protective effect of the treatment. When applied the nanoparticles dispersed in the acrylic copolymer; poly ethylmethacrylate (EMA)/methylacrylate (MA) (70/30, respectively) (EMA)/methylacrylate (MA) (70/30, respectively). The synthesis process of CaCO₃ nanoparticles/polymer nano-composite was prepared using in situ emulsion polymerization system. The consolidation and protection were characterized by TEM, while the penetration depth, re-aggregating effects of the deposited phase, and the surface morphology before and after treatment were examined by SEM (Scanning Electron Microscopy). Improvement of the stones' mechanical properties was evaluated by compressive strength tests. Changes in water-interaction properties were evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Together the results appear to demonstrate that CaCO₃/polymer nanocomposite is an efficient material for the consolidation of limestone architecture and monuments. As compared with samples treated with pure acrylic copolymer without Calcium carbonate nanoparticles, for example, CaCO₃ nanoparticles are completely compatible, strengthening limestone against thermal aging and improving its mechanical properties.

Keywords: calcium carbonate nanoparticles, consolidation, nanocomposites, calcareous stone, colorimetric measurements, compressive strength

Procedia PDF Downloads 117
2368 Tumour Radionuclides Therapy: in vitro and in vivo Dose Distribution Study

Authors: Rekaya A. Shabbir, Marco Mingarelli, Glenn Flux, Ananya Choudhury, Tim A. D. Smith

Abstract:

Introduction: Heterogeneity of dose distributions across a tumour is problematic for targeted radiotherapy. Gold nanoparticles (AuNPs) enhance dose-distributions of targeted radionuclides. The aim of this study is to demonstrate if tumour dose-distribution of targeted AuNPs radiolabelled with either of two radioisotopes (¹⁷⁷Lu and ⁹⁰Y) in breast cancer cells produced homogeneous dose distributions. Moreover, in vitro and in vivo studies were conducted to study the importance of receptor level on cytotoxicity of EGFR-targeted AuNPs in breast and colorectal cancer cells. Methods: AuNPs were functionalised with DOTA and OPPS-PEG-SVA to optimise labelling with radionuclide tracers and targeting with Erbitux. Radionuclides were chelated with DOTA, and the uptake of the radiolabelled AuNPs and targeted activity in vitro in both cell lines measured using liquid scintillation counting. Cells with medium (HCT8) and high (MDA-MB-468) EGFR expression were incubated with targeted ¹⁷⁷Lu-AuNPs for 4h, then washed and allowed to form colonies. Nude mice bearing tumours were used to study the biodistribution by injecting ¹⁷⁷Lu-AuNPs or ⁹⁰Y-AuNPs via the tail vein. Heterogeneity of dose-distribution in tumours was determined using autoradiography. Results: Colony formation (% control) was 81 ± 4.7% (HCT8) and 32 ± 9% (MDA-MB-468). High uptake was observed in the liver and spleen, indicating hepatobiliary excretion. Imaging showed heterogeneity in dose-distributions for both radionuclides across the tumours. Conclusion: The cytotoxic effect of EGFR-targeted AuNPs is greater in cells with higher EGFR expression. Dose-distributions for individual radiolabelled nanoparticles were heterogeneous across tumours. Further strategies are required to improve the uniformity of dose distribution prior to clinical trials.

Keywords: cancer cells, dose distributions, radionuclide therapy, targeted gold nanoparticles

Procedia PDF Downloads 102