Search results for: temperature dependent viscosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9451

Search results for: temperature dependent viscosity

7471 Magnetodielectric Studies of Substituted La₂NiMnO₆ Double Perovskites

Authors: Pravin M. Tirmali, Sagar M. Mane, Snehal L. Kadam, Shriniwas B. Kulkarni

Abstract:

The La₂NiMnO₆ has been extensively studied for its ferromagnetic and magneto-dielectric properties. The La₂NiMnO₆ double perovskite is modified by partial substitution at B site by Fe transition metal. The La₂Ni₁₋ₓFeₓMnO₆ powder samples were synthesized by hydroxide co-precipitation method. The precipitate was dried and fine griended to form powder and pellet samples (2cm dia.) using hydraulic press. The powder and pellet samples of La₂Ni₁₋ₓFeₓMnO₆ were calcined at high temperature 1200°C to form a pure and stable composition. The nano polar regions (NPR) around Ni²⁺ or Mn⁴⁺ ions due to the cationic antisite disorder gives dielectric relaxation through their mutual interaction. The magneto-dielectric behavior is observed in substituted La₂NiMnO₆ shows Maxwell-Wagner and Debye relaxation due to grain boundary, interface and antisite defects. The magneto-dielectric properties of substituted La₂NiMnO₆ pellet sample were probed by Impedance spectroscopy measurements. The structural and magnetic investigations were also carried out by XRD, FESEM and VSM measurements of substituted La₂NiMnO₆ of powder samples. The synthesized La₂Ni₁₋ₓFeₓMnO₆ powder samples are polycrystalline and ferromagnetic in nature. The La₂Ni₁₋ₓFeₓMnO₆ samples exhibit ferromagnetic disorder with transition temperature near room temperature.

Keywords: La₂NiMnO₆, nano polar regions (NPR), antisite defects, magnetodielctric

Procedia PDF Downloads 191
7470 Computational Investigation of Gas-Solid Flow in High Pressure High Temperature Filter

Authors: M. H. Alhajeri, Hamad M. Alhajeri, A. H. Alenezi

Abstract:

This paper reports a Computational Fluid Dynamics (CFD) investigation for a high-temperature high-pressure filtration (ceramic candle filter). However, parallel flow to the filter is considered in this study. Different face (filtration) velocities are examined using the CFD code, FLUENT. Different sizes of particles are tracked through the domain to find the height at which the particles will impinge on the filter surface. Furthermore, particle distribution around the filter (or filter cake) is studied to design efficient cleaning mechanisms. Gravity effect to the particles with various inlet velocities and pressure drop are both considered. In the CFD study, it is found that the gravity influence should not be ignored if the particle sizes exceed 1 micron.

Keywords: fluid flow, CFD, filtration, HTHP

Procedia PDF Downloads 192
7469 Study of Evapotranspiration for Pune District

Authors: Ranjeet Sable, Mahotsavi Patil, Aadesh Nimbalkar, Prajakta Palaskar, Ritu Sagar

Abstract:

The exact amount of water used by various crops in different climatic conditions is necessary to step for design, planning, and management of irrigation schemes, water resources, scheduling of irrigation systems. Evaporation and transpiration are combinable called as evapotranspiration. Water loss from trees during photosynthesis is called as transpiration and when water gets converted into gaseous state is called evaporation. For calculation of correct evapotranspiration, we have to choose the method in such way that is should be suitable and require minimum climatic data also it should be applicable for wide range of climatic conditions. In hydrology, there are multiple correlations and regression is generally used to develop relationships between three or more hydrological variables by knowing the dependence between them. This research work includes the study of various methods for calculation of evapotranspiration and selects reasonable and suitable one Pune region (Maharashtra state). As field methods are very costly, time-consuming and not give appropriate results if the suitable climate is not maintained. Observation recorded at Pune metrological stations are used to calculate evapotranspiration with the help of Radiation Method (RAD), Modified Penman Method (MPM), Thornthwaite Method (THW), Blaney-Criddle (BCL), Christiansen Equation (CNM), Hargreaves Method (HGM), from which Hargreaves and Thornthwaite are temperature based methods. Performance of all these methods are compared with Modified Penman method and method which showing less variation with standard Modified Penman method (MPM) is selected as the suitable one. Evapotranspiration values are estimated on a monthly basis. Comparative analysis in this research used for selection for raw data-dependent methods in case of missing data.

Keywords: Blaney-Criddle, Christiansen equation evapotranspiration, Hargreaves method, precipitations, Penman method, water use efficiency

Procedia PDF Downloads 256
7468 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy

Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan

Abstract:

The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.

Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model

Procedia PDF Downloads 146
7467 Numerical Solution to Coupled Heat and Moisture Diffusion in Bio-Sourced Composite Materials

Authors: Mnasri Faiza, El Ganaoui Mohammed, Khelifa Mourad, Gabsi Slimane

Abstract:

The main objective of this paper is to describe the hydrothermal behavior through porous material of construction due to temperature gradient. The construction proposed a bi-layer structure which composed of two different materials. The first is a bio-sourced panel named IBS-AKU (inertia system building), the second is the Neopor material. This system (IBS-AKU Neopor) is developed by a Belgium company (Isohabitat). The study suggests a multi-layer structure of the IBS-AKU panel in one dimension. A numerical method was proposed afterwards, by using the finite element method and a refined mesh area to strong gradients. The evolution of temperature fields and the moisture content has been processed.

Keywords: heat transfer, moisture diffusion, porous media, composite IBS-AKU, simulation

Procedia PDF Downloads 492
7466 Evaluation of Formability of AZ61 Magnesium Alloy at Elevated Temperatures

Authors: Ramezani M., Neitzert T.

Abstract:

This paper investigates mechanical properties and formability of the AZ61 magnesium alloy at high temperatures. Tensile tests were performed at elevated temperatures of up to 400ºC. The results showed that as temperature increases, yield strength and ultimate tensile strength decrease significantly, while the material experiences an increase in ductility (maximum elongation before break). A finite element model has been developed to further investigate the formability of the AZ61 alloy by deep drawing a square cup. Effects of different process parameters such as punch and die geometry, forming speed and temperature as well as blank-holder force on deep drawability of the AZ61 alloy were studied and optimum values for these parameters are achieved which can be used as a design guide for deep drawing of this alloy.

Keywords: AZ61, formability, magnesium, mechanical properties

Procedia PDF Downloads 568
7465 The Management of Climate Change by Indigenous People: A Focus on Himachal Pradesh, India

Authors: Anju Batta Sehgal

Abstract:

Climate change is a major challenge in terms of agriculture, food security and rural livelihood for thousands of people especially the poor in Himachal, which falls in North-Western Himalayas. Agriculture contributes over 45 per cent to net state domestic product. It is the main source of income and employment. Over 93 per cent of population is dependent on agriculture which provides direct employment to 71 percent of its people. Area of operation holding is about 9,79 lakh hectares owned by 9.14 lakh farmers. About 80 per cent area is rain-fed and farmers depend on weather gods for rains. Region is a home of diverse ethnic communities having enormous socio-economic and cultural diversities, gifted with range of farming systems and rich resource wealth, including biodiversity, hot spots and ecosystems sustaining millions of people living in the region. But growing demands of ecosystem goods and services are posing threats to natural resources. Climate change is already making adverse impact on the indigenous people. The rural populace is directly dependent for all its food, shelter and other needs on the climate. Our aim should be to shift the focus to indigenous people as primary actors in terms of global climate change monitoring, adaptations and innovations. Objective of this paper is to identify the climate change related threats and vulnerabilities associated with agriculture as a sector and agriculture as people’s livelihood. Broadly it analyses the connections between the nature and rural consumers the ethnic groups.

Keywords: climate change, agriculture, indigenous people, Himachal Pradesh

Procedia PDF Downloads 258
7464 Geographical Indication Protection for Agricultural Products: Contribution for Achieving Food Security in Indonesia

Authors: Mas Rahmah

Abstract:

Indonesia is the most populous Southeast Asian nations, as Indonesia`s population is constantly growing, food security has become a crucial trending issue. Although Indonesia has more than enough natural resources and agricultural products to ensure food security for all, Indonesia is still facing the problem of food security because of adverse weather conditions, increasing population, political instability, economic factors (unemployment, rising food prices), and the dependent system of agriculture. This paper will analyze that Geographical Indication (GI) can aid in transforming Indonesian agricultural-dependent system by tapping the unique product attributes of their quality products since Indonesia has a lot of agricultural products with unique quality and special characteristic associated with geographical factors such as Toraja Coffee, Alor Vanili, Banda Nutmeg, Java Tea, Deli Tobacco, Cianjur Rise etc. This paper argues that the reputation and agricultural products and their intrinsic quality should be protected under GI because GI will provide benefit supporting the food security program. Therefore, this paper will expose the benefit of GI protection such as increasing productivity, improving the exports of GI products, creating employment, adding economic value to products, and increasing the diversity of supply of natural and unique quality products, etc. that can contribute to food security. The analysis will finally conclude that the scenario of promoting GI may indirectly contribute to food security through adding value by incorporating territory specific cultural, environmental and social qualities into production, processing and developing of unique local, niche and special agricultural products.

Keywords: geographical indication, food security, agricultural product, Indonesia

Procedia PDF Downloads 356
7463 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions

Authors: George Adomako Kumi

Abstract:

The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.

Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method

Procedia PDF Downloads 161
7462 Prototype of Over Dimension Over Loading (ODOL) Freight Transportation Monitoring System Based on Arduino Mega 'Sabrang': A Case Study in Klaten, Indonesia

Authors: Chairul Fajar, Muhammad Nur Hidayat, Muksalmina

Abstract:

The issue of Over Dimension Over Loading (ODOL) in Indonesia remains a significant challenge, causing traffic accidents, disrupting traffic flow, accelerating road damage, and potentially leading to bridge collapses. Klaten Regency, located on the slopes of Mount Merapi along the Woro River in Kemalang District, has potential Class C excavation materials such as sand and stone. Data from the Klaten Regency Transportation Department indicates that ODOL violations account for 72%, while non-violating vehicles make up only 28%. ODOL involves modifying factory-standard vehicles beyond the limits specified in the Type Test Registration Certificate (SRUT) to save costs and travel time. This study aims to develop a prototype ‘Sabrang’ monitoring system based on Arduino Mega to control and monitor ODOL freight transportation in the mining of Class C excavation materials in Klaten Regency. The prototype is designed to automatically measure the dimensions and weight of objects using a microcontroller. The data analysis techniques used in this study include the Normality Test and Paired T-Test, comparing sensor measurement results on scaled objects. The study results indicate differences in measurement validation under room temperature and ambient temperature conditions. Measurements at room temperature showed that the majority of H0 was accepted, meaning there was no significant difference in measurements when the prototype tool was used. Conversely, measurements at ambient temperature showed that the majority of H0 was rejected, indicating a significant difference in measurements when the prototype tool was used. In conclusion, the ‘Sabrang’ monitoring system prototype is effective for controlling ODOL, although measurement results are influenced by temperature conditions. This study is expected to assist in the monitoring and control of ODOL, thereby enhancing traffic safety and road infrastructure.

Keywords: over dimension over loading, prototype, microcontroller, Arduino, normality test, paired t-test

Procedia PDF Downloads 0
7461 Impacts of Climate Change on Food Grain Yield and Its Variability across Seasons and Altitudes in Odisha

Authors: Dibakar Sahoo, Sridevi Gummadi

Abstract:

The focus of the study is to empirically analyse the climatic impacts on foodgrain yield and its variability across seasons and altitudes in Odisha, one of the most vulnerable states in India. The study uses Just-Pope Stochastic Production function by using two-step Feasible Generalized Least Square (FGLS): mean equation estimation and variance equation estimation. The study uses the panel data on foodgrain yield, rainfall and temperature for 13 districts during the period 1984-2013. The study considers four seasons: winter (December-February), summer (March-May), Rainy (June-September) and autumn (October-November). The districts under consideration have been categorized under three altitude regions such as low (< 70 masl), middle (153-305 masl) and high (>305 masl) altitudes. The results show that an increase in the standard deviations of monthly rainfall during rainy and autumn seasons have an adversely significant impact on the mean yield of foodgrains in Odisha. The summer temperature has beneficial effects by significantly increasing mean yield as the summer season is associated with harvesting stage of Rabi crops. The changing pattern of temperature has increasing effect on the yield variability of foodgrains during the summer season, whereas it has a decreasing effect on yield variability of foodgrains during the Rainy season. Moreover, the positive expected signs of trend variable in both mean and variance equation suggests that foodgrain yield and its variability increases with time. On the other hand, a change in mean levels of rainfall and temperature during different seasons has heterogeneous impacts either harmful or beneficial depending on the altitudes. These findings imply that adaptation strategies should be tailor-made to minimize the adverse impacts of climate change and variability for sustainable development across seasons and altitudes in Odisha agriculture.

Keywords: altitude, adaptation strategies, climate change, foodgrain

Procedia PDF Downloads 231
7460 Improved Production, Purification and Characterization of Invertase from Penicillium lilacinum by Shaken Flask Technique of Submerged Fermentation

Authors: Kashif Ahmed

Abstract:

Recent years researchers have been motivated towards extensive exploring of living organism, which could be utilized effectively in intense industrial conditions. The present study shows enhanced production, purification and characterization of industrial enzyme, invertase (Beta-D-fructofuranosidase) from Penicillium lilacinum. Various agricultural based by-products (cotton stalk, sunflower waste, rice husk, molasses and date syrup) were used as energy source. The highest amount of enzyme (13.05 Units/mL) was produced when the strain was cultured on growth medium containing date syrup as energy source. Yeast extract was used as nitrogen source after 96 h of incubation at incubation temperature of 40º C. Initial pH of medium was 8.0, inoculum size 6x10⁶ conidia and 200 rev/min agitation rate. The enzyme was also purified (7 folds than crude) and characterized. Molecular mass of purified enzyme (65 kDa) was determined by 10 % SDS-PAGE. Lineweaver-Burk Plot was used to determine Kinetic constants (Vmax 178.6 U/mL/min and Km 2.76 mM). Temperature and pH optima were 55º C and 5.5 respectively. MnCl₂ (52.9 %), MgSO₄ (48.9 %), BaCl₂ (24.6 %), MgCl₂ (9.6 %), CoCl₂ (5.7 %) and NaCl (4.2 %) enhanced the relative activity of enzyme and HgCl₂ (-92.8 %), CuSO₄ (-80.2 %) and CuCl₂ (-76.6 %) were proved inhibitors. The strain was showing enzyme activity even at extreme conditions of temperature (up to 60º C) and pH (up to 9), so it can be used in industries.

Keywords: invertase, Penicillium lilacinum, submerged fermentation, industrial enzyme

Procedia PDF Downloads 139
7459 Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants

Authors: Punit Kumar, Niraj Kumar

Abstract:

The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness.

Keywords: EHL, Carreau, shear-thinning, surface roughness, amplitude, wavelength

Procedia PDF Downloads 715
7458 Thermal Effects of Phase Transitions of Cerium and Neodymium

Authors: M. Khundadze, V. Varazashvili, N. Lejava, R. Jorbenadze

Abstract:

Phase transitions of cerium and neodymium are investigated by using high temperature scanning calorimeter (HT-1500 Seteram). For cerium two types of transformation are detected: at 350-372 K - hexagonal close packing (hcp) - face-centered cubic lattice (fcc) transition, and in 880-960K the face-centered cubic lattice (fcc) transformation into body-centered cubic lattice (bcc). For neodymium changing of hexagonal close packing (hcp) into body-centered cubic lattice (bcc) is detected at 1093-1113K. The thermal characteristics of transitions – enthalpy, entropy, temperature domains – are reported.

Keywords: cerium, calorimetry, neodymium, enthalpy of phase transitions, neodymium

Procedia PDF Downloads 349
7457 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 83
7456 Optimization of Gastro-Retentive Matrix Formulation and Its Gamma Scintigraphic Evaluation

Authors: Swapnila V. Shinde, Hemant P. Joshi, Sumit R. Dhas, Dhananjaysingh B. Rajput

Abstract:

The objective of the present study is to develop hydro-dynamically balanced system for atenolol, β-blocker as a single unit floating tablet. Atenolol shows pH dependent solubility resulting into a bioavailability of 36%. Thus, site specific oral controlled release floating drug delivery system was developed. Formulation includes novice use of rate controlling polymer such as locust bean gum (LBG) in combination of HPMC K4M and gas generating agent sodium bicarbonate. Tablet was prepared by direct compression method and evaluated for physico-mechanical properties. The statistical method was utilized to optimize the effect of independent variables, namely amount of HPMC K4M, LBG and three dependent responses such as cumulative drug release, floating lag time, floating time. Graphical and mathematical analysis of the results allowed the identification and quantification of the formulation variables influencing the selected responses. To study the gastrointestinal transit of the optimized gastro-retentive formulation, in vivo gamma scintigraphy was carried out in six healthy rabbits, after radio labeling the formulation with 99mTc. The transit profiles demonstrated that the dosage form was retained in the stomach for more than 5 hrs. The study signifies the potential of the developed system for stomach targeted delivery of atenolol with improved bioavailability.

Keywords: floating tablet, factorial design, gamma scintigraphy, antihypertensive model drug, HPMC, locust bean gum

Procedia PDF Downloads 267
7455 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India

Authors: A. Kumar, V. Devadas

Abstract:

Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.

Keywords: appliance, consumption, electricity, households

Procedia PDF Downloads 102
7454 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide

Authors: Almontas Vilutis, Vytenis Jankauskas

Abstract:

The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.

Keywords: friction, composite, carbide, factors

Procedia PDF Downloads 63
7453 A Self-Heating Gas Sensor of SnO2-Based Nanoparticles Electrophoretic Deposited

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Sonia M. Zanetti, Mario Cilense, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

The contamination of the environment has been one of the biggest problems of our time, mostly due to developments of many industries. SnO2 is an n-type semiconductor with band gap about 3.5 eV and has its electrical conductivity dependent of type and amount of modifiers agents added into matrix ceramic during synthesis process, allowing applications as sensing of gaseous pollutants on ambient. The chemical synthesis by polymeric precursor method consists in a complexation reaction between tin ion and citric acid at 90 °C/2 hours and subsequently addition of ethyleneglycol for polymerization at 130 °C/2 hours. It also prepared polymeric resin of zinc, cobalt and niobium ions. Stoichiometric amounts of the solutions were mixed to obtain the systems (Zn, Nb)-SnO2 and (Co, Nb) SnO2 . The metal immobilization reduces its segregation during the calcination resulting in a crystalline oxide with high chemical homogeneity. The resin was pre-calcined at 300 °C/1 hour, milled in Atritor Mill at 500 rpm/1 hour, and then calcined at 600 °C/2 hours. X-Ray Diffraction (XDR) indicated formation of SnO2 -rutile phase (JCPDS card nº 41-1445). The characterization by Scanning Electron Microscope of High Resolution showed spherical ceramic powder nanostructured with 10-20 nm of diameter. 20 mg of SnO2 -based powder was kept in 20 ml of isopropyl alcohol and then taken to an electrophoretic deposition (EPD) system. The EPD method allows control the thickness films through the voltage or current applied in the electrophoretic cell and by the time used for deposition of ceramics particles. This procedure obtains films in a short time with low costs, bringing prospects for a new generation of smaller size devices with easy integration technology. In this research, films were obtained in an alumina substrate with interdigital electrodes after applying 2 kV during 5 and 10 minutes in cells containing alcoholic suspension of (Zn, Nb)-SnO2 and (Co, Nb) SnO2 of powders, forming a sensing layer. The substrate has designed integrated micro hotplates that provide an instantaneous and precise temperature control capability when a voltage is applied. The films were sintered at 900 and 1000 °C in a microwave oven of 770 W, adapted by the research group itself with a temperature controller. This sintering is a fast process with homogeneous heating rate which promotes controlled growth of grain size and also the diffusion of modifiers agents, inducing the creation of intrinsic defects which will change the electrical characteristics of SnO2 -based powders. This study has successfully demonstrated a microfabricated system with an integrated micro-hotplate for detection of CO and NO2 gas at different concentrations and temperature, with self-heating SnO2 - based nanoparticles films, being suitable for both industrial process monitoring and detection of low concentrations in buildings/residences in order to safeguard human health. The results indicate the possibility for development of gas sensors devices with low power consumption for integration in portable electronic equipment with fast analysis. Acknowledgments The authors thanks to the LMA-IQ for providing the FEG-SEM images, and the financial support of this project by the Brazilian research funding agencies CNPq, FAPESP 2014/11314-9 and CEPID/CDMF- FAPESP 2013/07296-2.

Keywords: chemical synthesis, electrophoretic deposition, self-heating, gas sensor

Procedia PDF Downloads 264
7452 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication

Authors: M. Guemmadi, A. Ouibrahim

Abstract:

This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.

Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity

Procedia PDF Downloads 528
7451 Optimization of Ultrasound Assisted Extraction and Characterization of Functional Properties of Dietary Fiber from Oat Cultivar S2000

Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Waseem Khalid, Ammara Ainee, Taleeha Roheen, Sadaf Javaria, Aftab Ahmed, Hira Fatima, Mian Nadeem Riaz, Muhammad Zubair Khalid, Isam A. Mohamed Ahmed J, Moneera O. Aljobair

Abstract:

This study was executed to explore the efficacy of ultrasound-assisted extraction of dietary fiber from oat cultivar S2000. Extraction (variables time, temperature and amplitude) was optimized by using response surface methodology (RSM) conducted by Box Behnken Design (BBD). The effect of time, temperature and amplitude were studied at three levels. It was observed that time and temperature exerted more impact on extraction efficiency as compared to amplitude. The highest yield of total dietary fiber (TDF), soluble dietary fiber (SDF) and In-soluble dietary fiber (IDF) fractions were observed under ultrasound processing for 20 min at 40 ◦C with 80% amplitude. Characterization of extracted dietary fiber showed that it had better crystallinity, thermal properties and good fibrous structure. It also showed better functional properties as compared to traditionally extracted dietary fiber. Furthermore, dietary fibers from oats may offer high-value utilization and the expansion of comprehensive utilization in functional food and nutraceutical development.

Keywords: extraction, ultrasonication, response surface methodology, box behnken design

Procedia PDF Downloads 15
7450 About the Effect of Temperature and Heating Rate on the Pyrolysis of Lignocellulosic Biomass Waste

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

At the present time, conventional fossil fuels show environmental and sustainability disadvantages with regard to renewables energies. Producing energy and chemicals from biomass is an interesting alternative for substitution of conventional fossil sources with a renewable feedstock while enabling zero net greenhouse gases emissions. Pyrolysis is a well-known process to produce fuels and chemicals from biomass. In this work, conventional and fast pyrolysis of different agro-industrial residues (almond shells, hemp hurds, olive stones, and Kraft lignin) was studied. Both processes were carried out in a fixed bed reactor under nitrogen flow and using different operating conditions to analyze the influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/minfor conventional pyrolysis and 50 ºC/s for fast pyrolysis)on the yields, products distribution, and composition of the different fractions. The results showed that for both conventional and fast pyrolysis, the solid fraction yield decreased with temperature, while the liquid and gas fractions increased. In the case of the fast pyrolysis, a higher content of liquid fraction than that obtained in conventional pyrolysis could be observed due to cracking reactions occur at a lesser extent. With respect to the composition of de non-condensable fraction, the main gases obtained were CO, CO₂ (mainly at low temperatures), CH₄, and H₂ (mainly at high temperatures).

Keywords: bio-oil, biomass, conventional pyrolysis, fast pyrolysis

Procedia PDF Downloads 172
7449 Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate

Authors: I. Grigoraviciute-Puroniene, K. Tsuru, E. Garskaite, Z. Stankeviciute, A. Beganskiene, K. Ishikawa, A. Kareiva

Abstract:

Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.

Keywords: Tricalcium phosphate (β-Ca3(PO4)2, bone regeneration, wet chemical processing, polymeric precipitation

Procedia PDF Downloads 284
7448 Numerical Study on Jatropha Oil Pool Fire Behavior in a Compartment

Authors: Avinash Chaudhary, Akhilesh Gupta, Surendra Kumar, Ravi Kumar

Abstract:

This paper presents the numerical study on Jatropha oil pool fire in a compartment. A fire experiment with jatropha oil was conducted in a compartment of size 4 m x 4 m x m to study the fire development and temperature distribution. Fuel is burned in the center of the compartment in a pool diameter of 0.5 m with an initial fuel depth of 0.045 m. Corner temperature in the compartment, doorway temperature and hot gas layer temperature at various locations are measured. Numerical simulations were carried out using Fire Dynamics Simulator (FDS) software at grid size of 0.05 m, 0.12 m and for performing simulation heat release rate of jatropha oil measured using mass loss method were inputted into FDS. Experimental results shows that like other fuel fires, the whole combustion process can be divided into four stages: initial stage, growth stage, steady profile or developed phase and decay stage. The fire behavior shows two zone profile where upper zone consists of mainly hot gases while lower zone is relatively at colder side. In this study, predicted temperatures from simulation are in good agreement in upper zone of compartment. Near the interface of hot and cold zone, deviations were reported between the simulated and experimental results which is probably due to the difference between the predictions of smoke layer height by FDS. Also, changing the grid size from 0.12 m to 0.05 m does not show any effect in temperatures at upper zone while in lower zone, grid size of 0.05 m showed satisfactory agreement with experimental results. Numerical results showed that calculated temperatures at various locations matched well with the experimental results. On the whole, an effective method is provided with reasonable results to study the burning characteristics of jatropha oil with numerical simulations.

Keywords: jatropha oil, compartment fire, heat release rate, FDS (fire dynamics simulator), numerical simulation

Procedia PDF Downloads 241
7447 Control for Fluid Flow Behaviours of Viscous Fluids and Heat Transfer in Mini-Channel: A Case Study Using Numerical Simulation Method

Authors: Emmanuel Ophel Gilbert, Williams Speret

Abstract:

The control for fluid flow behaviours of viscous fluids and heat transfer occurrences within heated mini-channel is considered. Heat transfer and flow characteristics of different viscous liquids, such as engine oil, automatic transmission fluid, one-half ethylene glycol, and deionized water were numerically analyzed. Some mathematical applications such as Fourier series and Laplace Z-Transforms were employed to ascertain the behaviour-wave like structure of these each viscous fluids. The steady, laminar flow and heat transfer equations are reckoned by the aid of numerical simulation technique. Further, this numerical simulation technique is endorsed by using the accessible practical values in comparison with the anticipated local thermal resistances. However, the roughness of this mini-channel that is one of the physical limitations was also predicted in this study. This affects the frictional factor. When an additive such as tetracycline was introduced in the fluid, the heat input was lowered, and this caused pro rata effect on the minor and major frictional losses, mostly at a very minute Reynolds number circa 60-80. At this ascertained lower value of Reynolds numbers, there exists decrease in the viscosity and minute frictional losses as a result of the temperature of these viscous liquids been increased. It is inferred that the three equations and models are identified which supported the numerical simulation via interpolation and integration of the variables extended to the walls of the mini-channel, yields the utmost reliance for engineering and technology calculations for turbulence impacting jets in the near imminent age. Out of reasoning with a true equation that could support this control for the fluid flow, Navier-stokes equations were found to tangential to this finding. Though, other physical factors with respect to these Navier-stokes equations are required to be checkmated to avoid uncertain turbulence of the fluid flow. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme via numerical simulation method that takes into account certain terms in the full Navier-Stokes equations. However, this resulted in dropping out in the approximation of certain assumptions. Concrete questions raised in the main body of the work are sightseen further in the appendices.

Keywords: frictional losses, heat transfer, laminar flow, mini-channel, number simulation, Reynolds number, turbulence, viscous fluids

Procedia PDF Downloads 160
7446 Concerns for Extreme Climate Conditions and Their Implications in Southwest Nigeria

Authors: Oyenike Eludoyin

Abstract:

Extreme climate conditions are deviation from the norms and are capable of causing upsets in many important environmental parameter including disruption of water balance and air temperature balance. Studies have shown that extreme climate conditions can foretell disaster in regions with inadequate early warning systems. In this paper, we combined geographical information systems, statistics and social surveys to evaluate the physiologic indices [(Dewpoint Temperature (Td), Effective Temperature Index (ETI) and Relative Strain Index (RSI)] and extreme climate conditions in different parts of southwest Nigeria. This was with the view to assessing the nature and the impact of the conditions on the people and their coping strategies. The results indicate that minimum, mean and maximum temperatures were higher in 1960-1990 than 1991-2013 periods at most areas, and more than 80% of the people adapt to thermal stress by changing wear type or cloth, installing air conditioner and fan at home and/or work place and sleeping outside at certain period of the night and day. With respect to livelihoods, about 52% of the interviewed farmers indicated that too early rainfall, late rainfall, prolonged dryness after an initial rainfall, excessive rainfall and windstorms caused low crop yields. Main (76%) coping strategies were changing of planting dates, diversification of crops, and practices of mulching and intercropping. Government or institutional support was less than 20%.

Keywords: coping strategies, extreme climate, livelihoods, physiologic comfort

Procedia PDF Downloads 264
7445 Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature

Authors: Young-Jin Baik, Minsung Kim, Junhyun Cho, Ho-Sang Ra, Young-Soo Lee, Ki-Chang Chang

Abstract:

Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method.

Keywords: energy storage system, heat pump, fluid mechanics, thermodynamics

Procedia PDF Downloads 460
7444 Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment

Authors: Jana Petru, Marie Kudrnova

Abstract:

The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy.

Keywords: corrosion, experimental device, molten salt, steel

Procedia PDF Downloads 105
7443 The Effect of System Parameters on the Biogas Production from Poultry Rendering Plant Anaerobic Digesters

Authors: N. Lovanh, J. Loughrin, G. Ruiz-Aguilar

Abstract:

Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system parameters on methane production from anaerobic digesters utilizing poultry rendering plant wastewater was carried out. Anaerobic batch reactors and continuous flow system subjected to different operation conditions (i.e., flow rate, temperature, and etc.) containing poultry rendering wastewater were set up to evaluate methane potential from each scenario. Biogas productions were sampled and monitored by gas chromatography and photoacoustic gas analyzer over six months of operation. The results showed that methane productions increased as the temperature increased. However, there is an upper limit to the increase in the temperature on the methane production. Flow rates and type of systems (batch vs. plug-flow regime) also had a major effect on methane production. Constant biogas production was observed in plug-flow system whereas batch system produced biogas quicker and tapering off toward the end of the six-month study. Based on these results, it is paramount to consider operating conditions and system setup in optimizing biogas production from agricultural wastewater.

Keywords: anaerobic digestion, methane, poultry rendering wastewater, biotechnology

Procedia PDF Downloads 371
7442 The Effect of Temperature and Salinity on the Growth and Carotenogenesis of Three Dunaliella Species (Dunaliella sp. Lake Isolate, D. salina CCAP 19/18, and D. bardawil LB 2538) Cultivated under Laboratory Conditions

Authors: Imen Hamed, Burcu Ak, Oya Işık, Leyla Uslu, Kubilay Kazım Vursavuş

Abstract:

In this study, 3 species of Dunaliella (Dunaliella sp. Salt Lake isoalte (Tuz Gölü), Dunaliella salina CCAP19/18, and Dunaliella bardawil LB 2538) and their optical density, dry matter, chlorophyll a, total carotenoids, and β-carotene production were investigated in a batch system. The aim of this research was to compare carotenoids, and β-carotene production were investigated in a batch those 3 species. Therefore 2 stress factors were used: 2 different temperatures (20°C and 30°C) and 2 different salinities (30‰, and 60‰) were tested over a 17-day study. The highest growth and chlorophyll a was reported for Dunaliella sp. under 20°C/30‰ and 20°C/60‰ conditions respectively followed by D. bardawil and D. salina. Significant differences were noticed (p<0.05) for the other 3 species. The growth decreased as temperature and salinity increased since the lowest growth was noticed for the 30°C/60‰ group. The chlorophyll a content decreased also as temperature increased however when the NaCl concentration increased an augmentation of the content was noticed . In the 17th day of experiment the highest carotenoids concentration was reported for D. bardawil 20°C/30‰ (65,639±0,400 μg.mL1) and the most important β carotene concentration was for D. salina 20°C/60‰ (8,98E-07±0,013 mol/L).

Keywords: Dunaliella sp., Dunaliella salina, Dunaliella bardawil, growth, pigments, stress factors

Procedia PDF Downloads 298